Cook A

References (8)

Title : Immune regeneration in irradiated mice is not impaired by the absence of DPP9 enzymatic activity - Gall_2019_Sci.Rep_9_7292
Author(s) : Gall MG , Zhang HE , Lee Q , Jolly CJ , McCaughan GW , Cook A , Roediger B , Gorrell MD
Ref : Sci Rep , 9 :7292 , 2019
Abstract : The ubiquitous intracellular protease dipeptidyl peptidase 9 (DPP9) has roles in antigen presentation and B cell signaling. To investigate the importance of DPP9 in immune regeneration, primary and secondary chimeric mice were created in irradiated recipients using fetal liver cells and adult bone marrow cells, respectively, using wild-type (WT) and DPP9 gene-knockin (DPP9(S729A)) enzyme-inactive mice. Immune cell reconstitution was assessed at 6 and 16 weeks post-transplant. Primary chimeric mice successfully regenerated neutrophils, natural killer, T and B cells, irrespective of donor cell genotype. There were no significant differences in total myeloid cell or neutrophil numbers between DPP9-WT and DPP9(S729A)-reconstituted mice. In secondary chimeric mice, cells of DPP9(S729A)-origin cells displayed enhanced engraftment compared to WT. However, we observed no differences in myeloid or lymphoid lineage reconstitution between WT and DPP9(S729A) donors, indicating that hematopoietic stem cell (HSC) engraftment and self-renewal is not diminished by the absence of DPP9 enzymatic activity. This is the first report on transplantation of bone marrow cells that lack DPP9 enzymatic activity.
ESTHER : Gall_2019_Sci.Rep_9_7292
PubMedSearch : Gall_2019_Sci.Rep_9_7292
PubMedID: 31086209
Gene_locus related to this paper: human-DPP9

Title : Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences - Mikkelsen_2007_Nature_447_167
Author(s) : Mikkelsen TS , Wakefield MJ , Aken B , Amemiya CT , Chang JL , Duke S , Garber M , Gentles AJ , Goodstadt L , Heger A , Jurka J , Kamal M , Mauceli E , Searle SM , Sharpe T , Baker ML , Batzer MA , Benos PV , Belov K , Clamp M , Cook A , Cuff J , Das R , Davidow L , Deakin JE , Fazzari MJ , Glass JL , Grabherr M , Greally JM , Gu W , Hore TA , Huttley GA , Kleber M , Jirtle RL , Koina E , Lee JT , Mahony S , Marra MA , Miller RD , Nicholls RD , Oda M , Papenfuss AT , Parra ZE , Pollock DD , Ray DA , Schein JE , Speed TP , Thompson K , Vandeberg JL , Wade CM , Walker JA , Waters PD , Webber C , Weidman JR , Xie X , Zody MC , Graves JA , Ponting CP , Breen M , Samollow PB , Lander ES , Lindblad-Toh K
Ref : Nature , 447 :167 , 2007
Abstract : We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian ('marsupial') species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation.
ESTHER : Mikkelsen_2007_Nature_447_167
PubMedSearch : Mikkelsen_2007_Nature_447_167
PubMedID: 17495919
Gene_locus related to this paper: mondo-ACHE , mondo-b2bsf5 , mondo-b2bsz5 , mondo-BCHE , mondo-d2x2i6 , mondo-d2x2i8 , mondo-f6slk2 , mondo-f6wu00 , mondo-f6wuf2 , mondo-f6xfj4 , mondo-f6yt13 , mondo-f7c7p0 , mondo-f7ckd0 , mondo-f7cvq8 , mondo-f7cvr5 , mondo-f7eil6 , mondo-f7ez13 , mondo-f7f0i7 , mondo-f7fg16 , mondo-f7gcv7 , mondo-f7gep4 , mondo-f7gly2 , mondo-f6u7q2 , mondo-f7fw54 , mondo-f7dpf6 , mondo-f6pgj5 , mondo-f6yg68 , mondo-f7g8u4 , mondo-f7eyv1 , mondo-f6pq73 , mondo-f7cre0 , mondo-f7fdj0 , mondo-f7fdj5 , mondo-f7ft63 , mondo-f7ge99 , mondo-f7gea2 , mondo-f6pxq2 , mondo-f7awc1 , mondo-f7c412 , mondo-f7ev24 , mondo-f7b6s6 , mondo-f6vcx0 , mondo-f7g148 , mondo-f6tlv9 , mondo-f6tdm5 , mondo-f7f3w0 , mondo-f7fg39 , mondo-f7d6c2 , mondo-f6sdn0 , mondo-f7gi08 , mondo-f6xss6 , mondo-f6sa37 , mondo-f7gd97 , mondo-f6z6x9

