Floudas D

References (8)

Title : Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi - Floudas_2020_Isme.J_14_2046
Author(s) : Floudas D , Bentzer J , Ahren D , Johansson T , Persson P , Tunlid A
Ref : Isme J , 14 :2046 , 2020
Abstract : Litter decomposing Agaricales play key role in terrestrial carbon cycling, but little is known about their decomposition mechanisms. We assembled datasets of 42 gene families involved in plant-cell-wall decomposition from seven newly sequenced litter decomposers and 35 other Agaricomycotina members, mostly white-rot and brown-rot species. Using sequence similarity and phylogenetics, we split the families into phylogroups and compared their gene composition across nutritional strategies. Subsequently, we used Raman spectroscopy to examine the ability of litter decomposers, white-rot fungi, and brown-rot fungi to decompose crystalline cellulose. Both litter decomposers and white-rot fungi share the enzymatic cellulose decomposition, whereas brown-rot fungi possess a distinct mechanism that disrupts cellulose crystallinity. However, litter decomposers and white-rot fungi differ with respect to hemicellulose and lignin degradation phylogroups, suggesting adaptation of the former group to the litter environment. Litter decomposers show high phylogroup diversity, which is indicative of high functional versatility within the group, whereas a set of white-rot species shows adaptation to bulk-wood decomposition. In both groups, we detected species that have unique characteristics associated with hitherto unknown adaptations to diverse wood and litter substrates. Our results suggest that the terms white-rot fungi and litter decomposers mask a much larger functional diversity.
ESTHER : Floudas_2020_Isme.J_14_2046
PubMedSearch : Floudas_2020_Isme.J_14_2046
PubMedID: 32382073
Gene_locus related to this paper: 9agar-a0a8h5b9g3

Title : Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities - Nagy_2016_Mol.Biol.Evol_33_959
Author(s) : Nagy LG , Riley R , Tritt A , Adam C , Daum C , Floudas D , Sun H , Yadav JS , Pangilinan J , Larsson KH , Matsuura K , Barry K , LaButti K , Kuo R , Ohm RA , Bhattacharya SS , Shirouzu T , Yoshinaga Y , Martin FM , Grigoriev IV , Hibbett DS
Ref : Molecular Biology Evolution , 33 :959 , 2016
Abstract : Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot.
ESTHER : Nagy_2016_Mol.Biol.Evol_33_959
PubMedSearch : Nagy_2016_Mol.Biol.Evol_33_959
PubMedID: 26659563
Gene_locus related to this paper: 9homo-a0a164swv2 , 9homo-a0a164tl22 , 9homo-a0a164vkv1 , 9homo-a0a164y4j9 , 9homo-a0a164y4l9 , 9homo-a0a164ytj2 , 9homo-a0a164zeu0 , exigl-a0a165as65 , exigl-a0a165ck85 , 9basi-a0a165cm83 , 9aphy-a0a165dbf1 , 9aphy-a0a165dbf3 , 9basi-a0a165dcb7 , 9aphy-a0a165ddj9 , exigl-a0a165dj22 , exigl-a0a165dmd7 , 9aphy-a0a165egr5 , 9basi-a0a165ekd3 , 9basi-a0a165enc9 , 9basi-a0a165end6 , 9basi-a0a165epz3 , 9basi-a0a165eq46 , 9basi-a0a165eq95 , 9basi-a0a165eqk7 , 9basi-a0a165eup2 , 9aphy-a0a165fb02 , 9aphy-a0a165fmr9 , 9aphy-a0a165g3p1 , 9basi-a0a165g673 , 9basi-a0a165g6g2 , 9aphy-a0a165gec2 , 9basi-a0a165gfp7 , 9aphy-a0a165h505 , 9aphy-a0a165hd72 , 9aphy-a0a165hrk1 , exigl-a0a165hzc8 , 9basi-a0a165i2y7 , 9basi-a0a165iru3 , 9basi-a0a165is19 , 9basi-a0a165is40 , exigl-a0a165j2r4 , exigl-a0a165j754 , 9basi-a0a165jg92 , 9basi-a0a165jgb0 , exigl-a0a165ke04 , exigl-a0a165kpb0 , exigl-a0a165l7g6 , 9aphy-a0a165lux8 , 9aphy-a0a165luy2.1 , 9aphy-a0a165luy2.2 , exigl-a0a165m310 , 9aphy-a0a165mxa5 , 9aphy-a0a165mxc8 , 9aphy-a0a165mxe4 , exigl-a0a165mz73 , 9homo-a0a165nfz4 , 9homo-a0a165ng04 , 9aphy-a0a165nry3 , 9homo-a0a165ntf3 , 9homo-a0a165p2a0 , 9aphy-a0a165ph74 , 9homo-a0a165phz5 , exigl-a0a165pm12 , exigl-a0a165pu90 , exigl-a0a165puh2 , 9aphy-a0a165q9t4 , 9homo-a0a165qeb7 , 9homo-a0a165qeh8 , 9aphy-a0a165qqm2 , 9aphy-a0a165quj0 , 9aphy-a0a165qul3 , exigl-a0a165qxy0 , 9aphy-a0a165r6t2 , 9aphy-a0a165r8g4 , 9aphy-a0a165tfc7 , 9homo-a0a165tgm2 , 9homo-a0a165tzv4 , 9homo-a0a165tzw4 , 9homo-a0a165uez3 , 9homo-a0a165ugh4 , 9homo-a0a165ugp4 , 9homo-a0a165ugq6 , 9homo-a0a165uh51 , 9aphy-a0a165umj9 , 9homo-a0a165us14 , 9homo-a0a165xi11 , 9homo-a0a165xmw5 , 9homo-a0a165xmx9 , 9homo-a0a165xsk7 , 9homo-a0a165y3k8 , 9homo-a0a165yhg3 , 9homo-a0a165ymb3 , 9homo-a0a165yt77 , 9homo-a0a165ytu4 , 9homo-a0a165zr30 , 9homo-a0a166a1g9 , 9homo-a0a166a1h1 , exigl-a0a166abe4 , 9homo-a0a166akq6 , exigl-a0a166al33 , 9homo-a0a166arm1 , 9homo-a0a166as45 , 9homo-a0a166as65 , 9homo-a0a166as77 , exigl-a0a166auh4 , 9homo-a0a166azk8 , exigl-a0a166azz6 , 9homo-a0a166bss2 , 9homo-a0a166bsu9 , 9homo-a0a166bui6 , 9homo-a0a166crl5 , 9homo-a0a166d8q4 , 9homo-a0a166dss7 , 9homo-a0a166dtg8 , 9homo-a0a166du49 , 9homo-a0a166du64 , 9homo-a0a166e1z2 , 9homo-a0a166eec5 , 9homo-a0a166eux5 , 9homo-a0a166evw5 , 9homo-a0a166ey75 , 9homo-a0a166eyq0 , 9homo-a0a166ez78 , 9homo-a0a166eze7 , 9homo-a0a166fh25 , 9homo-a0a166g4k8 , 9homo-a0a166gct1 , 9homo-a0a166gf56 , 9homo-a0a166gsr8 , 9homo-a0a166j6i1 , 9homo-a0a166jiu0 , 9homo-a0a166jr36 , 9homo-a0a166kia8 , 9homo-a0a166ks21 , 9homo-a0a166kvn8 , 9homo-a0a166kxf0 , 9homo-a0a166kxg2 , 9homo-a0a166lcs7 , 9homo-a0a166lw48 , 9homo-a0a166lyz4 , 9homo-a0a166puu7.1 , 9homo-a0a166puu7.2 , 9homo-a0a166puz0 , 9homo-a0a166pv75 , 9homo-a0a166pva0 , 9homo-a0a166pvf7 , 9homo-a0a166px11 , 9homo-a0a166q635 , 9basi-a0a167gl88 , 9basi-a0a167gl97 , 9basi-a0a167gla5 , 9basi-a0a167hca0 , 9basi-a0a167hrt3 , 9basi-a0a167hru7 , 9basi-a0a167k219 , 9basi-a0a167k232 , 9basi-a0a167k265 , 9basi-a0a167l6m6 , 9basi-a0a167lrl7 , 9basi-a0a167lt70 , 9basi-a0a167mtk7 , 9basi-a0a167n1z0 , 9basi-a0a167p9x5 , 9basi-a0a167qks1 , 9basi-a0a167qkt4 , 9basi-a0a167qky5 , 9basi-a0a167qln8 , 9basi-a0a167rpp7 , 9homo-a0a167u8e3 , 9homo-a0a167v1m8 , 9homo-a0a166hqx0 , 9homo-a0a166l842 , exigl-a0a165n4f2 , exigl-a0a165q512 , 9agam-a0a165nq75 , 9agam-a0a166cv75 , 9agam-a0a165mvt4 , 9agam-a0a164t8q2 , 9agam-a0a166flp0

Title : Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii - Floudas_2015_Fungal.Genet.Biol_76_78
Author(s) : Floudas D , Held BW , Riley R , Nagy LG , Koehler G , Ransdell AS , Younus H , Chow J , Chiniquy J , Lipzen A , Tritt A , Sun H , Haridas S , LaButti K , Ohm RA , Kues U , Blanchette RA , Grigoriev IV , Minto RE , Hibbett DS
Ref : Fungal Genet Biol , 76 :78 , 2015
Abstract : Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.
