Yarden O

References (3)

Title : Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis - Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
Author(s) : Fernandez-Fueyo E , Ruiz-Duenas FJ , Ferreira P , Floudas D , Hibbett DS , Canessa P , Larrondo LF , James TY , Seelenfreund D , Lobos S , Polanco R , Tello M , Honda Y , Watanabe T , Ryu JS , Kubicek CP , Schmoll M , Gaskell J , Hammel KE , St John FJ , Vanden Wymelenberg A , Sabat G , Splinter BonDurant S , Syed K , Yadav JS , Doddapaneni H , Subramanian V , Lavin JL , Oguiza JA , Perez G , Pisabarro AG , Ramirez L , Santoyo F , Master E , Coutinho PM , Henrissat B , Lombard V , Magnuson JK , Kues U , Hori C , Igarashi K , Samejima M , Held BW , Barry KW , LaButti KM , Lapidus A , Lindquist EA , Lucas SM , Riley R , Salamov AA , Hoffmeister D , Schwenk D , Hadar Y , Yarden O , de Vries RP , Wiebenga A , Stenlid J , Eastwood D , Grigoriev IV , Berka RM , Blanchette RA , Kersten P , Martinez AT , Vicuna R , Cullen D
Ref : Proc Natl Acad Sci U S A , 109 :5458 , 2012
Abstract : Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.
ESTHER : Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
PubMedSearch : Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
PubMedID: 22434909
Gene_locus related to this paper: cers8-m2r3x2 , cers8-m2qf37 , cers8-m2pcy7 , cers8-m2pcz3 , cers8-m2qn26 , cers8-m2r654 , cers8-m2r8g9 , cers8-m2ps90 , cers8-m2qn44 , cers8-m2q837 , cers8-m2pjy6 , cers8-m2r609 , cers8-m2qy35 , cers8-m2r1n1 , cers8-m2rl22 , cers8-m2qkx5 , cers8-m2qib7 , cers8-m2rgs8 , cers8-m2rlx6 , cers8-m2r4p3 , cers8-m2rf62 , cers8-m2qyx5 , cers8-m2pcz2 , cers8-m2rm22 , cers8-m2qwb7 , cers8-m2r9u3 , cers8-m2pp23 , cers8-m2r613 , cers8-m2rup8 , cers8-m2piv7 , cers8-m2rch3 , cers8-m2qvf7 , cers8-m2qvb7 , cers8-m2qvb2 , cers8-m2pip7 , cers8-m2rb73 , cers8-m2qgd3 , cers8-m2rcg8 , cers8-m2rb68

Title : Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea - Amselem_2011_PLoS.Genet_7_e1002230
Author(s) : Amselem J , Cuomo CA , van Kan JA , Viaud M , Benito EP , Couloux A , Coutinho PM , de Vries RP , Dyer PS , Fillinger S , Fournier E , Gout L , Hahn M , Kohn L , Lapalu N , Plummer KM , Pradier JM , Quevillon E , Sharon A , Simon A , ten Have A , Tudzynski B , Tudzynski P , Wincker P , Andrew M , Anthouard V , Beever RE , Beffa R , Benoit I , Bouzid O , Brault B , Chen Z , Choquer M , Collemare J , Cotton P , Danchin EG , Da Silva C , Gautier A , Giraud C , Giraud T , Gonzalez C , Grossetete S , Guldener U , Henrissat B , Howlett BJ , Kodira C , Kretschmer M , Lappartient A , Leroch M , Levis C , Mauceli E , Neuveglise C , Oeser B , Pearson M , Poulain J , Poussereau N , Quesneville H , Rascle C , Schumacher J , Segurens B , Sexton A , Silva E , Sirven C , Soanes DM , Talbot NJ , Templeton M , Yandava C , Yarden O , Zeng Q , Rollins JA , Lebrun MH , Dickman M
Ref : PLoS Genet , 7 :e1002230 , 2011
Abstract : Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.
ESTHER : Amselem_2011_PLoS.Genet_7_e1002230
PubMedSearch : Amselem_2011_PLoS.Genet_7_e1002230
PubMedID: 21876677
Gene_locus related to this paper: botci-cutas , botci-q6rki2 , botf4-g2y7k8 , botfb-dapb , botfu-g2xyd8 , botfu-g2ynh8 , scls1-a7e814 , scls1-a7edc9 , scls1-a7edh1 , scls1-a7emm0 , scls1-a7eti8 , scls1-a7eu48 , scls1-a7f208 , scls1-dapb , botf4-g2xqp7 , scls1-a7eqq8 , botf4-g2xqc6 , scls1-a7ebs4 , botf4-g2xn51 , scls1-a7f5m9 , botf4-g2xti4 , botf4-g2xtu7 , botf4-g2yfp1 , scls1-a7f534 , botf4-g2yys3 , scls1-a7erz9 , botf4-g2y037 , botf4-g2y0e1 , scls1-a7f706 , scls1-a7ewt6 , botf4-g2yuj6 , botf1-m7u3d1 , botf1-m7u430 , botf1-m7tei8 , botf1-m7u0w9 , botf1-m7tij6 , botf1-m7u819 , botf1-m7u6d8 , botf1-m7tzd4 , botf1-m7tqd7 , botf1-m7tyz9 , botf1-m7unl9 , botf1-m7u429 , botf1-m7u4s5 , botf1-m7ul92 , botf1-m7tx42 , botf1-m7u9h4 , botf1-m7u187 , botf1-m7uz64 , botf1-m7u4q4 , botf1-m7u2f6 , botf1-m7tt59 , botf1-m7v3h2 , botf1-m7u6c9 , botf1-m7tud9 , botf1-m7u309 , scls1-a7et87 , botf4-g2ylt4 , scls1-a7f5a0 , scls1-a7f900 , botf4-g2yib9 , scls1-a7f3m9 , scls1-a7er46 , botf4-g2y3y4 , botf4-g2xyy5 , botf1-m7uct5 , scls1-a7ea78 , scls1-kex1 , scls1-cbpya , botfb-cbpya , scls1-a7ecx1

