Ferriera S

References (21)

Title : Genome sequence of the marine photoheterotrophic bacterium Erythrobacter sp. strain NAP1 - Koblizek_2011_J.Bacteriol_193_5881
Author(s) : Koblizek M , Janouskovec J , Obornik M , Johnson JH , Ferriera S , Falkowski PG
Ref : Journal of Bacteriology , 193 :5881 , 2011
Abstract : Here we report the full genome sequence of marine phototrophic bacterium Erythrobacter sp. strain NAP1. The 3.3-Mb genome contains a full set of photosynthetic genes organized in one 38.9-kb cluster; however, it does not contain genes for CO(2) or N(2) fixation, thereby confirming that the organism is a photoheterotroph.
ESTHER : Koblizek_2011_J.Bacteriol_193_5881
PubMedSearch : Koblizek_2011_J.Bacteriol_193_5881
PubMedID: 21952547
Gene_locus related to this paper: 9sphn-a3wal5 , 9sphn-a3wb88 , 9sphn-a3wbi3 , 9sphn-a3wc16 , 9sphn-a3wbu4 , 9sphn-a3whw4

Title : Complete genome sequence of Algoriphagus sp. PR1, bacterial prey of a colony-forming choanoflagellate - Alegado_2011_J.Bacteriol_193_1485
Author(s) : Alegado RA , Ferriera S , Nusbaum C , Young SK , Zeng Q , Imamovic A , Fairclough SR , King N
Ref : Journal of Bacteriology , 193 :1485 , 2011
Abstract : Bacteria are the primary food source of choanoflagellates, the closest known relatives of animals. Studying signaling interactions between the Gram-negative Bacteroidetes bacterium Algoriphagus sp. PR1 and its predator, the choanoflagellate Salpingoeca rosetta, provides a promising avenue for testing hypotheses regarding the involvement of bacteria in animal evolution. Here we announce the complete genome sequence of Algoriphagus sp. PR1 and initial findings from its annotation.
ESTHER : Alegado_2011_J.Bacteriol_193_1485
PubMedSearch : Alegado_2011_J.Bacteriol_193_1485
PubMedID: 21183675
Gene_locus related to this paper: 9bact-a3hsc2 , 9bact-a3hsw0 , 9bact-a3ht61 , 9bact-a3hta1.1 , 9bact-a3hta1.2 , 9bact-a3htc8 , 9bact-a3htd6 , 9bact-a3hti5 , 9bact-a3htn1 , 9bact-a3htn2 , 9bact-a3htn3 , 9bact-a3htn9 , 9bact-a3htv3 , 9bact-a3hu26 , 9bact-a3hu92 , 9bact-a3hwh7 , 9bact-a3hws7 , 9bact-a3hws8 , 9bact-a3hy22 , 9bact-a3hzv9 , 9bact-a3i1k2 , 9bact-a3i1r2 , 9bact-a3i1r3 , 9bact-a3i2k7 , 9bact-a3i3a8 , 9bact-a3i056 , 9bact-a3i079 , 9bact-a3i222 , 9bact-a3hun9

Title : Genome sequence of the Marine Janibacter Sp. Strain HTCC2649 - Thrash_2011_J.Bacteriol_193_584
Author(s) : Thrash JC , Cho JC , Bertagnolli AD , Ferriera S , Johnson J , Vergin KL , Giovannoni SJ
Ref : Journal of Bacteriology , 193 :584 , 2011
Abstract : Janibacter sp. strain HTCC2649 is a novel marine member of the Actinobacteria, family Intrasporangiaceae, and is closely related to Janibacter melonis CM2104(T) and Knoellia sinensis HKI 0119(T). The organism was isolated from a sample collected at Hydrostation S south of Bermuda by using high-throughput culturing techniques. Here we present the genome sequence of Janibacter sp. strain HTCC2649.
ESTHER : Thrash_2011_J.Bacteriol_193_584
PubMedSearch : Thrash_2011_J.Bacteriol_193_584
PubMedID: 21075932
Gene_locus related to this paper: 9mico-a3tmr7 , 9mico-a3tg99 , 9mico-a3tga0 , 9mico-a3thg8 , 9mico-a3tjp7 , 9mico-a3tmm2 , 9mico-a3tn91 , 9mico-a3tnk2 , 9mico-a3tp75 , 9mico-a3tqm4 , 9mico-a3trw6 , 9mico-a3tgi4 , 9mico-a3tg58

Title : Draft genome sequence of Caminibacter mediatlanticus strain TB-2, an epsilonproteobacterium isolated from a deep-sea hydrothermal vent - Giovannelli_2011_Stand.Genomic.Sci_5_135
Author(s) : Giovannelli D , Ferriera S , Johnson J , Kravitz S , Perez-Rodriguez I , Ricci J , O'Brien C , Voordeckers JW , Bini E , Vetriani C
Ref : Stand Genomic Sci , 5 :135 , 2011
Abstract : Caminibacter mediatlanticus strain TB-2(T) [1], is a thermophilic, anaerobic, chemolithoautotrophic bacterium, isolated from the walls of an active deep-sea hydrothermal vent chimney on the Mid-Atlantic Ridge and the type strain of the species. C. mediatlanticus is a Gram-negative member of the Epsilonproteobacteria (order Nautiliales) that grows chemolithoautotrophically with H(2) as the energy source and CO(2) as the carbon source. Nitrate or sulfur is used as the terminal electron acceptor, with resulting production of ammonium and hydrogen sulfide, respectively. In view of the widespread distribution, importance and physiological characteristics of thermophilic Epsilonproteobacteria in deep-sea geothermal environments, it is likely that these organisms provide a relevant contribution to both primary productivity and the biogeochemical cycling of carbon, nitrogen and sulfur at hydrothermal vents. Here we report the main features of the genome of C. mediatlanticus strain TB-2(T).
ESTHER : Giovannelli_2011_Stand.Genomic.Sci_5_135
PubMedSearch : Giovannelli_2011_Stand.Genomic.Sci_5_135
PubMedID: 22180817
Gene_locus related to this paper: 9prot-a6def3 , 9prot-a6da46