ESTHER : Floudas_2015_Fungal.Genet.Biol_76_78
PubMedSearch : Floudas_2015_Fungal.Genet.Biol_76_78
PubMedID: 25683379
Gene_locus related to this paper: 9agar-a0a0d6zyq5 , 9agar-a0a0d7a2p9 , 9agar-a0a0d7a2v2 , 9agar-a0a0d7abt2 , 9agar-a0a0d7acd3 , 9agar-a0a0d7acx0 , 9agar-a0a0d7acx9 , 9agar-a0a0d7adg2 , 9agar-a0a0d7a6d0 , 9agar-a0a0d7aen7 , 9agar-a0a0d7aez7 , 9agar-a0a0d7ahq5 , 9agar-a0a0d7akr6 , 9agar-a0a0d7al29 , 9agar-a0a0d7an16 , 9agar-a0a0d7ann7 , 9agar-a0a0d7anv1 , 9homo-a0a0d7atv2 , 9homo-a0a0d7ay28 , 9homo-a0a0d7ayz7 , 9homo-a0a0d7b1w8 , 9homo-a0a0d7b2p0 , 9homo-a0a0d7b4n4 , 9homo-a0a0d7b624 , 9homo-a0a0d7b7r3 , 9homo-a0a0d7b7w3 , 9homo-a0a0d7bac5 , 9homo-a0a0d7bav7 , 9homo-a0a0d7bbx7 , 9homo-a0a0d7bdn7 , 9homo-a0a0d7bgj9 , 9homo-a0a0d7biw2 , 9homo-a0a0d7bqi1 , 9homo-a0a0d7bv80 , 9agar-a0a0d7b6f6 , 9agar-a0a0d7b976 , 9agar-a0a0d7aeu9 , 9agar-a0a0d7ag53 , 9agar-a0a0d7b8a5

Title : Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot\/brown-rot paradigm for wood decay fungi - Riley_2014_Proc.Natl.Acad.Sci.U.S.A_111_9923
Author(s) : Riley R , Salamov AA , Brown DW , Nagy LG , Floudas D , Held BW , Levasseur A , Lombard V , Morin E , Otillar R , Lindquist EA , Sun H , LaButti KM , Schmutz J , Jabbour D , Luo H , Baker SE , Pisabarro AG , Walton JD , Blanchette RA , Henrissat B , Martin F , Cullen D , Hibbett DS , Grigoriev IV
Ref : Proc Natl Acad Sci U S A , 111 :9923 , 2014
Abstract : Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.
