Weiss RB

References (7)

Title : Genome degeneration and adaptation in a nascent stage of symbiosis - Oakeson_2014_Genome.Biol.Evol_6_76
Author(s) : Oakeson KF , Gil R , Clayton AL , Dunn DM , von Niederhausern AC , Hamil C , Aoyagi A , Duval B , Baca A , Silva FJ , Vallier A , Jackson DG , Latorre A , Weiss RB , Heddi A , Moya A , Dale C
Ref : Genome Biol Evol , 6 :76 , 2014
Abstract : Symbiotic associations between animals and microbes are ubiquitous in nature, with an estimated 15% of all insect species harboring intracellular bacterial symbionts. Most bacterial symbionts share many genomic features including small genomes, nucleotide composition bias, high coding density, and a paucity of mobile DNA, consistent with long-term host association. In this study, we focus on the early stages of genome degeneration in a recently derived insect-bacterial mutualistic intracellular association. We present the complete genome sequence and annotation of Sitophilus oryzae primary endosymbiont (SOPE). We also present the finished genome sequence and annotation of strain HS, a close free-living relative of SOPE and other insect symbionts of the Sodalis-allied clade, whose gene inventory is expected to closely resemble the putative ancestor of this group. Structural, functional, and evolutionary analyses indicate that SOPE has undergone extensive adaptation toward an insect-associated lifestyle in a very short time period. The genome of SOPE is large in size when compared with many ancient bacterial symbionts; however, almost half of the protein-coding genes in SOPE are pseudogenes. There is also evidence for relaxed selection on the remaining intact protein-coding genes. Comparative analyses of the whole-genome sequence of strain HS and SOPE highlight numerous genomic rearrangements, duplications, and deletions facilitated by a recent expansion of insertions sequence elements, some of which appear to have catalyzed adaptive changes. Functional metabolic predictions suggest that SOPE has lost the ability to synthesize several essential amino acids and vitamins. Analyses of the bacterial cell envelope and genes encoding secretion systems suggest that these structures and elements have become simplified in the transition to a mutualistic association.
ESTHER : Oakeson_2014_Genome.Biol.Evol_6_76
PubMedSearch : Oakeson_2014_Genome.Biol.Evol_6_76
PubMedID: 24407854
Gene_locus related to this paper: 9entr-w0hus3 , 9entr-w0hic7 , 9gamm-w0htd5

Title : Effect of Neuronal Nicotinic Acetylcholine Receptor Genes (CHRN) on Longitudinal Cigarettes per Day in Adolescents and Young Adults - Cannon_2014_Nicotine.Tob.Res_16_137
Author(s) : Cannon DS , Mermelstein RJ , Hedeker D , Coon H , Cook EH , McMahon WM , Hamil C , Dunn D , Weiss RB
Ref : Nicotine Tob Res , 16 :137 , 2014
Abstract : INTRODUCTION: Few studies have sought to identify specific genetic markers associated with cigarettes per day (CPD) during adolescence and young adulthood, the period of greatest vulnerability for the development of nicotine dependence.
METHODS: We used a longitudinal design to investigate the effect of neuronal nicotinic acetylcholine receptor (CHRN) subunit genes on CPD from 15 to 21 years of age in young smokers of European descent (N = 439, 59% female). The number of CPD typically smoked during the previous 30 days was self-reported. Single nucleotide polymorphisms (SNPs) from CHRN genes were genotyped using DNA extracted from saliva samples collected at the 5-year assessment. Mixed-model analyses of SNP effects were computed across age at the time of assessment using log-transformed CPD as the phenotype. Data from the 1000 Genomes Project were used to clarify the architecture of CHRN genes to inform SNP selection and interpretation of results.
RESULTS: CPD was associated with a CHRNB3A6 region tagged by rs2304297, with CHRNA5A3B4 haplotype C (tagged by rs569207), and with the CHRNA2 SNP rs2271920, ps < .004. The reliability of single-SNP associations was supported by the correspondence between a more extensive set of SNP signals and the underlying genetic architecture. The 3 signals identified in this study appear to make independent contributions to CPD, and their combined effect accounts for 5.5% of the variance in log-transformed CPD.