Title : Draft genome sequence of the chemolithoheterotrophic, halophilic methylotroph Methylophaga thiooxydans DMS010 - Boden_2011_J.Bacteriol_193_3154
Author(s) : Boden R , Ferriera S , Johnson J , Kelly DP , Murrell JC , Schafer H
Ref : Journal of Bacteriology , 193 :3154 , 2011
Abstract : Methylophaga thiooxydans is a mesophilic, obligately halophilic bacterium that is capable of methylotrophic growth on a range of one-carbon compounds as well as chemolithoheterotrophic growth at the expense of thiosulfate. Here we present the draft genome sequence of Methylophaga thiooxydans DMS010 (DSM 22068(T), VKM B2586(T)), the type strain of the species, which has allowed prediction of the genes involved in one-carbon metabolism, nitrogen metabolism, and other aspects of central metabolism.
ESTHER : Boden_2011_J.Bacteriol_193_3154
PubMedSearch : Boden_2011_J.Bacteriol_193_3154
PubMedID: 21478352

Title : Complete genome sequence of Croceibacter atlanticus HTCC2559T - Oh_2010_J.Bacteriol_192_4796
Author(s) : Oh HM , Kang I , Ferriera S , Giovannoni SJ , Cho JC
Ref : Journal of Bacteriology , 192 :4796 , 2010
Abstract : Here we announce the complete genome sequence of Croceibacter atlanticus HTCC2559(T), which was isolated by high-throughput dilution-to-extinction culturing from the Bermuda Atlantic Time Series station in the Western Sargasso Sea. Strain HTCC2559(T) contained genes for carotenoid biosynthesis, flavonoid biosynthesis, and several macromolecule-degrading enzymes. The genome confirmed physiological observations of cultivated Croceibacter atlanticus strain HTCC2559(T), which identified it as an obligate chemoheterotroph.
ESTHER : Oh_2010_J.Bacteriol_192_4796
PubMedSearch : Oh_2010_J.Bacteriol_192_4796
PubMedID: 20639333
Gene_locus related to this paper: croah-a3u5k8 , croah-a3u561 , croah-a3u584 , croah-a3u732 , croah-a3u791 , croah-a3ual1 , croah-a3ual8

Title : A catalog of reference genomes from the human microbiome - Nelson_2010_Science_328_994
Author(s) : Nelson KE , Weinstock GM , Highlander SK , Worley KC , Creasy HH , Wortman JR , Rusch DB , Mitreva M , Sodergren E , Chinwalla AT , Feldgarden M , Gevers D , Haas BJ , Madupu R , Ward DV , Birren BW , Gibbs RA , Methe B , Petrosino JF , Strausberg RL , Sutton GG , White OR , Wilson RK , Durkin S , Giglio MG , Gujja S , Howarth C , Kodira CD , Kyrpides N , Mehta T , Muzny DM , Pearson M , Pepin K , Pati A , Qin X , Yandava C , Zeng Q , Zhang L , Berlin AM , Chen L , Hepburn TA , Johnson J , McCorrison J , Miller J , Minx P , Nusbaum C , Russ C , Sykes SM , Tomlinson CM , Young S , Warren WC , Badger J , Crabtree J , Markowitz VM , Orvis J , Cree A , Ferriera S , Fulton LL , Fulton RS , Gillis M , Hemphill LD , Joshi V , Kovar C , Torralba M , Wetterstrand KA , Abouellleil A , Wollam AM , Buhay CJ , Ding Y , Dugan S , Fitzgerald MG , Holder M , Hostetler J , Clifton SW , Allen-Vercoe E , Earl AM , Farmer CN , Liolios K , Surette MG , Xu Q , Pohl C , Wilczek-Boney K , Zhu D
Ref : Science , 328 :994 , 2010
Abstract : The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified ("novel") polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (approximately 97%) were unique. In addition, this set of microbial genomes allows for approximately 40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.
ESTHER : Nelson_2010_Science_328_994
PubMedSearch : Nelson_2010_Science_328_994
PubMedID: 20489017
Gene_locus related to this paper: strp2-q04l35 , strpn-AXE1 , strpn-pepx

Title : Genome sequence of the oligotrophic marine Gammaproteobacterium HTCC2143, isolated from the Oregon Coast - Oh_2010_J.Bacteriol_192_4530
Author(s) : Oh HM , Kang I , Ferriera S , Giovannoni SJ , Cho JC
Ref : Journal of Bacteriology , 192 :4530 , 2010
Abstract : Strain HTCC2143 was isolated from Oregon Coast surface waters using dilution-to-extinction culturing. Here we present the genome of strain HTCC2143 from the BD1-7 clade of the oligotrophic marine Gammaproteobacteria group. The genome of HTCC2143 contains genes for carotenoid biosynthesis and proteorhodopsin and for proteins that have potential biotechnological significance: epoxide hydrolases, Baeyer-Villiger monooxygenases, and polyketide synthases.
ESTHER : Oh_2010_J.Bacteriol_192_4530
PubMedSearch : Oh_2010_J.Bacteriol_192_4530
PubMedID: 20601481
Gene_locus related to this paper: 9gamm-a0y7n1 , 9gamm-a0y7n9 , 9gamm-a0y7z1 , 9gamm-a0y8h0 , 9gamm-a0y8i9 , 9gamm-a0y8t1 , 9gamm-a0y9n9 , 9gamm-a0y9r5 , 9gamm-a0y831 , 9gamm-a0yac9 , 9gamm-a0yad1 , 9gamm-a0yaw7 , 9gamm-a0ydx7 , 9gamm-a0yei4 , 9gamm-a0yft3 , 9gamm-a0yfz8 , 9gamm-a0yg15 , 9gamm-a0yg58 , 9gamm-a0ygu3 , 9gamm-a0ygx1 , 9gamm-a0yh83 , 9gamm-a0yhi0 , 9gamm-a0yhi1 , 9gamm-a0yhi4 , 9gamm-a0yhx0 , 9gamm-a0ya83 , 9gamm-a0yai7 , 9gamm-a0y9k1 , 9gamm-a0y7y9

