Magnuson JK

References (7)

Title : Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species - Kjaerbolling_2018_Proc.Natl.Acad.Sci.U.S.A_115_E753
Author(s) : Kjaerbolling I , Vesth TC , Frisvad JC , Nybo JL , Theobald S , Kuo A , Bowyer P , Matsuda Y , Mondo S , Lyhne EK , Kogle ME , Clum A , Lipzen A , Salamov A , Ngan CY , Daum C , Chiniquy J , Barry K , LaButti K , Haridas S , Simmons BA , Magnuson JK , Mortensen UH , Larsen TO , Grigoriev IV , Baker SE , Andersen MR
Ref : Proc Natl Acad Sci U S A , 115 :E753 , 2018
Abstract : The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories, model organisms, and human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus, and A. steynii) have been whole-genome PacBio sequenced to provide genetic references in three Aspergillus sections. A. taichungensis and A. candidus also were sequenced for SM elucidation. Thirteen Aspergillus genomes were analyzed with comparative genomics to determine phylogeny and genetic diversity, showing that each presented genome contains 15-27% genes not found in other sequenced Aspergilli. In particular, A. novofumigatus was compared with the pathogenic species A. fumigatus This suggests that A. novofumigatus can produce most of the same allergens, virulence, and pathogenicity factors as A. fumigatus, suggesting that A. novofumigatus could be as pathogenic as A. fumigatus Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences, and predictive algorithms. We thus identify putative SM clusters for aflatoxin, chlorflavonin, and ochrindol in A. ochraceoroseus, A. campestris, and A. steynii, respectively, and novofumigatonin, ent-cycloechinulin, and epi-aszonalenins in A. novofumigatus Our study delivers six fungal genomes, showing the large diversity found in the Aspergillus genus; highlights the potential for discovery of beneficial or harmful SMs; and supports reports of A. novofumigatus pathogenicity. It also shows how biological, biochemical, and genomic information can be combined to identify genes involved in the biosynthesis of specific SMs.
ESTHER : Kjaerbolling_2018_Proc.Natl.Acad.Sci.U.S.A_115_E753
PubMedSearch : Kjaerbolling_2018_Proc.Natl.Acad.Sci.U.S.A_115_E753
PubMedID: 29317534
Gene_locus related to this paper: 9euro-a0a0f8xhh7 , 9euro-a0a2t5ll04 , aspn1-nvfd

Title : Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis - Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
Author(s) : Fernandez-Fueyo E , Ruiz-Duenas FJ , Ferreira P , Floudas D , Hibbett DS , Canessa P , Larrondo LF , James TY , Seelenfreund D , Lobos S , Polanco R , Tello M , Honda Y , Watanabe T , Ryu JS , Kubicek CP , Schmoll M , Gaskell J , Hammel KE , St John FJ , Vanden Wymelenberg A , Sabat G , Splinter BonDurant S , Syed K , Yadav JS , Doddapaneni H , Subramanian V , Lavin JL , Oguiza JA , Perez G , Pisabarro AG , Ramirez L , Santoyo F , Master E , Coutinho PM , Henrissat B , Lombard V , Magnuson JK , Kues U , Hori C , Igarashi K , Samejima M , Held BW , Barry KW , LaButti KM , Lapidus A , Lindquist EA , Lucas SM , Riley R , Salamov AA , Hoffmeister D , Schwenk D , Hadar Y , Yarden O , de Vries RP , Wiebenga A , Stenlid J , Eastwood D , Grigoriev IV , Berka RM , Blanchette RA , Kersten P , Martinez AT , Vicuna R , Cullen D
Ref : Proc Natl Acad Sci U S A , 109 :5458 , 2012
Abstract : Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.
ESTHER : Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
PubMedSearch : Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
PubMedID: 22434909
Gene_locus related to this paper: cers8-m2r3x2 , cers8-m2qf37 , cers8-m2pcy7 , cers8-m2pcz3 , cers8-m2qn26 , cers8-m2r654 , cers8-m2r8g9 , cers8-m2ps90 , cers8-m2qn44 , cers8-m2q837 , cers8-m2pjy6 , cers8-m2r609 , cers8-m2qy35 , cers8-m2r1n1 , cers8-m2rl22 , cers8-m2qkx5 , cers8-m2qib7 , cers8-m2rgs8 , cers8-m2rlx6 , cers8-m2r4p3 , cers8-m2rf62 , cers8-m2qyx5 , cers8-m2pcz2 , cers8-m2rm22 , cers8-m2qwb7 , cers8-m2r9u3 , cers8-m2pp23 , cers8-m2r613 , cers8-m2rup8 , cers8-m2piv7 , cers8-m2rch3 , cers8-m2qvf7 , cers8-m2qvb7 , cers8-m2qvb2 , cers8-m2pip7 , cers8-m2rb73 , cers8-m2qgd3 , cers8-m2rcg8 , cers8-m2rb68