Title : DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage - Zody_2006_Nature_440_1045
Author(s) : Zody MC , Garber M , Adams DJ , Sharpe T , Harrow J , Lupski JR , Nicholson C , Searle SM , Wilming L , Young SK , Abouelleil A , Allen NR , Bi W , Bloom T , Borowsky ML , Bugalter BE , Butler J , Chang JL , Chen CK , Cook A , Corum B , Cuomo CA , de Jong PJ , Decaprio D , Dewar K , FitzGerald M , Gilbert J , Gibson R , Gnerre S , Goldstein S , Grafham DV , Grocock R , Hafez N , Hagopian DS , Hart E , Norman CH , Humphray S , Jaffe DB , Jones M , Kamal M , Khodiyar VK , LaButti K , Laird G , Lehoczky J , Liu X , Lokyitsang T , Loveland J , Lui A , Macdonald P , Major JE , Matthews L , Mauceli E , McCarroll SA , Mihalev AH , Mudge J , Nguyen C , Nicol R , O'Leary SB , Osoegawa K , Schwartz DC , Shaw-Smith C , Stankiewicz P , Steward C , Swarbreck D , Venkataraman V , Whittaker CA , Yang X , Zimmer AR , Bradley A , Hubbard T , Birren BW , Rogers J , Lander ES , Nusbaum C
Ref : Nature , 440 :1045 , 2006
Abstract : Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.
ESTHER : Zody_2006_Nature_440_1045
PubMedSearch : Zody_2006_Nature_440_1045
PubMedID: 16625196
Gene_locus related to this paper: human-NLGN2 , human-NOTUM

Title : Analysis of the DNA sequence and duplication history of human chromosome 15 - Zody_2006_Nature_440_671
Author(s) : Zody MC , Garber M , Sharpe T , Young SK , Rowen L , O'Neill K , Whittaker CA , Kamal M , Chang JL , Cuomo CA , Dewar K , Fitzgerald MG , Kodira CD , Madan A , Qin S , Yang X , Abbasi N , Abouelleil A , Arachchi HM , Baradarani L , Birditt B , Bloom S , Bloom T , Borowsky ML , Burke J , Butler J , Cook A , DeArellano K , Decaprio D , Dorris L, 3rd , Dors M , Eichler EE , Engels R , Fahey J , Fleetwood P , Friedman C , Gearin G , Hall JL , Hensley G , Johnson E , Jones C , Kamat A , Kaur A , Locke DP , Munson G , Jaffe DB , Lui A , Macdonald P , Mauceli E , Naylor JW , Nesbitt R , Nicol R , O'Leary SB , Ratcliffe A , Rounsley S , She X , Sneddon KM , Stewart S , Sougnez C , Stone SM , Topham K , Vincent D , Wang S , Zimmer AR , Birren BW , Hood L , Lander ES , Nusbaum C
Ref : Nature , 440 :671 , 2006
Abstract : Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplications in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome.
ESTHER : Zody_2006_Nature_440_671
PubMedSearch : Zody_2006_Nature_440_671
PubMedID: 16572171
Gene_locus related to this paper: human-DPP8 , human-LIPC , human-SPG21