Title : Genome sequences of strains HTCC2148 and HTCC2080, belonging to the OM60\/NOR5 clade of the Gammaproteobacteria - Thrash_2010_J.Bacteriol_192_3842
Author(s) : Thrash JC , Cho JC , Ferriera S , Johnson J , Vergin KL , Giovannoni SJ
Ref : Journal of Bacteriology , 192 :3842 , 2010
Abstract : Organisms in the OM60/NOR5 clade of the Gammaproteobacteria are ubiquitous in the world's oceans and can make up as much as 11% of bacterial cells in certain areas. Isolated from coastal Oregon water, Gammaproteobacteria HTCC2148 and HTCC2080 are two members of this important clade. Here we present the genome sequences of the OM60 Gammaproteobacteria HTCC2148 and HTCC2080.
ESTHER : Thrash_2010_J.Bacteriol_192_3842
PubMedSearch : Thrash_2010_J.Bacteriol_192_3842
PubMedID: 20472793
Gene_locus related to this paper: 9gamm-a0z1c5 , 9gamm-a0z1f5 , 9gamm-a0z2s0 , 9gamm-a0z3u8 , 9gamm-a0z4a8 , 9gamm-a0z4j5 , 9gamm-a0z5h2 , 9gamm-a0z5n0 , 9gamm-a0z6e4 , 9gamm-a0z8c8 , 9gamm-a0z329 , 9gamm-a0z514 , 9gamm-a0z518 , 9gamm-a0z640 , 9gamm-a0z4z1 , 9gamm-a0z4j2 , 9gamm-b7s1l3 , 9gamm-a0z507 , 9gamm-b7rum6 , 9gamm-b7ry27 , 9gamm-b7rxk5 , 9gamm-a0z6c3

Title : Genome sequence of Fulvimarina pelagi HTCC2506T, a Mn(II)-oxidizing alphaproteobacterium possessing an aerobic anoxygenic photosynthetic gene cluster and Xanthorhodopsin - Kang_2010_J.Bacteriol_192_4798
Author(s) : Kang I , Oh HM , Lim SI , Ferriera S , Giovannoni SJ , Cho JC
Ref : Journal of Bacteriology , 192 :4798 , 2010
Abstract : Fulvimarina pelagi is a Mn(II)-oxidizing marine heterotrophic bacterium in the order Rhizobiales. Here we announce the draft genome sequence of F. pelagi HTCC2506(T), which was isolated from the Sargasso Sea by using dilution-to-extinction culturing. The genome sequence contained a xanthorhodopsin gene as well as a photosynthetic gene cluster, which suggests the coexistence of two different phototrophic mechanisms in a single microorganism.
ESTHER : Kang_2010_J.Bacteriol_192_4798
PubMedSearch : Kang_2010_J.Bacteriol_192_4798
PubMedID: 20639329
Gene_locus related to this paper: 9rhiz-q0g4r0 , 9rhiz-q0g5e5 , 9rhiz-q0g5n1 , 9rhiz-q0fyu2

Title : Genome sequences of Pelagibaca bermudensis HTCC2601T and Maritimibacter alkaliphilus HTCC2654T, the type strains of two marine Roseobacter genera - Thrash_2010_J.Bacteriol_192_5552
Author(s) : Thrash JC , Cho JC , Ferriera S , Johnson J , Vergin KL , Giovannoni SJ
Ref : Journal of Bacteriology , 192 :5552 , 2010
Abstract : Pelagibaca bermudensis HTCC2601(T) and Maritimibacter alkaliphilus HTCC2654(T) represent two marine genera in the globally significant Roseobacter clade of the Alphaproteobacteria. Here, we present the genome sequences of these organisms, isolated from the Sargasso Sea using dilution-to-extinction culturing, which offer insight into the genetic basis for the metabolic and ecological diversity of this important group.
ESTHER : Thrash_2010_J.Bacteriol_192_5552
PubMedSearch : Thrash_2010_J.Bacteriol_192_5552
PubMedID: 20729358
Gene_locus related to this paper: 9rhob-a3va73 , 9rhob-a3vae5 , 9rhob-a3vby9 , 9rhob-a3vd43 , 9rhob-a3vde0 , 9rhob-a3vdm3 , 9rhob-a3vdy3 , 9rhob-a3ve12 , 9rhob-a3vhg2 , 9rhob-a3vhi4 , 9rhob-a3vi32 , 9rhob-a3vjf9 , 9rhob-a3vl43 , 9rhob-a3vl64 , 9rhob-a3vlh4 , 9rhob-a3vm86 , 9rhob-q0fk06 , 9rhob-q0flx2 , 9rhob-q0fmy2 , 9rhob-q0fmz2 , 9rhob-q0fnb8 , 9rhob-q0fsb4 , 9rhob-q0fv60 , pelbh-q0fmy5 , pelbh-q0fp89 , 9rhob-a3vji7

Title : Complete genome sequence of Erythrobacter litoralis HTCC2594 - Oh_2009_J.Bacteriol_191_2419
Author(s) : Oh HM , Giovannoni SJ , Ferriera S , Johnson J , Cho JC
Ref : Journal of Bacteriology , 191 :2419 , 2009
Abstract : Erythrobacter litoralis has been known as a bacteriochlorophyll a-containing, aerobic, anoxygenic, phototrophic bacterium. Here we announce the complete genome sequence of E. litoralis HTCC2594, which is devoid of phototrophic potential. E. litoralis HTCC2594, isolated by dilution-to-extinction culturing from seawater, could not carry out aerobic anoxygenic phototrophy and lacked genes for bacteriochlorophyll a biosynthesis and photosynthetic reaction center proteins.
ESTHER : Oh_2009_J.Bacteriol_191_2419
PubMedSearch : Oh_2009_J.Bacteriol_191_2419
PubMedID: 19168610
Gene_locus related to this paper: eryhl-Q2N8C6 , erylh-q2n7g7 , erylh-q2n9y4 , erylh-q2ncg0 , erylh-q2nd60 , erylh-q2na21