Title : Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88 - Andersen_2011_Genome.Res_21_885
Author(s) : Andersen MR , Salazar MP , Schaap PJ , van de Vondervoort PJ , Culley D , Thykaer J , Frisvad JC , Nielsen KF , Albang R , Albermann K , Berka RM , Braus GH , Braus-Stromeyer SA , Corrochano LM , Dai Z , van Dijck PW , Hofmann G , Lasure LL , Magnuson JK , Menke H , Meijer M , Meijer SL , Nielsen JB , Nielsen ML , van Ooyen AJ , Pel HJ , Poulsen L , Samson RA , Stam H , Tsang A , van den Brink JM , Atkins A , Aerts A , Shapiro H , Pangilinan J , Salamov A , Lou Y , Lindquist E , Lucas S , Grimwood J , Grigoriev IV , Kubicek CP , Martinez D , van Peij NN , Roubos JA , Nielsen J , Baker SE
Ref : Genome Res , 21 :885 , 2011
Abstract : The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.
ESTHER : Andersen_2011_Genome.Res_21_885
PubMedSearch : Andersen_2011_Genome.Res_21_885
PubMedID: 21543515
Gene_locus related to this paper: aspna-g3y4g9 , aspna-g3yal2 , aspna-g3ycq2 , aspnc-a2qbh3 , aspnc-a2qe77 , aspnc-a2qf54 , aspnc-a2qfe9 , aspnc-a2qg33 , aspnc-a2qh76 , aspnc-a2qhe2 , aspnc-a2qi32 , aspnc-a2ql89 , aspnc-a2ql90 , aspnc-a2qla0 , aspnc-a2qmk5 , aspnc-a2qn56 , aspnc-a2qs22 , aspnc-a2qti9 , aspnc-a2qtz0 , aspnc-a2quc1 , aspnc-a2qx92 , aspnc-a2qyf0 , aspnc-a2qys7 , aspnc-a2qz72 , aspnc-a2qzn6 , aspnc-a2qzr0 , aspnc-a2qzx0 , aspnc-a2qzx4 , aspnc-a2r0p4 , aspnc-a2r1r5 , aspnc-a2r2i5 , aspnc-a2r5r4 , aspnc-a2r6h5 , aspnc-a2r8r3 , aspnc-a2r8z3 , aspnc-a2r273 , aspnc-a2r496 , aspnc-a2r502 , aspnc-a5abe5 , aspnc-a5abe8 , aspnc-a5abh9 , aspnc-a5abk1 , aspnc-axe1 , aspnc-cuti1 , aspnc-cuti2 , aspng-a2qs46 , aspng-a2qv27 , aspni-EstA , aspkw-g7y0v7 , aspnc-a2qt47 , aspnc-a2qt66 , aspna-g3xpq9 , aspnc-a2qqa1 , aspna-g3xsl3 , aspna-g3y5a6 , aspna-g3xpw9 , aspaw-a0a401kpx5 , aspnc-a2qw57 , aspaw-a0a401kcz4 , aspna-alba , aspna-azac