ESTHER : Riley_2014_Proc.Natl.Acad.Sci.U.S.A_111_9923
PubMedSearch : Riley_2014_Proc.Natl.Acad.Sci.U.S.A_111_9923
PubMedID: 24958869
Gene_locus related to this paper: pleos-a0a067nlj6 , 9agar-a0a067t0n0 , 9agar-a0a067sha0 , 9homo-a0a067pav0 , pleos-a0a067n337 , 9homo-a0a067pz82 , 9homo-a0a067m7p7 , pleos-a0a067p245 , 9homo-a0a067lrz6 , 9homo-a0a067m4r5 , 9homo-a0a067mr63 , 9homo-a0a067mrq8 , 9agar-a0a067t4j6 , 9homo-a0a067pdz2 , 9homo-a0a067q2n9 , 9agar-a0a067tsx5 , 9homo-a0a067mfq5 , 9homo-a0a067qc90 , pleos-a0a067p113 , 9homo-a0a067pwi6 , 9agar-a0a067s6d7 , 9agar-a0a067tie7 , pleos-a0a067ngc3 , 9agar-a0a067st69 , 9agar-a0a067t6h9 , 9agar-a0a067tj80 , pleos-a0a067npl2 , 9agar-a0a067sm07 , 9agar-a0a067tar9 , 9agar-a0a067tid6 , 9agar-a0a067u335 , pleos-a0a067ndv5 , pleos-a0a067nqw6 , 9homo-a0a067pkj2 , 9agar-a0a067t683 , 9homo-a0a067mgl1 , 9agar-a0a067sg35 , 9homo-a0a067q7g6 , 9agar-a0a067tub0 , 9agar-a0a067t8f5 , 9agar-a0a067tj19 , 9homo-a0a067pyu9 , 9agar-a0a067tjp8 , 9agar-a0a067sjg9 , 9agar-a0a067u0h4 , pleos-a0a067nxe9 , 9agar-a0a067sqt2 , 9agar-a0a067tgx3 , 9homo-a0a067psv8 , 9agar-a0a067sq58 , 9homo-a0a067m4m0 , 9agar-a0a067tqz5 , pleos-a0a067new9 , 9homo-a0a067m9v3 , 9agar-a0a067tlx5 , 9agar-a0a067tfq4 , pleos-a0a067nln4 , pleos-a0a067ndf5 , pleos-a0a067nn26 , pleos-a0a067nfv2 , 9homo-a0a067pnd3 , 9agar-a0a067sw48 , pleos-a0a067neg3 , pleos-a0a067nz51 , pleos-a0a067naf9 , pleos-a0a067nad7 , 9agar-a0a067sxe2 , 9agar-a0a067slu3 , pleos-a0a067n7p8 , pleos-a0a067nl60 , pleos-a0a067ncd0 , 9agar-a0a067th99 , 9agar-a0a067sp22 , pleos-a0a067pbw7 , 9homo-a0a067q916 , 9homo-a0a067pwe5 , galm3-a0a067scb0 , galm3-popa

Title : Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche - Morin_2012_Proc.Natl.Acad.Sci.U.S.A_109_17501
Author(s) : Morin E , Kohler A , Baker AR , Foulongne-Oriol M , Lombard V , Nagy LG , Ohm RA , Patyshakuliyeva A , Brun A , Aerts AL , Bailey AM , Billette C , Coutinho PM , Deakin G , Doddapaneni H , Floudas D , Grimwood J , Hilden K , Kues U , LaButti KM , Lapidus A , Lindquist EA , Lucas SM , Murat C , Riley RW , Salamov AA , Schmutz J , Subramanian V , Wosten HA , Xu J , Eastwood DC , Foster GD , Sonnenberg AS , Cullen D , de Vries RP , Lundell T , Hibbett DS , Henrissat B , Burton KS , Kerrigan RW , Challen MP , Grigoriev IV , Martin F
Ref : Proc Natl Acad Sci U S A , 109 :17501 , 2012
Abstract : Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and beta-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.