Title : The genomic basis of trophic strategy in marine bacteria - Lauro_2009_Proc.Natl.Acad.Sci.U.S.A_106_15527
Author(s) : Lauro FM , McDougald D , Thomas T , Williams TJ , Egan S , Rice S , DeMaere MZ , Ting L , Ertan H , Johnson J , Ferriera S , Lapidus A , Anderson I , Kyrpides N , Munk AC , Detter C , Han CS , Brown MV , Robb FT , Kjelleberg S , Cavicchioli R
Ref : Proc Natl Acad Sci U S A , 106 :15527 , 2009
Abstract : Many marine bacteria have evolved to grow optimally at either high (copiotrophic) or low (oligotrophic) nutrient concentrations, enabling different species to colonize distinct trophic habitats in the oceans. Here, we compare the genome sequences of two bacteria, Photobacterium angustum S14 and Sphingopyxis alaskensis RB2256, that serve as useful model organisms for copiotrophic and oligotrophic modes of life and specifically relate the genomic features to trophic strategy for these organisms and define their molecular mechanisms of adaptation. We developed a model for predicting trophic lifestyle from genome sequence data and tested >400,000 proteins representing >500 million nucleotides of sequence data from 126 genome sequences with metagenome data of whole environmental samples. When applied to available oceanic metagenome data (e.g., the Global Ocean Survey data) the model demonstrated that oligotrophs, and not the more readily isolatable copiotrophs, dominate the ocean's free-living microbial populations. Using our model, it is now possible to define the types of bacteria that specific ocean niches are capable of sustaining.
ESTHER : Lauro_2009_Proc.Natl.Acad.Sci.U.S.A_106_15527
PubMedSearch : Lauro_2009_Proc.Natl.Acad.Sci.U.S.A_106_15527
PubMedID: 19805210
Gene_locus related to this paper: phoas-q1zm99 , phoas-q1zpt1 , phoas-q1zwh7 , phoas-q1zx01 , phoas-q1zlj9 , sphal-q1grs6

Title : Complete genome sequence of Robiginitalea biformata HTCC2501 - Oh_2009_J.Bacteriol_191_7144
Author(s) : Oh HM , Giovannoni SJ , Lee K , Ferriera S , Johnson J , Cho JC
Ref : Journal of Bacteriology , 191 :7144 , 2009
Abstract : Robiginitalea biformata HTCC2501, isolated from the Sargasso Sea by dilution-to-extinction culturing, has been known as an aerobic chemoheterotroph with carotenoid pigments and dimorphic growth phases. Here, we announce the complete sequence of the R. biformata HTCC2501 genome, which contains genes for carotenoid biosynthesis and several macromolecule-degrading enzymes.
ESTHER : Oh_2009_J.Bacteriol_191_7144
PubMedSearch : Oh_2009_J.Bacteriol_191_7144
PubMedID: 19767438
Gene_locus related to this paper: robbh-a4cgq6 , robbh-a4cil9 , robbh-a4cir1 , robbh-a4cj93 , robbh-a4cje2 , robbh-a4cjy8 , robbh-a4cjz4 , robbh-a4ck49 , robbh-a4ckw4 , robbh-a4cli1 , robbh-a4cme1 , robbh-a4cmz6 , robbh-a4cq56

Title : Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter - Ivars-Martinez_2008_ISME.J_2_1194
Author(s) : Ivars-Martinez E , Martin-Cuadrado AB , D'Auria G , Mira A , Ferriera S , Johnson J , Friedman R , Rodriguez-Valera F
Ref : Isme J , 2 :1194 , 2008
Abstract : Alteromonas macleodii is a common marine heterotrophic gamma-proteobacterium. Isolates from this microbe cluster by molecular analysis into two major genotypic groups or ecotypes, one found in temperate latitudes in the upper water column and another that is for the most part found in the deep water column of the Mediterranean. Here, we describe the genome of one strain of the 'deep ecotype' (AltDE) isolated from 1000 m in the Eastern Mediterranean and compare this genome with that of the type strain ATCC 27126, a representative of the global 'surface' ecotype. The genomes are substantially different with DNA sequence similarity values that are borderline for microbes belonging to the same species, and a large differential gene content, mainly found in islands larger than 20 kbp, that also recruit poorly to the Global Ocean Sampling project (GOS). These genomic differences indicate that AltDE is probably better suited to microaerophilic conditions and for the degradation of recalcitrant compounds such as urea. These, together with other features, and the distribution of this genotypic group, indicate that this microbe colonizes relatively large particles that sink rapidly to meso and bathypelagic depths. The genome of ATCC 27126 on the other hand has more potential for regulation (two component systems) and degrades more sugars and amino acids, which is consistent with a more transient particle attachment, as would be expected for lineages specialized in colonizing smaller particulate organic matter with much slower sinking rates. The genomic data are also consistent with a picture of incipient speciation driven by niche specialization.
ESTHER : Ivars-Martinez_2008_ISME.J_2_1194
PubMedSearch : Ivars-Martinez_2008_ISME.J_2_1194
PubMedID: 18670397
Gene_locus related to this paper: altmd-f2gbn3 , altmb-k0e9i0 , altma-s5blx4 , altmd-f2g7m7 , altma-j9y8r9 , altma-j9ycg2 , altma-s5cfn7 , altma-j9yd23 , altma-s5ahd5