CONCLUSIONS: Level of CPD during adolescence and young adulthood is associated with CHRNB3A6, CHRNA5A3B4, and CHRNA2.
ESTHER : Cannon_2014_Nicotine.Tob.Res_16_137
PubMedSearch : Cannon_2014_Nicotine.Tob.Res_16_137
PubMedID: 23943838

Title : Distinct loci in the CHRNA5\/CHRNA3\/CHRNB4 gene cluster are associated with onset of regular smoking - Stephens_2013_Genet.Epidemiol_37_846
Author(s) : Stephens SH , Hartz SM , Hoft NR , Saccone NL , Corley RC , Hewitt JK , Hopfer CJ , Breslau N , Coon H , Chen X , Ducci F , Dueker N , Franceschini N , Frank J , Han Y , Hansel NN , Jiang C , Korhonen T , Lind PA , Liu J , Lyytikainen LP , Michel M , Shaffer JR , Short SE , Sun J , Teumer A , Thompson JR , Vogelzangs N , Vink JM , Wenzlaff A , Wheeler W , Yang BZ , Aggen SH , Balmforth AJ , Baumeister SE , Beaty TH , Benjamin DJ , Bergen AW , Broms U , Cesarini D , Chatterjee N , Chen J , Cheng YC , Cichon S , Couper D , Cucca F , Dick D , Foroud T , Furberg H , Giegling I , Gillespie NA , Gu F , Hall AS , Hallfors J , Han S , Hartmann AM , Heikkila K , Hickie IB , Hottenga JJ , Jousilahti P , Kaakinen M , Kahonen M , Koellinger PD , Kittner S , Konte B , Landi MT , Laatikainen T , Leppert M , Levy SM , Mathias RA , McNeil DW , Medland SE , Montgomery GW , Murray T , Nauck M , North KE , Pare PD , Pergadia M , Ruczinski I , Salomaa V , Viikari J , Willemsen G , Barnes KC , Boerwinkle E , Boomsma DI , Caporaso N , Edenberg HJ , Francks C , Gelernter J , Grabe HJ , Hops H , Jarvelin MR , Johannesson M , Kendler KS , Lehtimaki T , Magnusson PK , Marazita ML , Marchini J , Mitchell BD , Nothen MM , Penninx BW , Raitakari O , Rietschel M , Rujescu D , Samani NJ , Schwartz AG , Shete S , Spitz M , Swan GE , Volzke H , Veijola J , Wei Q , Amos C , Cannon DS , Grucza R , Hatsukami D , Heath A , Johnson EO , Kaprio J , Madden P , Martin NG , Stevens VL , Weiss RB , Kraft P , Bierut LJ , Ehringer MA
Ref : Genet Epidemiol , 37 :846 , 2013
Abstract : Neuronal nicotinic acetylcholine receptor (nAChR) genes (CHRNA5/CHRNA3/CHRNB4) have been reproducibly associated with nicotine dependence, smoking behaviors, and lung cancer risk. Of the few reports that have focused on early smoking behaviors, association results have been mixed. This meta-analysis examines early smoking phenotypes and SNPs in the gene cluster to determine: (1) whether the most robust association signal in this region (rs16969968) for other smoking behaviors is also associated with early behaviors, and/or (2) if additional statistically independent signals are important in early smoking. We focused on two phenotypes: age of tobacco initiation (AOI) and age of first regular tobacco use (AOS). This study included 56,034 subjects (41 groups) spanning nine countries and evaluated five SNPs including rs1948, rs16969968, rs578776, rs588765, and rs684513. Each dataset was analyzed using a centrally generated script. Meta-analyses were conducted from summary statistics. AOS yielded significant associations with SNPs rs578776 (beta = 0.02, P = 0.004), rs1948 (beta = 0.023, P = 0.018), and rs684513 (beta = 0.032, P = 0.017), indicating protective effects. There were no significant associations for the AOI phenotype. Importantly, rs16969968, the most replicated signal in this region for nicotine dependence, cigarettes per day, and cotinine levels, was not associated with AOI (P = 0.59) or AOS (P = 0.92). These results provide important insight into the complexity of smoking behavior phenotypes, and suggest that association signals in the CHRNA5/A3/B4 gene cluster affecting early smoking behaviors may be different from those affecting the mature nicotine dependence phenotype.