ESTHER : Morin_2012_Proc.Natl.Acad.Sci.U.S.A_109_17501
PubMedSearch : Morin_2012_Proc.Natl.Acad.Sci.U.S.A_109_17501
PubMedID: 23045686
Gene_locus related to this paper: agabu-k5x1b4 , agabu-k5x521 , agabu-k5w389 , agabu-k5wbk9 , agabu-k5wrh0 , agabu-k5ws85 , agabu-k5wsf9 , agabu-k5wxv1 , agabu-k5x0d9 , agabu-k5x588 , agabu-k5x5x2 , agabu-k5xd51 , agabu-k5xh54 , agabu-k5xsm1 , agabu-k5xsp8 , agabu-k5xtc1 , agabu-k5y2v2 , agabb-k9i3g9 , agabb-k9hnv7 , agabb-k9hr46 , agabu-k5wys0

Title : The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes - Floudas_2012_Science_336_1715
Author(s) : Floudas D , Binder M , Riley R , Barry K , Blanchette RA , Henrissat B , Martinez AT , Otillar R , Spatafora JW , Yadav JS , Aerts A , Benoit I , Boyd A , Carlson A , Copeland A , Coutinho PM , de Vries RP , Ferreira P , Findley K , Foster B , Gaskell J , Glotzer D , Gorecki P , Heitman J , Hesse C , Hori C , Igarashi K , Jurgens JA , Kallen N , Kersten P , Kohler A , Kues U , Kumar TK , Kuo A , LaButti K , Larrondo LF , Lindquist E , Ling A , Lombard V , Lucas S , Lundell T , Martin R , McLaughlin DJ , Morgenstern I , Morin E , Murat C , Nagy LG , Nolan M , Ohm RA , Patyshakuliyeva A , Rokas A , Ruiz-Duenas FJ , Sabat G , Salamov A , Samejima M , Schmutz J , Slot JC , St John F , Stenlid J , Sun H , Sun S , Syed K , Tsang A , Wiebenga A , Young D , Pisabarro A , Eastwood DC , Martin F , Cullen D , Grigoriev IV , Hibbett DS
Ref : Science , 336 :1715 , 2012
Abstract : Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.
ESTHER : Floudas_2012_Science_336_1715
PubMedSearch : Floudas_2012_Science_336_1715
PubMedID: 22745431
Gene_locus related to this paper: aurde-j0d098 , aurde-j0dc31 , glota-s7rlc1 , fompi-s8f7s4 , dacsp-m5fpg2 , dicsq-r7sm16 , dacsp-m5g7q5 , dacsp-m5fr12 , glota-s7q5w3 , fompi-s8f826.1 , fompi-s8f826.2 , dicsq-r7sy09 , glota-s7rt87 , dicsq-r7t032 , glota-s7rym7 , fompi-s8fiv2 , dacsp-m5gda3.2 , dicsq-r7swi6 , dacsp-m5frf2 , fompi-s8ebb6 , dicsq-r7sln3 , dicsq-r7sya6 , dacsp-m5g7g1 , dicsq-r7syx7 , dicsq-r7sx57 , dacsp-m5fps7 , glota-s7pwi7 , dicsq-r7swj6 , fompi-s8ejq6 , dicsq-r7spc3 , glota-s7q258 , dacsp-m5ft65 , glota-s7q3m7 , fompi-s8dkc7 , glota-s7q1z1 , fompi-s8eqi2 , glota-s7q1z8 , fompi-s8du50 , dacsp-m5gg33 , dacsp-m5g3a7 , fompi-s8ecd7 , fompi-s8dps1 , dacsp-m5fwr0 , dicsq-r7sub7 , glota-s7q8k9 , fompi-s8ffc3 , dacsp-m5g2f9 , fompi-s8ecc2 , dacsp-m5g868 , fompi-s8f890 , dicsq-r7t1a8 , fompi-s8ebx4 , fompi-s8eb97 , glota-s7q222 , glota-s7puf0 , fompi-s8f6v9 , dacsp-m5g0z2 , dacsp-m5gdh9 , fompi-s8fb37 , dacsp-m5fy91 , glota-s7q5v6 , fompi-s8fl44 , dicsq-r7stv9 , dicsq-r7szk3 , fompi-s8epq9 , glota-s7rh56 , dacsp-m5gbt1 , punst-r7s3x9 , punst-r7s0t5 , glota-s7q312 , glota-s7rhh6 , dicsq-r7t117 , dicsq-r7slz3

Title : Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis - Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
Author(s) : Fernandez-Fueyo E , Ruiz-Duenas FJ , Ferreira P , Floudas D , Hibbett DS , Canessa P , Larrondo LF , James TY , Seelenfreund D , Lobos S , Polanco R , Tello M , Honda Y , Watanabe T , Ryu JS , Kubicek CP , Schmoll M , Gaskell J , Hammel KE , St John FJ , Vanden Wymelenberg A , Sabat G , Splinter BonDurant S , Syed K , Yadav JS , Doddapaneni H , Subramanian V , Lavin JL , Oguiza JA , Perez G , Pisabarro AG , Ramirez L , Santoyo F , Master E , Coutinho PM , Henrissat B , Lombard V , Magnuson JK , Kues U , Hori C , Igarashi K , Samejima M , Held BW , Barry KW , LaButti KM , Lapidus A , Lindquist EA , Lucas SM , Riley R , Salamov AA , Hoffmeister D , Schwenk D , Hadar Y , Yarden O , de Vries RP , Wiebenga A , Stenlid J , Eastwood D , Grigoriev IV , Berka RM , Blanchette RA , Kersten P , Martinez AT , Vicuna R , Cullen D
Ref : Proc Natl Acad Sci U S A , 109 :5458 , 2012
Abstract : Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.