Title : Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis - Fuchs_2007_Proc.Natl.Acad.Sci.U.S.A_104_2891
Author(s) : Fuchs BM , Spring S , Teeling H , Quast C , Wulf J , Schattenhofer M , Yan S , Ferriera S , Johnson J , Glockner FO , Amann R
Ref : Proc Natl Acad Sci U S A , 104 :2891 , 2007
Abstract : Members of the gammaproteobacterial clade NOR5/OM60 regularly form an abundant part, up to 11%, of the bacterioplankton community in coastal systems during the summer months. Here, we report the nearly complete genome sequence of one cultured representative, Congregibacter litoralis strain KT71, isolated from North Sea surface water. Unexpectedly, a complete photosynthesis superoperon, including genes for accessory pigments, was discovered. It has a high sequence similarity to BAC clones from Monterey Bay [Beja O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, et al. (2002) Nature 415:630-633], which also share a nearly identical gene arrangement. Although cultures of KT71 show no obvious pigmentation, bacteriochlorophyll a and spirilloxanthin-like carotenoids could be detected by HPLC analysis in cell extracts. The presence of two potential BLUF (blue light using flavin adenine dinucleotide sensors), one of which was found adjacent to the photosynthesis operon in the genome, indicates a light- and redox-dependent regulation of gene expression. Like other aerobic anoxygenic phototrophs (AAnPs), KT71 is able to grow neither anaerobically nor photoautotrophically. Cultivation experiments and genomic evidence show that KT71 needs organic substrates like carboxylic acids, oligopeptides, or fatty acids for growth. The strain grows optimally under microaerobic conditions and actively places itself in a zone of approximately 10% oxygen saturation. The genome analysis of C. litoralis strain KT71 identifies the gammaproteobacterial marine AAnPs, postulated based on BAC sequences, as members of the NOR5/OM60 clade. KT71 enables future experiments investigating the importance of this group of gammaproteobacterial AAnPs in coastal environments.
ESTHER : Fuchs_2007_Proc.Natl.Acad.Sci.U.S.A_104_2891
PubMedSearch : Fuchs_2007_Proc.Natl.Acad.Sci.U.S.A_104_2891
PubMedID: 17299055
Gene_locus related to this paper: 9gamm-a4a7a9 , 9gamm-a4a9u6 , 9gamm-a4a440 , 9gamm-a4a484 , 9gamm-a4a590 , 9gamm-a4a746 , 9gamm-a4a758 , 9gamm-a4aa23 , 9gamm-a4acc1 , 9gamm-a4ada0 , 9gamm-a4ae00 , 9gamm-a4acf4 , 9gamm-a4acr9

Title : Patterns and implications of gene gain and loss in the evolution of Prochlorococcus - Kettler_2007_PLoS.Genet_3_e231
Author(s) : Kettler GC , Martiny AC , Huang K , Zucker J , Coleman ML , Rodrigue S , Chen F , Lapidus A , Ferriera S , Johnson J , Steglich C , Church GM , Richardson P , Chisholm SW
Ref : PLoS Genet , 3 :e231 , 2007
Abstract : Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolates from diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3%, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer membrane synthesis and transport that dominate the flexible genome and set it apart from the core. Besides identifying islands and demonstrating their role throughout the history of Prochlorococcus, reconstruction of past gene gains and losses shows that much of the variability exists at the "leaves of the tree," between the most closely related strains. Finally, the identification of core and flexible genes from this 12-genome comparison is largely consistent with the relative frequency of Prochlorococcus genes found in global ocean metagenomic databases, further closing the gap between our understanding of these organisms in the lab and the wild.
ESTHER : Kettler_2007_PLoS.Genet_3_e231
PubMedSearch : Kettler_2007_PLoS.Genet_3_e231
PubMedID: 18159947
Gene_locus related to this paper: prom1-a2c3n7 , prom1-a2c150 , prom1-a2c179 , prom2-a8g5b6 , prom2-a8g5t3 , prom3-a2c804 , prom3-a2cas9 , prom4-a9b9z4 , prom4-a9bb64 , prom4-a9bbd7 , prom5-a2bvt3 , prom5-a2bx34 , prom9-q31br4 , prom9-q31ch4 , promr-b9p0y6 , promm-q7v6l0 , promm-q7v8g2 , proms-a2brm5 , proms-a2bs42 , promt-q46jt5 , promt-q46jy1 , promt-q46kg4 , prom0-a3pbw6 , proms-a2bq73 , prom3-a2cay5 , prom5-a2buz4 , prom2-a8g328 , prom3-a2ce38