ESTHER : Stephens_2013_Genet.Epidemiol_37_846
PubMedSearch : Stephens_2013_Genet.Epidemiol_37_846
PubMedID: 24186853

Title : Interplay of genetic risk factors (CHRNA5-CHRNA3-CHRNB4) and cessation treatments in smoking cessation success - Chen_2012_Am.J.Psychiatry_169_735
Author(s) : Chen LS , Baker TB , Piper ME , Breslau N , Cannon DS , Doheny KF , Gogarten SM , Johnson EO , Saccone NL , Wang JC , Weiss RB , Goate AM , Bierut LJ
Ref : Am J Psychiatry , 169 :735 , 2012
Abstract : OBJECTIVE: Smoking is highly intractable, and the genetic influences on cessation are unclear. Identifying the genetic factors affecting smoking cessation could elucidate the nature of tobacco dependence, enhance risk assessment, and support development of treatment algorithms. This study tested whether variants in the nicotinic receptor gene cluster CHRNA5-CHRNA3-CHRNB4 predict age at smoking cessation and relapse after an attempt to quit smoking. Method: In a community-based, crosssectional study (N=5,216) and a randomized comparative effectiveness smoking cessation trial (N=1,073), the authors used Cox proportional hazard models and logistic regression to model the relationships of smoking cessation (self-reported quit age in the community study and point-prevalence abstinence at the end of treatment in the clinical trial) to three common haplotypes in the CHRNA5-CHRNA3-CHRNB4 region defined by rs16969968 and rs680244.
RESULTS: The genetic variants in the CHRNA5-CHRNA3-CHRNB4 region that predict nicotine dependence also predicted a later age at smoking cessation in the community sample. In the smoking cessation trial, haplotype predicted abstinence at end of treatment in individuals receiving placebo but not among individuals receiving active medication. Haplotype interacted with treatment in affecting cessation success.
CONCLUSIONS: Smokers with the high-risk haplotype were three times as likely to respond to pharmacologic cessation treatments as were smokers with the low-risk haplotype. The high-risk haplotype increased the risk of cessation failure, and this increased risk was ameliorated by cessation pharmacotherapy. By identifying a high-risk genetic group with heightened response to smoking cessation pharmacotherapy, this work may support the development of personalized cessation treatments.