Title : DNA sequence and analysis of human chromosome 8 - Nusbaum_2006_Nature_439_331
Author(s) : Nusbaum C , Mikkelsen TS , Zody MC , Asakawa S , Taudien S , Garber M , Kodira CD , Schueler MG , Shimizu A , Whittaker CA , Chang JL , Cuomo CA , Dewar K , Fitzgerald MG , Yang X , Allen NR , Anderson S , Asakawa T , Blechschmidt K , Bloom T , Borowsky ML , Butler J , Cook A , Corum B , DeArellano K , Decaprio D , Dooley KT , Dorris L, 3rd , Engels R , Glockner G , Hafez N , Hagopian DS , Hall JL , Ishikawa SK , Jaffe DB , Kamat A , Kudoh J , Lehmann R , Lokitsang T , Macdonald P , Major JE , Matthews CD , Mauceli E , Menzel U , Mihalev AH , Minoshima S , Murayama Y , Naylor JW , Nicol R , Nguyen C , O'Leary SB , O'Neill K , Parker SC , Polley A , Raymond CK , Reichwald K , Rodriguez J , Sasaki T , Schilhabel M , Siddiqui R , Smith CL , Sneddon TP , Talamas JA , Tenzin P , Topham K , Venkataraman V , Wen G , Yamazaki S , Young SK , Zeng Q , Zimmer AR , Rosenthal A , Birren BW , Platzer M , Shimizu N , Lander ES
Ref : Nature , 439 :331 , 2006
Abstract : The International Human Genome Sequencing Consortium (IHGSC) recently completed a sequence of the human genome. As part of this project, we have focused on chromosome 8. Although some chromosomes exhibit extreme characteristics in terms of length, gene content, repeat content and fraction segmentally duplicated, chromosome 8 is distinctly typical in character, being very close to the genome median in each of these aspects. This work describes a finished sequence and gene catalogue for the chromosome, which represents just over 5% of the euchromatic human genome. A unique feature of the chromosome is a vast region of approximately 15 megabases on distal 8p that appears to have a strikingly high mutation rate, which has accelerated in the hominids relative to other sequenced mammals. This fast-evolving region contains a number of genes related to innate immunity and the nervous system, including loci that appear to be under positive selection--these include the major defensin (DEF) gene cluster and MCPH1, a gene that may have contributed to the evolution of expanded brain size in the great apes. The data from chromosome 8 should allow a better understanding of both normal and disease biology and genome evolution.
ESTHER : Nusbaum_2006_Nature_439_331
PubMedSearch : Nusbaum_2006_Nature_439_331
PubMedID: 16421571
Gene_locus related to this paper: human-TG