Title : Genome sequence of the Brown Norway rat yields insights into mammalian evolution - Gibbs_2004_Nature_428_493
Author(s) : Gibbs RA , Weinstock GM , Metzker ML , Muzny DM , Sodergren EJ , Scherer S , Scott G , Steffen D , Worley KC , Burch PE , Okwuonu G , Hines S , Lewis L , DeRamo C , Delgado O , Dugan-Rocha S , Miner G , Morgan M , Hawes A , Gill R , Celera , Holt RA , Adams MD , Amanatides PG , Baden-Tillson H , Barnstead M , Chin S , Evans CA , Ferriera S , Fosler C , Glodek A , Gu Z , Jennings D , Kraft CL , Nguyen T , Pfannkoch CM , Sitter C , Sutton GG , Venter JC , Woodage T , Smith D , Lee HM , Gustafson E , Cahill P , Kana A , Doucette-Stamm L , Weinstock K , Fechtel K , Weiss RB , Dunn DM , Green ED , Blakesley RW , Bouffard GG , de Jong PJ , Osoegawa K , Zhu B , Marra M , Schein J , Bosdet I , Fjell C , Jones S , Krzywinski M , Mathewson C , Siddiqui A , Wye N , McPherson J , Zhao S , Fraser CM , Shetty J , Shatsman S , Geer K , Chen Y , Abramzon S , Nierman WC , Havlak PH , Chen R , Durbin KJ , Egan A , Ren Y , Song XZ , Li B , Liu Y , Qin X , Cawley S , Cooney AJ , D'Souza LM , Martin K , Wu JQ , Gonzalez-Garay ML , Jackson AR , Kalafus KJ , McLeod MP , Milosavljevic A , Virk D , Volkov A , Wheeler DA , Zhang Z , Bailey JA , Eichler EE , Tuzun E , Birney E , Mongin E , Ureta-Vidal A , Woodwark C , Zdobnov E , Bork P , Suyama M , Torrents D , Alexandersson M , Trask BJ , Young JM , Huang H , Wang H , Xing H , Daniels S , Gietzen D , Schmidt J , Stevens K , Vitt U , Wingrove J , Camara F , Mar Alba M , Abril JF , Guigo R , Smit A , Dubchak I , Rubin EM , Couronne O , Poliakov A , Hubner N , Ganten D , Goesele C , Hummel O , Kreitler T , Lee YA , Monti J , Schulz H , Zimdahl H , Himmelbauer H , Lehrach H , Jacob HJ , Bromberg S , Gullings-Handley J , Jensen-Seaman MI , Kwitek AE , Lazar J , Pasko D , Tonellato PJ , Twigger S , Ponting CP , Duarte JM , Rice S , Goodstadt L , Beatson SA , Emes RD , Winter EE , Webber C , Brandt P , Nyakatura G , Adetobi M , Chiaromonte F , Elnitski L , Eswara P , Hardison RC , Hou M , Kolbe D , Makova K , Miller W , Nekrutenko A , Riemer C , Schwartz S , Taylor J , Yang S , Zhang Y , Lindpaintner K , Andrews TD , Caccamo M , Clamp M , Clarke L , Curwen V , Durbin R , Eyras E , Searle SM , Cooper GM , Batzoglou S , Brudno M , Sidow A , Stone EA , Payseur BA , Bourque G , Lopez-Otin C , Puente XS , Chakrabarti K , Chatterji S , Dewey C , Pachter L , Bray N , Yap VB , Caspi A , Tesler G , Pevzner PA , Haussler D , Roskin KM , Baertsch R , Clawson H , Furey TS , Hinrichs AS , Karolchik D , Kent WJ , Rosenbloom KR , Trumbower H , Weirauch M , Cooper DN , Stenson PD , Ma B , Brent M , Arumugam M , Shteynberg D , Copley RR , Taylor MS , Riethman H , Mudunuri U , Peterson J , Guyer M , Felsenfeld A , Old S , Mockrin S , Collins F
Ref : Nature , 428 :493 , 2004
Abstract : The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.
ESTHER : Gibbs_2004_Nature_428_493
PubMedSearch : Gibbs_2004_Nature_428_493
PubMedID: 15057822
Gene_locus related to this paper: rat-abhea , rat-abheb , rat-cd029 , rat-d3zaw4 , rat-dpp9 , rat-d3zhq1 , rat-d3zkp8 , rat-d3zuq1 , rat-d3zxw8 , rat-d4a4w4 , rat-d4a7w1 , rat-d4a9l7 , rat-d4a071 , rat-d4aa31 , rat-d4aa33 , rat-d4aa61 , rat-dglb , rat-f1lz91 , rat-Kansl3 , rat-nceh1 , rat-Tex30 , ratno-1hlip , ratno-1neur , ratno-1plip , ratno-2neur , ratno-3neur , ratno-3plip , ratno-ABH15 , ratno-ACHE , ratno-balip , ratno-BCHE , ratno-cauxin , ratno-Ces1d , ratno-Ces1e , ratno-Ces2f , ratno-d3ze31 , ratno-d3zp14 , ratno-d3zxi3 , ratno-d3zxq0 , ratno-d3zxq1 , ratno-d4a3d4 , ratno-d4aa05 , ratno-dpp4 , ratno-dpp6 , ratno-est8 , ratno-FAP , ratno-hyep , ratno-hyes , ratno-kmcxe , ratno-lmcxe , ratno-LOC246252 , ratno-MGLL , ratno-pbcxe , ratno-phebest , ratno-Ppgb , ratno-q4qr68 , ratno-q6ayr2 , ratno-q6q629 , ratno-SPG21 , ratno-thyro , rat-m0rc77 , rat-a0a0g2k9y7 , rat-a0a0g2kb83 , rat-d3zba8 , rat-d3zbj1 , rat-d3zcr8 , rat-d3zxw5 , rat-d4a340 , rat-f1lvg7 , rat-m0r509 , rat-m0r5d4 , rat-b5den3 , rat-d3zxk4 , rat-d4a1b6 , rat-d3zmg4 , rat-ab17c

Title : A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome - Mural_2002_Science_296_1661
Author(s) : Mural RJ , Adams MD , Myers EW , Smith HO , Miklos GL , Wides R , Halpern A , Li PW , Sutton GG , Nadeau J , Salzberg SL , Holt RA , Kodira CD , Lu F , Chen L , Deng Z , Evangelista CC , Gan W , Heiman TJ , Li J , Li Z , Merkulov GV , Milshina NV , Naik AK , Qi R , Shue BC , Wang A , Wang J , Wang X , Yan X , Ye J , Yooseph S , Zhao Q , Zheng L , Zhu SC , Biddick K , Bolanos R , Delcher AL , Dew IM , Fasulo D , Flanigan MJ , Huson DH , Kravitz SA , Miller JR , Mobarry CM , Reinert K , Remington KA , Zhang Q , Zheng XH , Nusskern DR , Lai Z , Lei Y , Zhong W , Yao A , Guan P , Ji RR , Gu Z , Wang ZY , Zhong F , Xiao C , Chiang CC , Yandell M , Wortman JR , Amanatides PG , Hladun SL , Pratts EC , Johnson JE , Dodson KL , Woodford KJ , Evans CA , Gropman B , Rusch DB , Venter E , Wang M , Smith TJ , Houck JT , Tompkins DE , Haynes C , Jacob D , Chin SH , Allen DR , Dahlke CE , Sanders R , Li K , Liu X , Levitsky AA , Majoros WH , Chen Q , Xia AC , Lopez JR , Donnelly MT , Newman MH , Glodek A , Kraft CL , Nodell M , Ali F , An HJ , Baldwin-Pitts D , Beeson KY , Cai S , Carnes M , Carver A , Caulk PM , Center A , Chen YH , Cheng ML , Coyne MD , Crowder M , Danaher S , Davenport LB , Desilets R , Dietz SM , Doup L , Dullaghan P , Ferriera S , Fosler CR , Gire HC , Gluecksmann A , Gocayne JD , Gray J , Hart B , Haynes J , Hoover J , Howland T , Ibegwam C , Jalali M , Johns D , Kline L , Ma DS , MacCawley S , Magoon A , Mann F , May D , McIntosh TC , Mehta S , Moy L , Moy MC , Murphy BJ , Murphy SD , Nelson KA , Nuri Z , Parker KA , Prudhomme AC , Puri VN , Qureshi H , Raley JC , Reardon MS , Regier MA , Rogers YH , Romblad DL , Schutz J , Scott JL , Scott R , Sitter CD , Smallwood M , Sprague AC , Stewart E , Strong RV , Suh E , Sylvester K , Thomas R , Tint NN , Tsonis C , Wang G , Williams MS , Williams SM , Windsor SM , Wolfe K , Wu MM , Zaveri J , Chaturvedi K , Gabrielian AE , Ke Z , Sun J , Subramanian G , Venter JC , Pfannkoch CM , Barnstead M , Stephenson LD
Ref : Science , 296 :1661 , 2002
Abstract : The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure and protein-coding potential of Mmu 16 with that of the homologous segments of the human genome identifies regions of conserved synteny with human chromosomes (Hsa) 3, 8, 12, 16, 21, and 22. Gene content and order are highly conserved between Mmu 16 and the syntenic blocks of the human genome. Of the 731 predicted genes on Mmu 16, 509 align with orthologs on the corresponding portions of the human genome, 44 are likely paralogous to these genes, and 164 genes have homologs elsewhere in the human genome; there are 14 genes for which we could find no human counterpart.
ESTHER : Mural_2002_Science_296_1661
PubMedSearch : Mural_2002_Science_296_1661
PubMedID: 12040188
Gene_locus related to this paper: mouse-ABH15 , mouse-Ces3b , mouse-Ces4a , mouse-dpp4 , mouse-FAP , mouse-Lipg , mouse-Q8C1A9 , mouse-rbbp9 , mouse-SERHL , mouse-SPG21 , mouse-w4vsp6