ESTHER : Chen_2012_Am.J.Psychiatry_169_735
PubMedSearch : Chen_2012_Am.J.Psychiatry_169_735
PubMedID: 22648373

Title : Increased genetic vulnerability to smoking at CHRNA5 in early-onset smokers - Hartz_2012_Arch.Gen.Psychiatry_69_854
Author(s) : Hartz SM , Short SE , Saccone NL , Culverhouse R , Chen L , Schwantes-An TH , Coon H , Han Y , Stephens SH , Sun J , Chen X , Ducci F , Dueker N , Franceschini N , Frank J , Geller F , Gubjartsson D , Hansel NN , Jiang C , Keskitalo-Vuokko K , Liu Z , Lyytikainen LP , Michel M , Rawal R , Rosenberger A , Scheet P , Shaffer JR , Teumer A , Thompson JR , Vink JM , Vogelzangs N , Wenzlaff AS , Wheeler W , Xiao X , Yang BZ , Aggen SH , Balmforth AJ , Baumeister SE , Beaty T , Bennett S , Bergen AW , Boyd HA , Broms U , Campbell H , Chatterjee N , Chen J , Cheng YC , Cichon S , Couper D , Cucca F , Dick DM , Foroud T , Furberg H , Giegling I , Gu F , Hall AS , Hallfors J , Han S , Hartmann AM , Hayward C , Heikkila K , Hewitt JK , Hottenga JJ , Jensen MK , Jousilahti P , Kaakinen M , Kittner SJ , Konte B , Korhonen T , Landi MT , Laatikainen T , Leppert M , Levy SM , Mathias RA , McNeil DW , Medland SE , Montgomery GW , Muley T , Murray T , Nauck M , North K , Pergadia M , Polasek O , Ramos EM , Ripatti S , Risch A , Ruczinski I , Rudan I , Salomaa V , Schlessinger D , Styrkarsdottir U , Terracciano A , Uda M , Willemsen G , Wu X , Abecasis G , Barnes K , Bickeboller H , Boerwinkle E , Boomsma DI , Caporaso N , Duan J , Edenberg HJ , Francks C , Gejman PV , Gelernter J , Grabe HJ , Hops H , Jarvelin MR , Viikari J , Kahonen M , Kendler KS , Lehtimaki T , Levinson DF , Marazita ML , Marchini J , Melbye M , Mitchell BD , Murray JC , Nothen MM , Penninx BW , Raitakari O , Rietschel M , Rujescu D , Samani NJ , Sanders AR , Schwartz AG , Shete S , Shi J , Spitz M , Stefansson K , Swan GE , Thorgeirsson T , Volzke H , Wei Q , Wichmann HE , Amos CI , Breslau N , Cannon DS , Ehringer M , Grucza R , Hatsukami D , Heath A , Johnson EO , Kaprio J , Madden P , Martin NG , Stevens VL , Stitzel JA , Weiss RB , Kraft P , Bierut LJ
Ref : Arch Gen Psychiatry , 69 :854 , 2012
Abstract : CONTEXT: Recent studies have shown an association between cigarettes per day (CPD) and a nonsynonymous single-nucleotide polymorphism in CHRNA5, rs16969968. OBJECTIVE: To determine whether the association between rs16969968 and smoking is modified by age at onset of regular smoking. DATA SOURCES: Primary data. STUDY SELECTION: Available genetic studies containing measures of CPD and the genotype of rs16969968 or its proxy. DATA EXTRACTION: Uniform statistical analysis scripts were run locally. Starting with 94,050 ever-smokers from 43 studies, we extracted the heavy smokers (CPD >20) and light smokers (CPD </=10) with age-at-onset information, reducing the sample size to 33,348. Each study was stratified into early-onset smokers (age at onset </=16 years) and late-onset smokers (age at onset >16 years), and a logistic regression of heavy vs light smoking with the rs16969968 genotype was computed for each stratum. Meta-analysis was performed within each age-at-onset stratum. DATA SYNTHESIS: Individuals with 1 risk allele at rs16969968 who were early-onset smokers were significantly more likely to be heavy smokers in adulthood (odds ratio [OR] = 1.45; 95% CI, 1.36-1.55; n = 13,843) than were carriers of the risk allele who were late-onset smokers (OR = 1.27; 95% CI, 1.21-1.33, n = 19,505) (P = .01). CONCLUSION: These results highlight an increased genetic vulnerability to smoking in early-onset smokers.
