Martinez AT

References (9)

Title : Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus - Couturier_2015_Biotechnol.Biofuels_8_216
Author(s) : Couturier M , Navarro D , Chevret D , Henrissat B , Piumi F , Ruiz-Duenas FJ , Martinez AT , Grigoriev IV , Riley R , Lipzen A , Berrin JG , Master ER , Rosso MN
Ref : Biotechnol Biofuels , 8 :216 , 2015
Abstract : BACKGROUND: White-rot basidiomycete fungi are potent degraders of plant biomass, with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown. The Polyporale fungus Pycnoporus coccineus BRFM310 grows well on both coniferous and deciduous wood. In the present study, we analyzed the early response of the fungus to softwood (pine) and hardwood (aspen) feedstocks and tested the effect of the secreted enzymes on lignocellulose deconstruction. RESULTS: Transcriptomic and proteomic analyses revealed that P. coccineus grown separately on pine and aspen displayed similar sets of transcripts and enzymes implicated in lignin and polysaccharide degradation. In particular, the expression of lignin-targeting oxidoreductases, such as manganese peroxidases, increased upon cultivation on both woods. The sets of enzymes secreted during growth on both pine and aspen were more efficient in saccharide release from pine than from aspen, and characterization of the residual solids revealed polysaccharide conversion on both pine and aspen fiber surfaces. CONCLUSION: The combined analysis of soluble sugars and solid residues showed the suitability of P. coccineus secreted enzymes for softwood degradation. Analyses of solubilized products and residual surface chemistries of enzyme-treated wood samples pointed to differences in fiber penetration by different P. coccineus secretomes. Accordingly, beyond the variety of CAZymes identified in P. coccineus genome, transcriptome and secretome, we discuss several parameters such as the abundance of manganese peroxidases and the potential role of cytochrome P450s and pectin degradation on the efficacy of fungi for softwood conversion.
ESTHER : Couturier_2015_Biotechnol.Biofuels_8_216
PubMedSearch : Couturier_2015_Biotechnol.Biofuels_8_216
PubMedID: 26692083
Gene_locus related to this paper: pycco-a0a1y2inc6 , pycco-a0a1y2ib15 , pycco-a0a1y2j2i8 , pycco-a0a1y2i5q8 , pycco-a0a1y2ib37

Title : Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood - Hori_2014_PLoS.Genet_10_e1004759
Author(s) : Hori C , Ishida T , Igarashi K , Samejima M , Suzuki H , Master E , Ferreira P , Ruiz-Duenas FJ , Held B , Canessa P , Larrondo LF , Schmoll M , Druzhinina IS , Kubicek CP , Gaskell JA , Kersten P , St John F , Glasner J , Sabat G , Splinter BonDurant S , Syed K , Yadav J , Mgbeahuruike AC , Kovalchuk A , Asiegbu FO , Lackner G , Hoffmeister D , Rencoret J , Gutierrez A , Sun H , Lindquist E , Barry K , Riley R , Grigoriev IV , Henrissat B , Kues U , Berka RM , Martinez AT , Covert SF , Blanchette RA , Cullen D
Ref : PLoS Genet , 10 :e1004759 , 2014
Abstract : Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.
ESTHER : Hori_2014_PLoS.Genet_10_e1004759
PubMedSearch : Hori_2014_PLoS.Genet_10_e1004759
PubMedID: 25474575
Gene_locus related to this paper: phlgi-a0a0c3nds0 , phlgi-a0a0c3niq6 , phlgi-a0a0c3pc91 , phlgi-a0a0c3pv58 , phlgi-a0a0c3rra0 , phlgi-a0a0c3rvc4 , phlgi-a0a0c3rvu0 , phlgi-a0a0c3s394 , phlgi-a0a0c3s606 , phlgi-a0a0c3s673 , phlgi-a0a0c3s8d3 , phlgi-a0a0c3sce4 , phlgi-a0a0c3sdt8

