Yadav JS

References (5)

Title : Genome Sequence of the Chestnut Blight Fungus Cryphonectria parasitica EP155: A Fundamental Resource for an Archetypical Invasive Plant Pathogen - Crouch_2020_Phytopathology_110_1180
Author(s) : Crouch JA , Dawe A , Aerts A , Barry K , Churchill ACL , Grimwood J , Hillman BI , Milgroom MG , Pangilinan J , Smith M , Salamov A , Schmutz J , Yadav JS , Grigoriev IV , Nuss DL
Ref : Phytopathology , 110 :1180 , 2020
Abstract : Cryphonectria parasitica is the causal agent of chestnut blight, a fungal disease that almost entirely eliminated mature American chestnut from North America over a 50-year period. Here, we formally report the genome of C. parasitica EP155 using a Sanger shotgun sequencing approach. After finishing and integration with simple-sequence repeat markers, the assembly was 43.8 Mb in 26 scaffolds (L(50) = 5; N(50) = 4.0Mb). Eight chromosomes are predicted: five scaffolds have two telomeres and six scaffolds have one telomere sequence. In total, 11,609 gene models were predicted, of which 85% show similarities to other proteins. This genome resource has already increased the utility of a fundamental plant pathogen experimental system through new understanding of the fungal vegetative incompatibility system, with significant implications for enhancing mycovirus-based biological control.
ESTHER : Crouch_2020_Phytopathology_110_1180
PubMedSearch : Crouch_2020_Phytopathology_110_1180
PubMedID: 32207662
Gene_locus related to this paper: crypa-a0a9p5chw8

Title : Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities - Nagy_2016_Mol.Biol.Evol_33_959
Author(s) : Nagy LG , Riley R , Tritt A , Adam C , Daum C , Floudas D , Sun H , Yadav JS , Pangilinan J , Larsson KH , Matsuura K , Barry K , LaButti K , Kuo R , Ohm RA , Bhattacharya SS , Shirouzu T , Yoshinaga Y , Martin FM , Grigoriev IV , Hibbett DS
Ref : Molecular Biology Evolution , 33 :959 , 2016
Abstract : Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot.
ESTHER : Nagy_2016_Mol.Biol.Evol_33_959
PubMedSearch : Nagy_2016_Mol.Biol.Evol_33_959
PubMedID: 26659563
Gene_locus related to this paper: 9homo-a0a164swv2 , 9homo-a0a164tl22 , 9homo-a0a164vkv1 , 9homo-a0a164y4j9 , 9homo-a0a164y4l9 , 9homo-a0a164ytj2 , 9homo-a0a164zeu0 , exigl-a0a165as65 , exigl-a0a165ck85 , 9basi-a0a165cm83 , 9aphy-a0a165dbf1 , 9aphy-a0a165dbf3 , 9basi-a0a165dcb7 , 9aphy-a0a165ddj9 , exigl-a0a165dj22 , exigl-a0a165dmd7 , 9aphy-a0a165egr5 , 9basi-a0a165ekd3 , 9basi-a0a165enc9 , 9basi-a0a165end6 , 9basi-a0a165epz3 , 9basi-a0a165eq46 , 9basi-a0a165eq95 , 9basi-a0a165eqk7 , 9basi-a0a165eup2 , 9aphy-a0a165fb02 , 9aphy-a0a165fmr9 , 9aphy-a0a165g3p1 , 9basi-a0a165g673 , 9basi-a0a165g6g2 , 9aphy-a0a165gec2 , 9basi-a0a165gfp7 , 9aphy-a0a165h505 , 9aphy-a0a165hd72 , 9aphy-a0a165hrk1 , exigl-a0a165hzc8 , 9basi-a0a165i2y7 , 9basi-a0a165iru3 , 9basi-a0a165is19 , 9basi-a0a165is40 , exigl-a0a165j2r4 , exigl-a0a165j754 , 9basi-a0a165jg92 , 9basi-a0a165jgb0 , exigl-a0a165ke04 , exigl-a0a165kpb0 , exigl-a0a165l7g6 , 9aphy-a0a165lux8 , 9aphy-a0a165luy2.1 , 9aphy-a0a165luy2.2 , exigl-a0a165m310 , 9aphy-a0a165mxa5 , 9aphy-a0a165mxc8 , 9aphy-a0a165mxe4 , exigl-a0a165mz73 , 9homo-a0a165nfz4 , 9homo-a0a165ng04 , 9aphy-a0a165nry3 , 9homo-a0a165ntf3 , 9homo-a0a165p2a0 , 9aphy-a0a165ph74 , 9homo-a0a165phz5 , exigl-a0a165pm12 , exigl-a0a165pu90 , exigl-a0a165puh2 , 9aphy-a0a165q9t4 , 9homo-a0a165qeb7 , 9homo-a0a165qeh8 , 9aphy-a0a165qqm2 , 9aphy-a0a165quj0 , 9aphy-a0a165qul3 , exigl-a0a165qxy0 , 9aphy-a0a165r6t2 , 9aphy-a0a165r8g4 , 9aphy-a0a165tfc7 , 9homo-a0a165tgm2 , 9homo-a0a165tzv4 , 9homo-a0a165tzw4 , 9homo-a0a165uez3 , 9homo-a0a165ugh4 , 9homo-a0a165ugp4 , 9homo-a0a165ugq6 , 9homo-a0a165uh51 , 9aphy-a0a165umj9 , 9homo-a0a165us14 , 9homo-a0a165xi11 , 9homo-a0a165xmw5 , 9homo-a0a165xmx9 , 9homo-a0a165xsk7 , 9homo-a0a165y3k8 , 9homo-a0a165yhg3 , 9homo-a0a165ymb3 , 9homo-a0a165yt77 , 9homo-a0a165ytu4 , 9homo-a0a165zr30 , 9homo-a0a166a1g9 , 9homo-a0a166a1h1 , exigl-a0a166abe4 , 9homo-a0a166akq6 , exigl-a0a166al33 , 9homo-a0a166arm1 , 9homo-a0a166as45 , 9homo-a0a166as65 , 9homo-a0a166as77 , exigl-a0a166auh4 , 9homo-a0a166azk8 , exigl-a0a166azz6 , 9homo-a0a166bss2 , 9homo-a0a166bsu9 , 9homo-a0a166bui6 , 9homo-a0a166crl5 , 9homo-a0a166d8q4 , 9homo-a0a166dss7 , 9homo-a0a166dtg8 , 9homo-a0a166du49 , 9homo-a0a166du64 , 9homo-a0a166e1z2 , 9homo-a0a166eec5 , 9homo-a0a166eux5 , 9homo-a0a166evw5 , 9homo-a0a166ey75 , 9homo-a0a166eyq0 , 9homo-a0a166ez78 , 9homo-a0a166eze7 , 9homo-a0a166fh25 , 9homo-a0a166g4k8 , 9homo-a0a166gct1 , 9homo-a0a166gf56 , 9homo-a0a166gsr8 , 9homo-a0a166j6i1 , 9homo-a0a166jiu0 , 9homo-a0a166jr36 , 9homo-a0a166kia8 , 9homo-a0a166ks21 , 9homo-a0a166kvn8 , 9homo-a0a166kxf0 , 9homo-a0a166kxg2 , 9homo-a0a166lcs7 , 9homo-a0a166lw48 , 9homo-a0a166lyz4 , 9homo-a0a166puu7.1 , 9homo-a0a166puu7.2 , 9homo-a0a166puz0 , 9homo-a0a166pv75 , 9homo-a0a166pva0 , 9homo-a0a166pvf7 , 9homo-a0a166px11 , 9homo-a0a166q635 , 9basi-a0a167gl88 , 9basi-a0a167gl97 , 9basi-a0a167gla5 , 9basi-a0a167hca0 , 9basi-a0a167hrt3 , 9basi-a0a167hru7 , 9basi-a0a167k219 , 9basi-a0a167k232 , 9basi-a0a167k265 , 9basi-a0a167l6m6 , 9basi-a0a167lrl7 , 9basi-a0a167lt70 , 9basi-a0a167mtk7 , 9basi-a0a167n1z0 , 9basi-a0a167p9x5 , 9basi-a0a167qks1 , 9basi-a0a167qkt4 , 9basi-a0a167qky5 , 9basi-a0a167qln8 , 9basi-a0a167rpp7 , 9homo-a0a167u8e3 , 9homo-a0a167v1m8 , 9homo-a0a166hqx0 , 9homo-a0a166l842 , exigl-a0a165n4f2 , exigl-a0a165q512 , 9agam-a0a165nq75 , 9agam-a0a166cv75 , 9agam-a0a165mvt4 , 9agam-a0a164t8q2 , 9agam-a0a166flp0

Title : Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize - Suzuki_2012_BMC.Genomics_13_444
Author(s) : Suzuki H , MacDonald J , Syed K , Salamov A , Hori C , Aerts A , Henrissat B , Wiebenga A , vanKuyk PA , Barry K , Lindquist E , LaButti K , Lapidus A , Lucas S , Coutinho P , Gong Y , Samejima M , Mahadevan R , Abou-Zaid M , de Vries RP , Igarashi K , Yadav JS , Grigoriev IV , Master ER
Ref : BMC Genomics , 13 :444 , 2012
Abstract : BACKGROUND: Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome.
RESULTS: P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood.
CONCLUSIONS: The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.
ESTHER : Suzuki_2012_BMC.Genomics_13_444
PubMedSearch : Suzuki_2012_BMC.Genomics_13_444
PubMedID: 22937793
Gene_locus related to this paper: phacs-k5whx2 , phacs-k5v2s8 , phacs-k5v5r2 , phacs-k5vyk5 , phacs-k5vzf8 , phacs-k5wbu9 , phacs-k5wc10 , phacs-k5wpw0 , phacs-k5wzn6 , phacs-k5x1t8 , phacs-k5x5g6 , phacs-k5x5p4

Title : The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes - Floudas_2012_Science_336_1715
Author(s) : Floudas D , Binder M , Riley R , Barry K , Blanchette RA , Henrissat B , Martinez AT , Otillar R , Spatafora JW , Yadav JS , Aerts A , Benoit I , Boyd A , Carlson A , Copeland A , Coutinho PM , de Vries RP , Ferreira P , Findley K , Foster B , Gaskell J , Glotzer D , Gorecki P , Heitman J , Hesse C , Hori C , Igarashi K , Jurgens JA , Kallen N , Kersten P , Kohler A , Kues U , Kumar TK , Kuo A , LaButti K , Larrondo LF , Lindquist E , Ling A , Lombard V , Lucas S , Lundell T , Martin R , McLaughlin DJ , Morgenstern I , Morin E , Murat C , Nagy LG , Nolan M , Ohm RA , Patyshakuliyeva A , Rokas A , Ruiz-Duenas FJ , Sabat G , Salamov A , Samejima M , Schmutz J , Slot JC , St John F , Stenlid J , Sun H , Sun S , Syed K , Tsang A , Wiebenga A , Young D , Pisabarro A , Eastwood DC , Martin F , Cullen D , Grigoriev IV , Hibbett DS
Ref : Science , 336 :1715 , 2012
Abstract : Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.