Title : Genome sequence, comparative analysis and haplotype structure of the domestic dog - Lindblad-Toh_2005_Nature_438_803
Author(s) : Lindblad-Toh K , Wade CM , Mikkelsen TS , Karlsson EK , Jaffe DB , Kamal M , Clamp M , Chang JL , Kulbokas EJ, 3rd , Zody MC , Mauceli E , Xie X , Breen M , Wayne RK , Ostrander EA , Ponting CP , Galibert F , Smith DR , deJong PJ , Kirkness E , Alvarez P , Biagi T , Brockman W , Butler J , Chin CW , Cook A , Cuff J , Daly MJ , Decaprio D , Gnerre S , Grabherr M , Kellis M , Kleber M , Bardeleben C , Goodstadt L , Heger A , Hitte C , Kim L , Koepfli KP , Parker HG , Pollinger JP , Searle SM , Sutter NB , Thomas R , Webber C , Baldwin J , Abebe A , Abouelleil A , Aftuck L , Ait-Zahra M , Aldredge T , Allen N , An P , Anderson S , Antoine C , Arachchi H , Aslam A , Ayotte L , Bachantsang P , Barry A , Bayul T , Benamara M , Berlin A , Bessette D , Blitshteyn B , Bloom T , Blye J , Boguslavskiy L , Bonnet C , Boukhgalter B , Brown A , Cahill P , Calixte N , Camarata J , Cheshatsang Y , Chu J , Citroen M , Collymore A , Cooke P , Dawoe T , Daza R , Decktor K , DeGray S , Dhargay N , Dooley K , Dorje P , Dorjee K , Dorris L , Duffey N , Dupes A , Egbiremolen O , Elong R , Falk J , Farina A , Faro S , Ferguson D , Ferreira P , Fisher S , FitzGerald M , Foley K , Foley C , Franke A , Friedrich D , Gage D , Garber M , Gearin G , Giannoukos G , Goode T , Goyette A , Graham J , Grandbois E , Gyaltsen K , Hafez N , Hagopian D , Hagos B , Hall J , Healy C , Hegarty R , Honan T , Horn A , Houde N , Hughes L , Hunnicutt L , Husby M , Jester B , Jones C , Kamat A , Kanga B , Kells C , Khazanovich D , Kieu AC , Kisner P , Kumar M , Lance K , Landers T , Lara M , Lee W , Leger JP , Lennon N , Leuper L , LeVine S , Liu J , Liu X , Lokyitsang Y , Lokyitsang T , Lui A , MacDonald J , Major J , Marabella R , Maru K , Matthews C , McDonough S , Mehta T , Meldrim J , Melnikov A , Meneus L , Mihalev A , Mihova T , Miller K , Mittelman R , Mlenga V , Mulrain L , Munson G , Navidi A , Naylor J , Nguyen T , Nguyen N , Nguyen C , Nicol R , Norbu N , Norbu C , Novod N , Nyima T , Olandt P , O'Neill B , O'Neill K , Osman S , Oyono L , Patti C , Perrin D , Phunkhang P , Pierre F , Priest M , Rachupka A , Raghuraman S , Rameau R , Ray V , Raymond C , Rege F , Rise C , Rogers J , Rogov P , Sahalie J , Settipalli S , Sharpe T , Shea T , Sheehan M , Sherpa N , Shi J , Shih D , Sloan J , Smith C , Sparrow T , Stalker J , Stange-Thomann N , Stavropoulos S , Stone C , Stone S , Sykes S , Tchuinga P , Tenzing P , Tesfaye S , Thoulutsang D , Thoulutsang Y , Topham K , Topping I , Tsamla T , Vassiliev H , Venkataraman V , Vo A , Wangchuk T , Wangdi T , Weiand M , Wilkinson J , Wilson A , Yadav S , Yang S , Yang X , Young G , Yu Q , Zainoun J , Zembek L , Zimmer A , Lander ES
Ref : Nature , 438 :803 , 2005
Abstract : Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.
ESTHER : Lindblad-Toh_2005_Nature_438_803
PubMedSearch : Lindblad-Toh_2005_Nature_438_803
PubMedID: 16341006
Gene_locus related to this paper: canfa-1lipg , canfa-2neur , canfa-3neur , canfa-ACHE , canfa-BCHE , canfa-cauxin , canfa-CESDD1 , canfa-e2qsb1 , canfa-e2qsl3 , canfa-e2qsz2 , canfa-e2qvk3 , canfa-e2qw15 , canfa-e2qxs8 , canfa-e2qzs6 , canfa-e2r5t3 , canfa-e2r6f6 , canfa-e2r7e8 , canfa-e2r8v9 , canfa-e2r8z1 , canfa-e2r9h4 , canfa-e2r455 , canfa-e2rb70 , canfa-e2rcq9 , canfa-e2rd94 , canfa-e2rgi0 , canfa-e2rkq0 , canfa-e2rlz9 , canfa-e2rm00 , canfa-e2rqf1 , canfa-e2rss9 , canfa-f1p6w8 , canfa-f1p8b6 , canfa-f1p9d8 , canfa-f1p683 , canfa-f1pb79 , canfa-f1pgw0 , canfa-f1phd0 , canfa-f1phx2 , canfa-f1pke8 , canfa-f1pp08 , canfa-f1ppp9 , canfa-f1ps07 , canfa-f1ptf1 , canfa-f1pvp4 , canfa-f1pw93 , canfa-f1pwk3 , canfa-pafa , canfa-q1ert3 , canfa-q5jzr0 , canfa-e2rmb9 , canlf-f6v865 , canlf-e2rjg6 , canlf-e2r2h2 , canlf-f1p648 , canlf-f1pw90 , canlf-j9p8v6 , canlf-f1pcc4 , canlf-e2qxh0 , canlf-e2r774 , canlf-f1pf96 , canlf-e2rq56 , canlf-j9nwb1 , canlf-f1ptw2 , canlf-j9p8h1 , canlf-e2ree2 , canlf-f1prs1 , canlf-j9nus1 , canlf-e2rf91 , canlf-f1pg57 , canlf-f1q111