Title : The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes - Floudas_2012_Science_336_1715
Author(s) : Floudas D , Binder M , Riley R , Barry K , Blanchette RA , Henrissat B , Martinez AT , Otillar R , Spatafora JW , Yadav JS , Aerts A , Benoit I , Boyd A , Carlson A , Copeland A , Coutinho PM , de Vries RP , Ferreira P , Findley K , Foster B , Gaskell J , Glotzer D , Gorecki P , Heitman J , Hesse C , Hori C , Igarashi K , Jurgens JA , Kallen N , Kersten P , Kohler A , Kues U , Kumar TK , Kuo A , LaButti K , Larrondo LF , Lindquist E , Ling A , Lombard V , Lucas S , Lundell T , Martin R , McLaughlin DJ , Morgenstern I , Morin E , Murat C , Nagy LG , Nolan M , Ohm RA , Patyshakuliyeva A , Rokas A , Ruiz-Duenas FJ , Sabat G , Salamov A , Samejima M , Schmutz J , Slot JC , St John F , Stenlid J , Sun H , Sun S , Syed K , Tsang A , Wiebenga A , Young D , Pisabarro A , Eastwood DC , Martin F , Cullen D , Grigoriev IV , Hibbett DS
Ref : Science , 336 :1715 , 2012
Abstract : Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.
ESTHER : Floudas_2012_Science_336_1715
PubMedSearch : Floudas_2012_Science_336_1715
PubMedID: 22745431
Gene_locus related to this paper: aurde-j0d098 , aurde-j0dc31 , glota-s7rlc1 , fompi-s8f7s4 , dacsp-m5fpg2 , dicsq-r7sm16 , dacsp-m5g7q5 , dacsp-m5fr12 , glota-s7q5w3 , fompi-s8f826.1 , fompi-s8f826.2 , dicsq-r7sy09 , glota-s7rt87 , dicsq-r7t032 , glota-s7rym7 , fompi-s8fiv2 , dacsp-m5gda3.2 , dicsq-r7swi6 , dacsp-m5frf2 , fompi-s8ebb6 , dicsq-r7sln3 , dicsq-r7sya6 , dacsp-m5g7g1 , dicsq-r7syx7 , dicsq-r7sx57 , dacsp-m5fps7 , glota-s7pwi7 , dicsq-r7swj6 , fompi-s8ejq6 , dicsq-r7spc3 , glota-s7q258 , dacsp-m5ft65 , glota-s7q3m7 , fompi-s8dkc7 , glota-s7q1z1 , fompi-s8eqi2 , glota-s7q1z8 , fompi-s8du50 , dacsp-m5gg33 , dacsp-m5g3a7 , fompi-s8ecd7 , fompi-s8dps1 , dacsp-m5fwr0 , dicsq-r7sub7 , glota-s7q8k9 , fompi-s8ffc3 , dacsp-m5g2f9 , fompi-s8ecc2 , dacsp-m5g868 , fompi-s8f890 , dicsq-r7t1a8 , fompi-s8ebx4 , fompi-s8eb97 , glota-s7q222 , glota-s7puf0 , fompi-s8f6v9 , dacsp-m5g0z2 , dacsp-m5gdh9 , fompi-s8fb37 , dacsp-m5fy91 , glota-s7q5v6 , fompi-s8fl44 , dicsq-r7stv9 , dicsq-r7szk3 , fompi-s8epq9 , glota-s7rh56 , dacsp-m5gbt1 , punst-r7s3x9 , punst-r7s0t5 , glota-s7q312 , glota-s7rhh6 , dicsq-r7t117 , dicsq-r7slz3

Title : Cloning, overexpression in Escherichia coli, and characterization of a thermostable fungal acetylxylan esterase from Talaromyces emersonii - Waters_2012_Appl.Environ.Microbiol_78_3759
Author(s) : Waters DM , Murray PG , Miki Y , Martinez AT , Tuohy MG , Faulds CB
Ref : Applied Environmental Microbiology , 78 :3759 , 2012
Abstract : The gene encoding an acetylxylan esterase (AXE1) from the thermophilic ascomycete Talaromyces emersonii was cloned, expressed in Escherichia coli, and characterized. This form of AXE1, rTeAXE1, exhibits increased thermostability and activity at a higher temperature than other known fungal acetyl esterases, thus having huge potential application in biomass bioconversion to high value chemicals or biofuels.
ESTHER : Waters_2012_Appl.Environ.Microbiol_78_3759
PubMedSearch : Waters_2012_Appl.Environ.Microbiol_78_3759
PubMedID: 22407679