Title : The sequence of the human genome - Venter_2001_Science_291_1304
Author(s) : Venter JC , Adams MD , Myers EW , Li PW , Mural RJ , Sutton GG , Smith HO , Yandell M , Evans CA , Holt RA , Gocayne JD , Amanatides P , Ballew RM , Huson DH , Wortman JR , Zhang Q , Kodira CD , Zheng XH , Chen L , Skupski M , Subramanian G , Thomas PD , Zhang J , Gabor Miklos GL , Nelson C , Broder S , Clark AG , Nadeau J , McKusick VA , Zinder N , Levine AJ , Roberts RJ , Simon M , Slayman C , Hunkapiller M , Bolanos R , Delcher A , Dew I , Fasulo D , Flanigan M , Florea L , Halpern A , Hannenhalli S , Kravitz S , Levy S , Mobarry C , Reinert K , Remington K , Abu-Threideh J , Beasley E , Biddick K , Bonazzi V , Brandon R , Cargill M , Chandramouliswaran I , Charlab R , Chaturvedi K , Deng Z , Di Francesco V , Dunn P , Eilbeck K , Evangelista C , Gabrielian AE , Gan W , Ge W , Gong F , Gu Z , Guan P , Heiman TJ , Higgins ME , Ji RR , Ke Z , Ketchum KA , Lai Z , Lei Y , Li Z , Li J , Liang Y , Lin X , Lu F , Merkulov GV , Milshina N , Moore HM , Naik AK , Narayan VA , Neelam B , Nusskern D , Rusch DB , Salzberg S , Shao W , Shue B , Sun J , Wang Z , Wang A , Wang X , Wang J , Wei M , Wides R , Xiao C , Yan C , Yao A , Ye J , Zhan M , Zhang W , Zhang H , Zhao Q , Zheng L , Zhong F , Zhong W , Zhu S , Zhao S , Gilbert D , Baumhueter S , Spier G , Carter C , Cravchik A , Woodage T , Ali F , An H , Awe A , Baldwin D , Baden H , Barnstead M , Barrow I , Beeson K , Busam D , Carver A , Center A , Cheng ML , Curry L , Danaher S , Davenport L , Desilets R , Dietz S , Dodson K , Doup L , Ferriera S , Garg N , Gluecksmann A , Hart B , Haynes J , Haynes C , Heiner C , Hladun S , Hostin D , Houck J , Howland T , Ibegwam C , Johnson J , Kalush F , Kline L , Koduru S , Love A , Mann F , May D , McCawley S , McIntosh T , McMullen I , Moy M , Moy L , Murphy B , Nelson K , Pfannkoch C , Pratts E , Puri V , Qureshi H , Reardon M , Rodriguez R , Rogers YH , Romblad D , Ruhfel B , Scott R , Sitter C , Smallwood M , Stewart E , Strong R , Suh E , Thomas R , Tint NN , Tse S , Vech C , Wang G , Wetter J , Williams S , Williams M , Windsor S , Winn-Deen E , Wolfe K , Zaveri J , Zaveri K , Abril JF , Guigo R , Campbell MJ , Sjolander KV , Karlak B , Kejariwal A , Mi H , Lazareva B , Hatton T , Narechania A , Diemer K , Muruganujan A , Guo N , Sato S , Bafna V , Istrail S , Lippert R , Schwartz R , Walenz B , Yooseph S , Allen D , Basu A , Baxendale J , Blick L , Caminha M , Carnes-Stine J , Caulk P , Chiang YH , Coyne M , Dahlke C , Mays A , Dombroski M , Donnelly M , Ely D , Esparham S , Fosler C , Gire H , Glanowski S , Glasser K , Glodek A , Gorokhov M , Graham K , Gropman B , Harris M , Heil J , Henderson S , Hoover J , Jennings D , Jordan C , Jordan J , Kasha J , Kagan L , Kraft C , Levitsky A , Lewis M , Liu X , Lopez J , Ma D , Majoros W , McDaniel J , Murphy S , Newman M , Nguyen T , Nguyen N , Nodell M , Pan S , Peck J , Peterson M , Rowe W , Sanders R , Scott J , Simpson M , Smith T , Sprague A , Stockwell T , Turner R , Venter E , Wang M , Wen M , Wu D , Wu M , Xia A , Zandieh A , Zhu X
Ref : Science , 291 :1304 , 2001
Abstract : A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
ESTHER : Venter_2001_Science_291_1304
PubMedSearch : Venter_2001_Science_291_1304
PubMedID: 11181995
Gene_locus related to this paper: human-AADAC , human-ABHD1 , human-ABHD10 , human-ABHD11 , human-ACHE , human-BCHE , human-LDAH , human-ABHD18 , human-CMBL , human-ABHD17A , human-KANSL3 , human-LIPA , human-LYPLAL1 , human-NDRG2 , human-NLGN3 , human-NLGN4X , human-NLGN4Y , human-PAFAH2 , human-PREPL , human-RBBP9 , human-SPG21