Title : Genome sequence of the model mushroom Schizophyllum commune - Ohm_2010_Nat.Biotechnol_28_957
Author(s) : Ohm RA , de Jong JF , Lugones LG , Aerts A , Kothe E , Stajich JE , de Vries RP , Record E , Levasseur A , Baker SE , Bartholomew KA , Coutinho PM , Erdmann S , Fowler TJ , Gathman AC , Lombard V , Henrissat B , Knabe N , Kues U , Lilly WW , Lindquist E , Lucas S , Magnuson JK , Piumi F , Raudaskoski M , Salamov A , Schmutz J , Schwarze FW , vanKuyk PA , Horton JS , Grigoriev IV , Wosten HA
Ref : Nat Biotechnol , 28 :957 , 2010
Abstract : Much remains to be learned about the biology of mushroom-forming fungi, which are an important source of food, secondary metabolites and industrial enzymes. The wood-degrading fungus Schizophyllum commune is both a genetically tractable model for studying mushroom development and a likely source of enzymes capable of efficient degradation of lignocellulosic biomass. Comparative analyses of its 38.5-megabase genome, which encodes 13,210 predicted genes, reveal the species's unique wood-degrading machinery. One-third of the 471 genes predicted to encode transcription factors are differentially expressed during sexual development of S. commune. Whereas inactivation of one of these, fst4, prevented mushroom formation, inactivation of another, fst3, resulted in more, albeit smaller, mushrooms than in the wild-type fungus. Antisense transcripts may also have a role in the formation of fruiting bodies. Better insight into the mechanisms underlying mushroom formation should affect commercial production of mushrooms and their industrial use for producing enzymes and pharmaceuticals.
ESTHER : Ohm_2010_Nat.Biotechnol_28_957
PubMedSearch : Ohm_2010_Nat.Biotechnol_28_957
PubMedID: 20622885
Gene_locus related to this paper: schcm-d8pqz6 , schcm-d8prj2 , schcm-d8pug6 , schcm-d8pxe8 , schcm-d8pxe9 , schcm-d8pxz1 , schcm-d8q1c7 , schcm-d8q2b4 , schcm-d8q3j1 , schcm-d8q5m5 , schcm-d8q7x7.1 , schcm-d8q7x7.2 , schcm-d8q8y8 , schcm-d8q9n6 , schcm-d8q697 , schcm-d8qip8 , schcm-d8q5s5 , schcm-d8ppb3 , schcm-d8ppb6 , schcm-d8pv73 , schcm-d8pzm1 , schcm-d8q5a7 , schcm-d8qif0

Title : Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion - Martinez_2009_Proc.Natl.Acad.Sci.U.S.A_106_1954
Author(s) : Martinez D , Challacombe J , Morgenstern I , Hibbett D , Schmoll M , Kubicek CP , Ferreira P , Ruiz-Duenas FJ , Martinez AT , Kersten P , Hammel KE , Vanden Wymelenberg A , Gaskell J , Lindquist E , Sabat G , Bondurant SS , Larrondo LF , Canessa P , Vicuna R , Yadav J , Doddapaneni H , Subramanian V , Pisabarro AG , Lavin JL , Oguiza JA , Master E , Henrissat B , Coutinho PM , Harris P , Magnuson JK , Baker SE , Bruno K , Kenealy W , Hoegger PJ , Kues U , Ramaiya P , Lucas S , Salamov A , Shapiro H , Tu H , Chee CL , Misra M , Xie G , Teter S , Yaver D , James T , Mokrejs M , Pospisek M , Grigoriev IV , Brettin T , Rokhsar D , Berka R , Cullen D
Ref : Proc Natl Acad Sci U S A , 106 :1954 , 2009
Abstract : Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative beta-1-4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H(2)O(2). These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H(2)O(2) react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.
ESTHER : Martinez_2009_Proc.Natl.Acad.Sci.U.S.A_106_1954
PubMedSearch : Martinez_2009_Proc.Natl.Acad.Sci.U.S.A_106_1954
PubMedID: 19193860
Gene_locus related to this paper: pospm-b8p1f3 , pospm-b8p2q7 , pospm-b8p4n0 , pospm-b8p4n9 , pospm-b8p5g9 , pospm-b8p5r9 , pospm-b8p6h2 , pospm-b8p7b1 , pospm-b8p7c4 , pospm-b8p8w7 , pospm-b8p9j1 , pospm-b8p164 , pospm-b8p280 , pospm-b8p423.1 , pospm-b8p423.2 , pospm-b8p858 , pospm-b8pam2 , pospm-b8pam5 , pospm-b8pb68 , pospm-b8pbm3 , pospm-b8pc54 , pospm-b8pc56 , pospm-b8pce4 , pospm-b8pd91 , pospm-b8pdk6 , pospm-b8ph32 , pospm-b8ph43 , pospm-b8phc9 , pospm-b8php7 , pospm-b8phy5 , pospm-b8pjg8 , pospm-b8pji9 , pospm-b8plr5 , pospm-b8pmk3 , pospm-b8pfg0 , pospm-b8pg35 , pospm-b8pa20.1 , pospm-b8pa20.2 , pospm-b8p4g8 , pospm-b8phn6