Title : Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis - Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
Author(s) : Fernandez-Fueyo E , Ruiz-Duenas FJ , Ferreira P , Floudas D , Hibbett DS , Canessa P , Larrondo LF , James TY , Seelenfreund D , Lobos S , Polanco R , Tello M , Honda Y , Watanabe T , Ryu JS , Kubicek CP , Schmoll M , Gaskell J , Hammel KE , St John FJ , Vanden Wymelenberg A , Sabat G , Splinter BonDurant S , Syed K , Yadav JS , Doddapaneni H , Subramanian V , Lavin JL , Oguiza JA , Perez G , Pisabarro AG , Ramirez L , Santoyo F , Master E , Coutinho PM , Henrissat B , Lombard V , Magnuson JK , Kues U , Hori C , Igarashi K , Samejima M , Held BW , Barry KW , LaButti KM , Lapidus A , Lindquist EA , Lucas SM , Riley R , Salamov AA , Hoffmeister D , Schwenk D , Hadar Y , Yarden O , de Vries RP , Wiebenga A , Stenlid J , Eastwood D , Grigoriev IV , Berka RM , Blanchette RA , Kersten P , Martinez AT , Vicuna R , Cullen D
Ref : Proc Natl Acad Sci U S A , 109 :5458 , 2012
Abstract : Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.
ESTHER : Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
PubMedSearch : Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
PubMedID: 22434909
Gene_locus related to this paper: cers8-m2r3x2 , cers8-m2qf37 , cers8-m2pcy7 , cers8-m2pcz3 , cers8-m2qn26 , cers8-m2r654 , cers8-m2r8g9 , cers8-m2ps90 , cers8-m2qn44 , cers8-m2q837 , cers8-m2pjy6 , cers8-m2r609 , cers8-m2qy35 , cers8-m2r1n1 , cers8-m2rl22 , cers8-m2qkx5 , cers8-m2qib7 , cers8-m2rgs8 , cers8-m2rlx6 , cers8-m2r4p3 , cers8-m2rf62 , cers8-m2qyx5 , cers8-m2pcz2 , cers8-m2rm22 , cers8-m2qwb7 , cers8-m2r9u3 , cers8-m2pp23 , cers8-m2r613 , cers8-m2rup8 , cers8-m2piv7 , cers8-m2rch3 , cers8-m2qvf7 , cers8-m2qvb7 , cers8-m2qvb2 , cers8-m2pip7 , cers8-m2rb73 , cers8-m2qgd3 , cers8-m2rcg8 , cers8-m2rb68

Title : Influence of organic co-solvents on the activity and substrate specificity of feruloyl esterases - Faulds_2011_Bioresour.Technol_102_4962
Author(s) : Faulds CB , Perez-Boada M , Martinez AT
Ref : Bioresour Technol , 102 :4962 , 2011
Abstract : Organic co-solvents can expand the use of enzymes in lignocellulose deconstruction through making substrates more soluble and thus more accessible. In choosing the most adequate co-solvent for feruloyl esterases, hydrolysis of methyl p-hydroxycinnamates by three pure enzymes (and a multi-enzyme preparation) was evaluated. Low concentrations of dimethylsulfoxide (DMSO) enhanced hydrolysis by two of the enzymes while at levels >20%, activity was reduced. DMSO also enhanced acetyl esterase-type activity of the enzymes. The co-solvent effect was different for each enzyme-substrate couple, indicating that other factors are also involved. Kinetic studies with a Talaromyces stipitatus feruloyl esterase showed low concentrations of dimethylsulfoxide enhanced the hydrolytic rate while K(m) also increased. Moreover, long-term incubation (96 h) of an Aspergillus niger feruloyl esterase in dimethylsulfoxide:water provided to the enzyme the ability to hydrolyze methyl p-coumarate, suggesting an active-site re-arrangement. Dimethylsulfoxide (10-30%) is proposed as an adequate co-solvent for feruloyl esterase treatment of water-insoluble substrates.
ESTHER : Faulds_2011_Bioresour.Technol_102_4962
PubMedSearch : Faulds_2011_Bioresour.Technol_102_4962
PubMedID: 21354789

Title : Study of a sterol esterase secreted by Ophiostoma piceae: sequence, model and biochemical properties - Calero-Rueda_2009_Biochim.Biophys.Acta_1794_1099
Author(s) : Calero-Rueda O , Barba V , Rodriguez E , Plou F , Martinez AT , Martinez MJ
Ref : Biochimica & Biophysica Acta , 1794 :1099 , 2009
Abstract : An extracellular sterol esterase from Ophiostoma piceae efficiently hydrolyzes sterol esters, triglycerides and p-nitrophenol esters. cDNA was screened with a probe obtained by PCR using as primers oligonucleotides corresponding to the N-terminal and internal mature enzyme sequences and complete sequence was obtained by 3' rapid amplification of cDNA end (RACE) and inverse PCR. The O. piceae esterase gene had a length of 1.8 kbp and lacked introns. A search for proteins with related amino acid sequences revealed around 40% identity with lipases from Candida rugosa and Geotrichum candidum. Modelling the O. piceae enzyme, using the crystal structures of Lip1 and Lip3 from C. rugosa as templates, revealed a similar substrate-binding site, but some changes affecting the flap zone and the aromatic region of the tunnel may be responsible for the wide substrate specificity of this interesting sterol esterase. The ability of the new fungal esterase to hydrolyze triglycerides and esters of p-nitrophenol and cholesterol was compared with those of commercial lipases and cholesterol esterases showing the new enzyme the highest efficiency hydrolyzing triglycerides and sterol esters in the conditions assayed (in presence of Genapol X-100). Finally, the O. piceae gene was successfully expressed in Pichia pastoris, as a model organism to express fungal enzymes, resulting in higher levels of esterase activity than those obtained in the O. piceae cultures. In spite of its higher glycosylation degree, the recombinant enzyme was able to hydrolyze more efficiently than native enzyme the assayed substrates.
ESTHER : Calero-Rueda_2009_Biochim.Biophys.Acta_1794_1099
PubMedSearch : Calero-Rueda_2009_Biochim.Biophys.Acta_1794_1099
PubMedID: 19281875
Gene_locus related to this paper: 9pezi-q2tfw1