ESTHER : Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
PubMedSearch : Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
PubMedID: 22434909
Gene_locus related to this paper: cers8-m2r3x2 , cers8-m2qf37 , cers8-m2pcy7 , cers8-m2pcz3 , cers8-m2qn26 , cers8-m2r654 , cers8-m2r8g9 , cers8-m2ps90 , cers8-m2qn44 , cers8-m2q837 , cers8-m2pjy6 , cers8-m2r609 , cers8-m2qy35 , cers8-m2r1n1 , cers8-m2rl22 , cers8-m2qkx5 , cers8-m2qib7 , cers8-m2rgs8 , cers8-m2rlx6 , cers8-m2r4p3 , cers8-m2rf62 , cers8-m2qyx5 , cers8-m2pcz2 , cers8-m2rm22 , cers8-m2qwb7 , cers8-m2r9u3 , cers8-m2pp23 , cers8-m2r613 , cers8-m2rup8 , cers8-m2piv7 , cers8-m2rch3 , cers8-m2qvf7 , cers8-m2qvb7 , cers8-m2qvb2 , cers8-m2pip7 , cers8-m2rb73 , cers8-m2qgd3 , cers8-m2rcg8 , cers8-m2rb68

Title : The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi - Eastwood_2011_Science_333_762
Author(s) : Eastwood DC , Floudas D , Binder M , Majcherczyk A , Schneider P , Aerts A , Asiegbu FO , Baker SE , Barry K , Bendiksby M , Blumentritt M , Coutinho PM , Cullen D , de Vries RP , Gathman A , Goodell B , Henrissat B , Ihrmark K , Kauserud H , Kohler A , LaButti K , Lapidus A , Lavin JL , Lee YH , Lindquist E , Lilly W , Lucas S , Morin E , Murat C , Oguiza JA , Park J , Pisabarro AG , Riley R , Rosling A , Salamov A , Schmidt O , Schmutz J , Skrede I , Stenlid J , Wiebenga A , Xie X , Kues U , Hibbett DS , Hoffmeister D , Hogberg N , Martin F , Grigoriev IV , Watkinson SC
Ref : Science , 333 :762 , 2011
Abstract : Brown rot decay removes cellulose and hemicellulose from wood--residual lignin contributing up to 30% of forest soil carbon--and is derived from an ancestral white rot saprotrophy in which both lignin and cellulose are decomposed. Comparative and functional genomics of the "dry rot" fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota.
ESTHER : Eastwood_2011_Science_333_762
PubMedSearch : Eastwood_2011_Science_333_762
PubMedID: 21764756
Gene_locus related to this paper: serl3-f8prj2 , serl3-f8qcc4 , serl9-f8ngp6 , serl9-f8nhd7 , serl9-f8nhq9 , serl9-f8nq77 , serl9-f8nr67 , serl9-f8nrt5 , serl9-f8nvy7.1 , serl9-f8nvy7.2 , serl9-f8nvy8 , serl9-f8nxt0.1 , serl9-f8nxt0.2 , serl9-f8nzr3 , serl9-f8p0f0 , serl9-f8p6v0 , serl9-f8p015 , serl9-f8p018 , serl9-f8p386 , serl9-f8paz8 , serl9-f8pbv1 , serl9-f8pby1 , serl9-f8pc25 , serl9-f8pc39 , serl9-f8nia7 , serl3-f8pju2 , serl9-f8peh1 , serl9-nps3