Title : Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina) - Martinez_2008_Nat.Biotechnol_26_553
Author(s) : Martinez D , Berka RM , Henrissat B , Saloheimo M , Arvas M , Baker SE , Chapman J , Chertkov O , Coutinho PM , Cullen D , Danchin EG , Grigoriev IV , Harris P , Jackson M , Kubicek CP , Han CS , Ho I , Larrondo LF , de Leon AL , Magnuson JK , Merino S , Misra M , Nelson B , Putnam N , Robbertse B , Salamov AA , Schmoll M , Terry A , Thayer N , Westerholm-Parvinen A , Schoch CL , Yao J , Barabote R , Nelson MA , Detter C , Bruce D , Kuske CR , Xie G , Richardson P , Rokhsar DS , Lucas SM , Rubin EM , Dunn-Coleman N , Ward M , Brettin TS
Ref : Nat Biotechnol , 26 :553 , 2008
Abstract : Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.
ESTHER : Martinez_2008_Nat.Biotechnol_26_553
PubMedSearch : Martinez_2008_Nat.Biotechnol_26_553
PubMedID: 18454138
Gene_locus related to this paper: hypjq-g0rh85 , hypjq-cip2 , hypjq-g0r9d1 , hypjq-g0r810 , hypjq-g0rbm4 , hypjq-g0rez4 , hypjq-g0rfr3 , hypjq-g0rg60 , hypjq-g0rij9 , hypjq-g0riu1 , hypjq-g0rl87 , hypjq-g0rlh4 , hypjq-g0rme5 , hypjq-g0rwy5 , hypje-axylest , hypje-q7z9m3 , hypjq-g0r6x2 , hypje-a0a024s1b8 , hypjr-a0a024s1s9 , hypjq-g0rxi5

Title : The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization - Cuomo_2007_Science_317_1400
Author(s) : Cuomo CA , Guldener U , Xu JR , Trail F , Turgeon BG , Di Pietro A , Walton JD , Ma LJ , Baker SE , Rep M , Adam G , Antoniw J , Baldwin T , Calvo S , Chang YL , Decaprio D , Gale LR , Gnerre S , Goswami RS , Hammond-Kosack K , Harris LJ , Hilburn K , Kennell JC , Kroken S , Magnuson JK , Mannhaupt G , Mauceli E , Mewes HW , Mitterbauer R , Muehlbauer G , Munsterkotter M , Nelson D , O'Donnell K , Ouellet T , Qi W , Quesneville H , Roncero MI , Seong KY , Tetko IV , Urban M , Waalwijk C , Ward TJ , Yao J , Birren BW , Kistler HC
Ref : Science , 317 :1400 , 2007
Abstract : We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher rates of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.
ESTHER : Cuomo_2007_Science_317_1400
PubMedSearch : Cuomo_2007_Science_317_1400
PubMedID: 17823352
Gene_locus related to this paper: fusof-f9fxz4 , gibze-a8w610 , gibze-b1pdn0 , gibze-i1r9e6 , gibze-i1rda9 , gibze-i1rdk7 , gibze-i1rec8 , gibze-i1rgs0 , gibze-i1rgy0 , gibze-i1rh52 , gibze-i1rhi8 , gibze-i1rig9 , gibze-i1rip5 , gibze-i1rpg6 , gibze-i1rsg2 , gibze-i1rv36 , gibze-i1rxm5 , gibze-i1rxp8 , gibze-i1rxv5 , gibze-i1s1u3 , gibze-i1s3j9 , gibze-i1s6l7 , gibze-i1s8i8 , gibze-i1s9x4 , gibze-ppme1 , gibze-q4huy1 , gibze-i1rg17 , gibze-i1rb76 , gibze-i1s1m7 , gibze-i1s3z6 , gibze-i1rd78 , gibze-i1rgl9 , gibze-i1rjp7 , gibze-i1s1q6 , gibze-i1ri35 , gibze-i1rf76 , gibze-i1rhp3 , gibza-a0a016pda4 , gibza-a0a016pl96 , gibze-i1rjb5 , gibze-i1rkc4 , gibze-a0a1c3ylb1 , gibze-gra11 , gibze-fsl2