Title : Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion - Martinez_2009_Proc.Natl.Acad.Sci.U.S.A_106_1954
Author(s) : Martinez D , Challacombe J , Morgenstern I , Hibbett D , Schmoll M , Kubicek CP , Ferreira P , Ruiz-Duenas FJ , Martinez AT , Kersten P , Hammel KE , Vanden Wymelenberg A , Gaskell J , Lindquist E , Sabat G , Bondurant SS , Larrondo LF , Canessa P , Vicuna R , Yadav J , Doddapaneni H , Subramanian V , Pisabarro AG , Lavin JL , Oguiza JA , Master E , Henrissat B , Coutinho PM , Harris P , Magnuson JK , Baker SE , Bruno K , Kenealy W , Hoegger PJ , Kues U , Ramaiya P , Lucas S , Salamov A , Shapiro H , Tu H , Chee CL , Misra M , Xie G , Teter S , Yaver D , James T , Mokrejs M , Pospisek M , Grigoriev IV , Brettin T , Rokhsar D , Berka R , Cullen D
Ref : Proc Natl Acad Sci U S A , 106 :1954 , 2009
Abstract : Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative beta-1-4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H(2)O(2). These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H(2)O(2) react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.
ESTHER : Martinez_2009_Proc.Natl.Acad.Sci.U.S.A_106_1954
PubMedSearch : Martinez_2009_Proc.Natl.Acad.Sci.U.S.A_106_1954
PubMedID: 19193860
Gene_locus related to this paper: pospm-b8p1f3 , pospm-b8p2q7 , pospm-b8p4n0 , pospm-b8p4n9 , pospm-b8p5g9 , pospm-b8p5r9 , pospm-b8p6h2 , pospm-b8p7b1 , pospm-b8p7c4 , pospm-b8p8w7 , pospm-b8p9j1 , pospm-b8p164 , pospm-b8p280 , pospm-b8p423.1 , pospm-b8p423.2 , pospm-b8p858 , pospm-b8pam2 , pospm-b8pam5 , pospm-b8pb68 , pospm-b8pbm3 , pospm-b8pc54 , pospm-b8pc56 , pospm-b8pce4 , pospm-b8pd91 , pospm-b8pdk6 , pospm-b8ph32 , pospm-b8ph43 , pospm-b8phc9 , pospm-b8php7 , pospm-b8phy5 , pospm-b8pjg8 , pospm-b8pji9 , pospm-b8plr5 , pospm-b8pmk3 , pospm-b8pfg0 , pospm-b8pg35 , pospm-b8pa20.1 , pospm-b8pa20.2 , pospm-b8p4g8 , pospm-b8phn6

Title : Production, isolation and characterization of a sterol esterase from Ophiostoma piceae - Calero-Rueda_2002_Biochim.Biophys.Acta_1599_28
Author(s) : Calero-Rueda O , Plou FJ , Ballesteros A , Martinez AT , Martinez MJ
Ref : Biochimica & Biophysica Acta , 1599 :28 , 2002
Abstract : We studied extracellular sterol esterase production by the ascomycete Ophiostoma piceae in liquid culture. Esterase activity was found in low levels in glucose medium but it was strongly induced by olive oil. An esterase was purified from the 0.5% olive oil-supplemented cultures using ultrafiltration followed by a single chromatographic step on a hydrophobic interaction column. The enzyme was a glycoprotein with 8% N-linked carbohydrate content, a molecular mass by SDS/PAGE around 56.5 kDa and an isoelectric point of 3.3. Its N-terminal sequence was TTVNVKYPEGEVV. Substrate specificity studies showed that the O. piceae esterase hydrolyzes p-nitrophenol esters, tributyrin, triolein and different cholesterol esters. Both affinity (Km) and catalytic constant (k(cat)) were positively affected by the length of the fatty acid esterifying glycerol and cholesterol. The presence of double bonds in the acyl chain increased the enzyme efficiency, although it affected the k(cat) values rather than the Km on the cholesterol esters. The O. piceae enzyme showed no interfacial activation. This enzyme could have biotechnological applications in paper manufacturing since it efficiently hydrolyzes both triglycerides and sterol esters, which form pitch deposits during manufacturing of softwood and hardwood paper pulps, respectively.
ESTHER : Calero-Rueda_2002_Biochim.Biophys.Acta_1599_28
PubMedSearch : Calero-Rueda_2002_Biochim.Biophys.Acta_1599_28
PubMedID: 12479402
Gene_locus related to this paper: 9pezi-q2tfw1