ESTHER : Hartz_2012_Arch.Gen.Psychiatry_69_854
PubMedSearch : Hartz_2012_Arch.Gen.Psychiatry_69_854
PubMedID: 22868939

Title : A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction - Weiss_2008_PLoS.Genet_4_e1000125
Author(s) : Weiss RB , Baker TB , Cannon DS , von Niederhausern A , Dunn DM , Matsunami N , Singh NA , Baird L , Coon H , McMahon WM , Piper ME , Fiore MC , Scholand MB , Connett JE , Kanner RE , Gahring LC , Rogers SW , Hoidal JR , Leppert MF
Ref : PLoS Genet , 4 :e1000125 , 2008
Abstract : People who begin daily smoking at an early age are at greater risk of long-term nicotine addiction. We tested the hypothesis that associations between nicotinic acetylcholine receptor (nAChR) genetic variants and nicotine dependence assessed in adulthood will be stronger among smokers who began daily nicotine exposure during adolescence. We compared nicotine addiction-measured by the Fagerstrom Test of Nicotine Dependence-in three cohorts of long-term smokers recruited in Utah, Wisconsin, and by the NHLBI Lung Health Study, using a candidate-gene approach with the neuronal nAChR subunit genes. This SNP panel included common coding variants and haplotypes detected in eight alpha and three beta nAChR subunit genes found in European American populations. In the 2,827 long-term smokers examined, common susceptibility and protective haplotypes at the CHRNA5-A3-B4 locus were associated with nicotine dependence severity (p = 2.0x10(-5); odds ratio = 1.82; 95% confidence interval 1.39-2.39) in subjects who began daily smoking at or before the age of 16, an exposure period that results in a more severe form of adult nicotine dependence. A substantial shift in susceptibility versus protective diplotype frequency (AA versus BC = 17%, AA versus CC = 27%) was observed in the group that began smoking by age 16. This genetic effect was not observed in subjects who began daily nicotine use after the age of 16. These results establish a strong mechanistic link among early nicotine exposure, common CHRNA5-A3-B4 haplotypes, and adult nicotine addiction in three independent populations of European origins. The identification of an age-dependent susceptibility haplotype reinforces the importance of preventing early exposure to tobacco through public health policies.
ESTHER : Weiss_2008_PLoS.Genet_4_e1000125
PubMedSearch : Weiss_2008_PLoS.Genet_4_e1000125
PubMedID: 18618000

Title : Genome sequence of the Brown Norway rat yields insights into mammalian evolution - Gibbs_2004_Nature_428_493
Author(s) : Gibbs RA , Weinstock GM , Metzker ML , Muzny DM , Sodergren EJ , Scherer S , Scott G , Steffen D , Worley KC , Burch PE , Okwuonu G , Hines S , Lewis L , DeRamo C , Delgado O , Dugan-Rocha S , Miner G , Morgan M , Hawes A , Gill R , Celera , Holt RA , Adams MD , Amanatides PG , Baden-Tillson H , Barnstead M , Chin S , Evans CA , Ferriera S , Fosler C , Glodek A , Gu Z , Jennings D , Kraft CL , Nguyen T , Pfannkoch CM , Sitter C , Sutton GG , Venter JC , Woodage T , Smith D , Lee HM , Gustafson E , Cahill P , Kana A , Doucette-Stamm L , Weinstock K , Fechtel K , Weiss RB , Dunn DM , Green ED , Blakesley RW , Bouffard GG , de Jong PJ , Osoegawa K , Zhu B , Marra M , Schein J , Bosdet I , Fjell C , Jones