Title : The genome sequence of Drosophila melanogaster - Adams_2000_Science_287_2185
Author(s) : Adams MD , Celniker SE , Holt RA , Evans CA , Gocayne JD , Amanatides PG , Scherer SE , Li PW , Hoskins RA , Galle RF , George RA , Lewis SE , Richards S , Ashburner M , Henderson SN , Sutton GG , Wortman JR , Yandell MD , Zhang Q , Chen LX , Brandon RC , Rogers YH , Blazej RG , Champe M , Pfeiffer BD , Wan KH , Doyle C , Baxter EG , Helt G , Nelson CR , Gabor GL , Abril JF , Agbayani A , An HJ , Andrews-Pfannkoch C , Baldwin D , Ballew RM , Basu A , Baxendale J , Bayraktaroglu L , Beasley EM , Beeson KY , Benos PV , Berman BP , Bhandari D , Bolshakov S , Borkova D , Botchan MR , Bouck J , Brokstein P , Brottier P , Burtis KC , Busam DA , Butler H , Cadieu E , Center A , Chandra I , Cherry JM , Cawley S , Dahlke C , Davenport LB , Davies P , de Pablos B , Delcher A , Deng Z , Mays AD , Dew I , Dietz SM , Dodson K , Doup LE , Downes M , Dugan-Rocha S , Dunkov BC , Dunn P , Durbin KJ , Evangelista CC , Ferraz C , Ferriera S , Fleischmann W , Fosler C , Gabrielian AE , Garg NS , Gelbart WM , Glasser K , Glodek A , Gong F , Gorrell JH , Gu Z , Guan P , Harris M , Harris NL , Harvey D , Heiman TJ , Hernandez JR , Houck J , Hostin D , Houston KA , Howland TJ , Wei MH , Ibegwam C , Jalali M , Kalush F , Karpen GH , Ke Z , Kennison JA , Ketchum KA , Kimmel BE , Kodira CD , Kraft C , Kravitz S , Kulp D , Lai Z , Lasko P , Lei Y , Levitsky AA , Li J , Li Z , Liang Y , Lin X , Liu X , Mattei B , McIntosh TC , McLeod MP , McPherson D , Merkulov G , Milshina NV , Mobarry C , Morris J , Moshrefi A , Mount SM , Moy M , Murphy B , Murphy L , Muzny DM , Nelson DL , Nelson DR , Nelson KA , Nixon K , Nusskern DR , Pacleb JM , Palazzolo M , Pittman GS , Pan S , Pollard J , Puri V , Reese MG , Reinert K , Remington K , Saunders RD , Scheeler F , Shen H , Shue BC , Siden-Kiamos I , Simpson M , Skupski MP , Smith T , Spier E , Spradling AC , Stapleton M , Strong R , Sun E , Svirskas R , Tector C , Turner R , Venter E , Wang AH , Wang X , Wang ZY , Wassarman DA , Weinstock GM , Weissenbach J , Williams SM , WoodageT , Worley KC , Wu D , Yang S , Yao QA , Ye J , Yeh RF , Zaveri JS , Zhan M , Zhang G , Zhao Q , Zheng L , Zheng XH , Zhong FN , Zhong W , Zhou X , Zhu S , Zhu X , Smith HO , Gibbs RA , Myers EW , Rubin GM , Venter JC
Ref : Science , 287 :2185 , 2000
Abstract : The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.
ESTHER : Adams_2000_Science_287_2185
PubMedSearch : Adams_2000_Science_287_2185
PubMedID: 10731132
Gene_locus related to this paper: drome-1vite , drome-2vite , drome-3vite , drome-a1z6g9 , drome-abhd2 , drome-ACHE , drome-b6idz4 , drome-BEM46 , drome-CG5707 , drome-CG5704 , drome-CG1309 , drome-CG1882 , drome-CG1986 , drome-CG2059 , drome-CG2493 , drome-CG2528 , drome-CG2772 , drome-CG3160 , drome-CG3344 , drome-CG3523 , drome-CG3524 , drome-CG3734 , drome-CG3739 , drome-CG3744 , drome-CG3841 , drome-CG4267 , drome-CG4382 , drome-CG4390 , drome-CG4572 , drome-CG4582 , drome-CG4851 , drome-CG4979 , drome-CG5068 , drome-CG5162 , drome-CG5355 , drome-CG5377 , drome-CG5397 , drome-CG5412 , drome-CG5665 , drome-CG5932 , drome-CG5966 , drome-CG6018 , drome-CG6113 , drome-CG6271 , drome-CG6283 , drome-CG6295 , drome-CG6296 , drome-CG6414 , drome-CG6431 , drome-CG6472 , drome-CG6567 , drome-CG6675 , drome-CG6753 , drome-CG6847 , drome-CG7329 , drome-CG7367 , drome-CG7529 , drome-CG7632 , drome-CG8058 , drome-CG8093 , drome-CG8233 , drome-CG8424 , drome-CG8425 , drome-CG9059 , drome-CG9186 , drome-CG9287 , drome-CG9289 , drome-CG9542 , drome-CG9858 , drome-CG9953 , drome-CG9966 , drome-CG10116 , drome-CG10163 , drome-CG10175 , drome-CG10339 , drome-CG10357 , drome-CG10982 , drome-CG11034 , drome-CG11055 , drome-CG11309 , drome-CG11319 , drome-CG11406 , drome-CG11598 , drome-CG11600 , drome-CG11608 , drome-CG11626 , drome-CG11935 , drome-CG12108 , drome-CG12869 , drome-CG13282 , drome-CG13562 , drome-CG13772 , drome-CG14034 , drome-nlg3 , drome-CG14717 , drome-CG15101 , drome-CG15102 , drome-CG15106 , drome-CG15111 , drome-CG15820 , drome-CG15821 , drome-CG15879 , drome-CG17097 , drome-CG17099 , drome-CG17101 , drome-CG17191 , drome-CG17192 , drome-CG17292 , drome-CG18258 , drome-CG18284 , drome-CG18301 , drome-CG18302 , drome-CG18493 , drome-CG18530 , drome-CG18641 , drome-CG18815 , drome-CG31089 , drome-CG31091 , drome-CG32333 , drome-CG32483 , drome-CG33174 , drome-dnlg1 , drome-este4 , drome-este6 , drome-GH02384 , drome-GH02439 , drome-glita , drome-KRAKEN , drome-lip1 , drome-LIP2 , drome-lip3 , drome-MESK2 , drome-nrtac , drome-OME , drome-q7k274 , drome-Q9VJN0 , drome-Q8IP31 , drome-q9vux3