Title : DNA sequence and analysis of human chromosome 18 - Nusbaum_2005_Nature_437_551
Author(s) : Nusbaum C , Zody MC , Borowsky ML , Kamal M , Kodira CD , Taylor TD , Whittaker CA , Chang JL , Cuomo CA , Dewar K , Fitzgerald MG , Yang X , Abouelleil A , Allen NR , Anderson S , Bloom T , Bugalter B , Butler J , Cook A , Decaprio D , Engels R , Garber M , Gnirke A , Hafez N , Hall JL , Norman CH , Itoh T , Jaffe DB , Kuroki Y , Lehoczky J , Lui A , Macdonald P , Mauceli E , Mikkelsen TS , Naylor JW , Nicol R , Nguyen C , Noguchi H , O'Leary SB , O'Neill K , Piqani B , Smith CL , Talamas JA , Topham K , Totoki Y , Toyoda A , Wain HM , Young SK , Zeng Q , Zimmer AR , Fujiyama A , Hattori M , Birren BW , Sakaki Y , Lander ES
Ref : Nature , 437 :551 , 2005
Abstract : Chromosome 18 appears to have the lowest gene density of any human chromosome and is one of only three chromosomes for which trisomic individuals survive to term. There are also a number of genetic disorders stemming from chromosome 18 trisomy and aneuploidy. Here we report the finished sequence and gene annotation of human chromosome 18, which will allow a better understanding of the normal and disease biology of this chromosome. Despite the low density of protein-coding genes on chromosome 18, we find that the proportion of non-protein-coding sequences evolutionarily conserved among mammals is close to the genome-wide average. Extending this analysis to the entire human genome, we find that the density of conserved non-protein-coding sequences is largely uncorrelated with gene density. This has important implications for the nature and roles of non-protein-coding sequence elements.
ESTHER : Nusbaum_2005_Nature_437_551
PubMedSearch : Nusbaum_2005_Nature_437_551
PubMedID: 16177791
Gene_locus related to this paper: human-LIPG

Title : Ionic basis of the resting membrane potential and action potential in the pharyngeal muscle of Caenorhabditis elegans - Franks_2002_J.Neurophysiol_87_954
Author(s) : Franks CJ , Pemberton D , Vinogradova I , Cook A , Walker RJ , Holden-Dye L
Ref : Journal of Neurophysiology , 87 :954 , 2002
Abstract : The pharynx of C. elegans is a rhythmically active muscle that pumps bacteria into the gut of the nematode. This activity is maintained by action potentials, which qualitatively bear a resemblance to vertebrate cardiac action potentials. Here, the ionic basis of the resting membrane potential and pharyngeal action potential has been characterized using intracellular recording techniques. The resting membrane potential is largely determined by a K(+) permeability, and a ouabain-sensitive, electrogenic pump. As previously suggested, the action potential is at least partly dependent on voltage-gated Ca(2+) channels, as the amplitude was increased as extracellular Ca(2+) was increased, and decreased by L-type Ca(2+) channel blockers verapamil and nifedipine. Barium caused a marked prolongation of action potential duration, suggesting that a calcium-activated K(+) current may contribute to repolarization. Most notably, however, we found that action potentials were abolished in the absence of external Na(+). This may be due, at least in part, to a Na(+)-dependent pacemaker potential. In addition, the persistence of action potentials in nominally free Ca(2+), the inhibition by Na(+) channel blockers procaine and quinidine, and the increase in action potential frequency caused by veratridine, a toxin that alters activation of voltage-gated Na(+) channels, point to the involvement of a voltage-gated Na(+) current. Voltage-clamp analysis is required for detailed characterization of this current, and this is in progress. Nonetheless, these observations are quite surprising in view of the lack of any obvious candidate genes for voltage-gated Na(+) channels in the C. elegans genome. It would therefore be informative to re-evaluate the data from these homology searches, with the aim of identifying the gene(s) conferring this Na(+), quinidine, and veratridine sensitivity to the pharynx.
ESTHER : Franks_2002_J.Neurophysiol_87_954
PubMedSearch : Franks_2002_J.Neurophysiol_87_954
PubMedID: 11826060