S , Krzywinski M , Mathewson C , Siddiqui A , Wye N , McPherson J , Zhao S , Fraser CM , Shetty J , Shatsman S , Geer K , Chen Y , Abramzon S , Nierman WC , Havlak PH , Chen R , Durbin KJ , Egan A , Ren Y , Song XZ , Li B , Liu Y , Qin X , Cawley S , Cooney AJ , D'Souza LM , Martin K , Wu JQ , Gonzalez-Garay ML , Jackson AR , Kalafus KJ , McLeod MP , Milosavljevic A , Virk D , Volkov A , Wheeler DA , Zhang Z , Bailey JA , Eichler EE , Tuzun E , Birney E , Mongin E , Ureta-Vidal A , Woodwark C , Zdobnov E , Bork P , Suyama M , Torrents D , Alexandersson M , Trask BJ , Young JM , Huang H , Wang H , Xing H , Daniels S , Gietzen D , Schmidt J , Stevens K , Vitt U , Wingrove J , Camara F , Mar Alba M , Abril JF , Guigo R , Smit A , Dubchak I , Rubin EM , Couronne O , Poliakov A , Hubner N , Ganten D , Goesele C , Hummel O , Kreitler T , Lee YA , Monti J , Schulz H , Zimdahl H , Himmelbauer H , Lehrach H , Jacob HJ , Bromberg S , Gullings-Handley J , Jensen-Seaman MI , Kwitek AE , Lazar J , Pasko D , Tonellato PJ , Twigger S , Ponting CP , Duarte JM , Rice S , Goodstadt L , Beatson SA , Emes RD , Winter EE , Webber C , Brandt P , Nyakatura G , Adetobi M , Chiaromonte F , Elnitski L , Eswara P , Hardison RC , Hou M , Kolbe D , Makova K , Miller W , Nekrutenko A , Riemer C , Schwartz S , Taylor J , Yang S , Zhang Y , Lindpaintner K , Andrews TD , Caccamo M , Clamp M , Clarke L , Curwen V , Durbin R , Eyras E , Searle SM , Cooper GM , Batzoglou S , Brudno M , Sidow A , Stone EA , Payseur BA , Bourque G , Lopez-Otin C , Puente XS , Chakrabarti K , Chatterji S , Dewey C , Pachter L , Bray N , Yap VB , Caspi A , Tesler G , Pevzner PA , Haussler D , Roskin KM , Baertsch R , Clawson H , Furey TS , Hinrichs AS , Karolchik D , Kent WJ , Rosenbloom KR , Trumbower H , Weirauch M , Cooper DN , Stenson PD , Ma B , Brent M , Arumugam M , Shteynberg D , Copley RR , Taylor MS , Riethman H , Mudunuri U , Peterson J , Guyer M , Felsenfeld A , Old S , Mockrin S , Collins F
Ref : Nature , 428 :493 , 2004
Abstract : The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.
ESTHER : Gibbs_2004_Nature_428_493
PubMedSearch : Gibbs_2004_Nature_428_493
PubMedID: 15057822
Gene_locus related to this paper: rat-abhea , rat-abheb , rat-cd029 , rat-d3zaw4 , rat-dpp9 , rat-d3zhq1 , rat-d3zkp8 , rat-d3zuq1 , rat-d3zxw8 , rat-d4a4w4 , rat-d4a7w1 , rat-d4a9l7 , rat-d4a071 , rat-d4aa31 , rat-d4aa33 , rat-d4aa61 , rat-dglb , rat-f1lz91 , rat-Kansl3 , rat-nceh1 , rat-Tex30 , ratno-1hlip , ratno-1neur , ratno-1plip , ratno-2neur , ratno-3neur , ratno-3plip , ratno-ABH15 , ratno-ACHE , ratno-balip , ratno-BCHE , ratno-cauxin , ratno-Ces1d , ratno-Ces1e , ratno-Ces2f , ratno-d3ze31 , ratno-d3zp14 , ratno-d3zxi3 , ratno-d3zxq0 , ratno-d3zxq1 , ratno-d4a3d4 , ratno-d4aa05 , ratno-dpp4 , ratno-dpp6 , ratno-est8 , ratno-FAP , ratno-hyep , ratno-hyes , ratno-kmcxe , ratno-lmcxe , ratno-LOC246252 , ratno-MGLL , ratno-pbcxe , ratno-phebest , ratno-Ppgb , ratno-q4qr68 , ratno-q6ayr2 , ratno-q6q629 , ratno-SPG21 , ratno-thyro , rat-m0rc77 , rat-a0a0g2k9y7 , rat-a0a0g2kb83 , rat-d3zba8 , rat-d3zbj1 , rat-d3zcr8 , rat-d3zxw5 , rat-d4a340 , rat-f1lvg7 , rat-m0r509 , rat-m0r5d4 , rat-b5den3 , rat-d3zxk4 , rat-d4a1b6 , rat-d3zmg4 , rat-ab17c