ESTHER : Floudas_2012_Science_336_1715
PubMedSearch : Floudas_2012_Science_336_1715
PubMedID: 22745431
Gene_locus related to this paper: aurde-j0d098 , aurde-j0dc31 , glota-s7rlc1 , fompi-s8f7s4 , dacsp-m5fpg2 , dicsq-r7sm16 , dacsp-m5g7q5 , dacsp-m5fr12 , glota-s7q5w3 , fompi-s8f826.1 , fompi-s8f826.2 , dicsq-r7sy09 , glota-s7rt87 , dicsq-r7t032 , glota-s7rym7 , fompi-s8fiv2 , dacsp-m5gda3.2 , dicsq-r7swi6 , dacsp-m5frf2 , fompi-s8ebb6 , dicsq-r7sln3 , dicsq-r7sya6 , dacsp-m5g7g1 , dicsq-r7syx7 , dicsq-r7sx57 , dacsp-m5fps7 , glota-s7pwi7 , dicsq-r7swj6 , fompi-s8ejq6 , dicsq-r7spc3 , glota-s7q258 , dacsp-m5ft65 , glota-s7q3m7 , fompi-s8dkc7 , glota-s7q1z1 , fompi-s8eqi2 , glota-s7q1z8 , fompi-s8du50 , dacsp-m5gg33 , dacsp-m5g3a7 , fompi-s8ecd7 , fompi-s8dps1 , dacsp-m5fwr0 , dicsq-r7sub7 , glota-s7q8k9 , fompi-s8ffc3 , dacsp-m5g2f9 , fompi-s8ecc2 , dacsp-m5g868 , fompi-s8f890 , dicsq-r7t1a8 , fompi-s8ebx4 , fompi-s8eb97 , glota-s7q222 , glota-s7puf0 , fompi-s8f6v9 , dacsp-m5g0z2 , dacsp-m5gdh9 , fompi-s8fb37 , dacsp-m5fy91 , glota-s7q5v6 , fompi-s8fl44 , dicsq-r7stv9 , dicsq-r7szk3 , fompi-s8epq9 , glota-s7rh56 , dacsp-m5gbt1 , punst-r7s3x9 , punst-r7s0t5 , glota-s7q312 , glota-s7rhh6 , dicsq-r7t117 , dicsq-r7slz3

Title : Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis - Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
Author(s) : Fernandez-Fueyo E , Ruiz-Duenas FJ , Ferreira P , Floudas D , Hibbett DS , Canessa P , Larrondo LF , James TY , Seelenfreund D , Lobos S , Polanco R , Tello M , Honda Y , Watanabe T , Ryu JS , Kubicek CP , Schmoll M , Gaskell J , Hammel KE , St John FJ , Vanden Wymelenberg A , Sabat G , Splinter BonDurant S , Syed K , Yadav JS , Doddapaneni H , Subramanian V , Lavin JL , Oguiza JA , Perez G , Pisabarro AG , Ramirez L , Santoyo F , Master E , Coutinho PM , Henrissat B , Lombard V , Magnuson JK , Kues U , Hori C , Igarashi K , Samejima M , Held BW , Barry KW , LaButti KM , Lapidus A , Lindquist EA , Lucas SM , Riley R , Salamov AA , Hoffmeister D , Schwenk D , Hadar Y , Yarden O , de Vries RP , Wiebenga A , Stenlid J , Eastwood D , Grigoriev IV , Berka RM , Blanchette RA , Kersten P , Martinez AT , Vicuna R , Cullen D
Ref : Proc Natl Acad Sci U S A , 109 :5458 , 2012
Abstract : Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.
ESTHER : Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
PubMedSearch : Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
PubMedID: 22434909
Gene_locus related to this paper: cers8-m2r3x2 , cers8-m2qf37 , cers8-m2pcy7 , cers8-m2pcz3 , cers8-m2qn26 , cers8-m2r654 , cers8-m2r8g9 , cers8-m2ps90 , cers8-m2qn44 , cers8-m2q837 , cers8-m2pjy6 , cers8-m2r609 , cers8-m2qy35 , cers8-m2r1n1 , cers8-m2rl22 , cers8-m2qkx5 , cers8-m2qib7 , cers8-m2rgs8 , cers8-m2rlx6 , cers8-m2r4p3 , cers8-m2rf62 , cers8-m2qyx5 , cers8-m2pcz2 , cers8-m2rm22 , cers8-m2qwb7 , cers8-m2r9u3 , cers8-m2pp23 , cers8-m2r613 , cers8-m2rup8 , cers8-m2piv7 , cers8-m2rch3 , cers8-m2qvf7 , cers8-m2qvb7 , cers8-m2qvb2 , cers8-m2pip7 , cers8-m2rb73 , cers8-m2qgd3 , cers8-m2rcg8 , cers8-m2rb68