Title : The genome sequence of the filamentous fungus Neurospora crassa - Galagan_2003_Nature_422_859
Author(s) : Galagan JE , Calvo SE , Borkovich KA , Selker EU , Read ND , Jaffe D , FitzHugh W , Ma LJ , Smirnov S , Purcell S , Rehman B , Elkins T , Engels R , Wang S , Nielsen CB , Butler J , Endrizzi M , Qui D , Ianakiev P , Bell-Pedersen D , Nelson MA , Werner-Washburne M , Selitrennikoff CP , Kinsey JA , Braun EL , Zelter A , Schulte U , Kothe GO , Jedd G , Mewes W , Staben C , Marcotte E , Greenberg D , Roy A , Foley K , Naylor J , Stange-Thomann N , Barrett R , Gnerre S , Kamal M , Kamvysselis M , Mauceli E , Bielke C , Rudd S , Frishman D , Krystofova S , Rasmussen C , Metzenberg RL , Perkins DD , Kroken S , Cogoni C , Macino G , Catcheside D , Li W , Pratt RJ , Osmani SA , DeSouza CP , Glass L , Orbach MJ , Berglund JA , Voelker R , Yarden O , Plamann M , Seiler S , Dunlap J , Radford A , Aramayo R , Natvig DO , Alex LA , Mannhaupt G , Ebbole DJ , Freitag M , Paulsen I , Sachs MS , Lander ES , Nusbaum C , Birren B
Ref : Nature , 422 :859 , 2003
Abstract : Neurospora crassa is a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we report a high-quality draft sequence of the N. crassa genome. The approximately 40-megabase genome encodes about 10,000 protein-coding genes--more than twice as many as in the fission yeast Schizosaccharomyces pombe and only about 25% fewer than in the fruitfly Drosophila melanogaster. Analysis of the gene set yields insights into unexpected aspects of Neurospora biology including the identification of genes potentially associated with red light photobiology, genes implicated in secondary metabolism, and important differences in Ca2+ signalling as compared with plants and animals. Neurospora possesses the widest array of genome defence mechanisms known for any eukaryotic organism, including a process unique to fungi called repeat-induced point mutation (RIP). Genome analysis suggests that RIP has had a profound impact on genome evolution, greatly slowing the creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related genes.
ESTHER : Galagan_2003_Nature_422_859
PubMedSearch : Galagan_2003_Nature_422_859
PubMedID: 12712197
Gene_locus related to this paper: neucr-5E6.090 , neucr-64C2.080 , neucr-90C4.300 , neucr-a7uw78 , neucr-a7uwh6 , neucr-a7uwy7 , neucr-apth1 , neucr-ATG15 , neucr-B7H23.190 , neucr-B11O8.160 , neucr-B13B3.090 , neucr-B14D6.130 , neucr-B18E6.050 , neucr-B19A17.360 , neucr-B23G1.090 , neucr-CBPYA , neucr-MET5 , neucr-NCU00292.1 , neucr-NCU00350.1 , neucr-NCU00536.1 , neucr-NCU00825.1 , neucr-NCU02148.1 , neucr-NCU02679.1 , neucr-NCU02904.1 , neucr-NCU02924.1 , neucr-NCU03158.1 , neucr-NCU04930.1 , neucr-NCU06332.1 , neucr-NCU06573.1 , neucr-NCU07081.1 , neucr-NCU07415.1 , neucr-NCU07909.1 , neucr-NCU08752.1 , neucr-NCU09575.1 , neucr-NCU10022.1 , neucr-ppme1 , neucr-q6mfs7 , neucr-q7rxb4 , neucr-q7rxv5 , neucr-q7ry06 , neucr-q7ryd2 , neucr-q7rzk2 , neucr-q7s0g7 , neucr-q7s1x0 , neucr-q7s2b3 , neucr-q7s2c5 , neucr-q7s2p4 , neucr-q7s2u9 , neucr-q7s3c6 , neucr-q7s3c8 , neucr-q7s3m2 , neucr-q7s4e3 , neucr-q7s4f8 , neucr-q7s4j4 , neucr-q7s5d6 , neucr-q7s5m2 , neucr-q7s5v8 , neucr-q7s6c5 , neucr-q7s8h2 , neucr-q7s070 , neucr-q7s082 , neucr-q7s134 , neucr-q7s216 , neucr-q7s259 , neucr-q7s260 , neucr-q7s283 , neucr-q7s512 , neucr-q7s736 , neucr-q7s828 , neucr-q7s897 , neucr-q7sbf9 , neucr-q7sbn0 , neucr-q7scr4 , neucr-q7sdw5 , neucr-q7sdx9 , neucr-q7se51 , neucr-q7sea3 , neucr-q7sez8 , neucr-q7sff7 , neucr-q7sga3 , neucr-q7sgj0 , neucr-q7sgp3 , neucr-q7sha3 , neucr-q7sha5 , neucr-q7shu8 , neucr-q9p6a7 , neucr-q872l1 , neucr-f5hbr2 , neucr-q7ry64