Arrowsmith C

References (8)

Title : Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287\/91 provides insights into evolutionary and host adaptation pathways - Thomson_2008_Genome.Res_18_1624
Author(s) : Thomson NR , Clayton DJ , Windhorst D , Vernikos G , Davidson S , Churcher C , Quail MA , Stevens M , Jones MA , Watson M , Barron A , Layton A , Pickard D , Kingsley RA , Bignell A , Clark L , Harris B , Ormond D , Abdellah Z , Brooks K , Cherevach I , Chillingworth T , Woodward J , Norberczak H , Lord A , Arrowsmith C , Jagels K , Moule S , Mungall K , Sanders M , Whitehead S , Chabalgoity JA , Maskell D , Humphrey T , Roberts M , Barrow PA , Dougan G , Parkhill J
Ref : Genome Res , 18 :1624 , 2008
Abstract : We have determined the complete genome sequences of a host-promiscuous Salmonella enterica serovar Enteritidis PT4 isolate P125109 and a chicken-restricted Salmonella enterica serovar Gallinarum isolate 287/91. Genome comparisons between these and other Salmonella isolates indicate that S. Gallinarum 287/91 is a recently evolved descendent of S. Enteritidis. Significantly, the genome of S. Gallinarum has undergone extensive degradation through deletion and pseudogene formation. Comparison of the pseudogenes in S. Gallinarum with those identified previously in other host-adapted bacteria reveals the loss of many common functional traits and provides insights into possible mechanisms of host and tissue adaptation. We propose that experimental analysis in chickens and mice of S. Enteritidis-harboring mutations in functional homologs of the pseudogenes present in S. Gallinarum could provide an experimentally tractable route toward unraveling the genetic basis of host adaptation in S. enterica.
ESTHER : Thomson_2008_Genome.Res_18_1624
PubMedSearch : Thomson_2008_Genome.Res_18_1624
PubMedID: 18583645
Gene_locus related to this paper: salen-OPDB , salti-q8z717 , salty-AES , salty-BIOH , salty-DLHH , salty-ENTF , salty-FES , salty-IROD , salty-IROE , salty-P74847 , salty-PLDB , salty-STM0332 , salty-STM4506 , salty-STY1441 , salty-STY2428 , salty-STY3846 , salty-yafa , salty-YBFF , salty-ycfp , salty-YFBB , salty-YHET , salty-YQIA

Title : The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants - Crossman_2008_Genome.Biol_9_R74
Author(s) : Crossman LC , Gould VC , Dow JM , Vernikos GS , Okazaki A , Sebaihia M , Saunders D , Arrowsmith C , Carver T , Peters N , Adlem E , Kerhornou A , Lord A , Murphy L , Seeger K , Squares R , Rutter S , Quail MA , Rajandream MA , Harris D , Churcher C , Bentley SD , Parkhill J , Thomson NR , Avison MB
Ref : Genome Biol , 9 :R74 , 2008
Abstract : BACKGROUND: Stenotrophomonas maltophilia is a nosocomial opportunistic pathogen of the Xanthomonadaceae. The organism has been isolated from both clinical and soil environments in addition to the sputum of cystic fibrosis patients and the immunocompromised. Whilst relatively distant phylogenetically, the closest sequenced relatives of S. maltophilia are the plant pathogenic xanthomonads. RESULTS: The genome of the bacteremia-associated isolate S. maltophilia K279a is 4,851,126 bp and of high G+C content. The sequence reveals an organism with a remarkable capacity for drug and heavy metal resistance. In addition to a number of genes conferring resistance to antimicrobial drugs of different classes via alternative mechanisms, nine resistance-nodulation-division (RND)-type putative antimicrobial efflux systems are present. Functional genomic analysis confirms a role in drug resistance for several of the novel RND efflux pumps. S. maltophilia possesses potentially mobile regions of DNA and encodes a number of pili and fimbriae likely to be involved in adhesion and biofilm formation that may also contribute to increased antimicrobial drug resistance. CONCLUSION: The panoply of antimicrobial drug resistance genes and mobile genetic elements found suggests that the organism can act as a reservoir of antimicrobial drug resistance determinants in a clinical environment, which is an issue of considerable concern.
ESTHER : Crossman_2008_Genome.Biol_9_R74
PubMedSearch : Crossman_2008_Genome.Biol_9_R74
PubMedID: 18419807
Gene_locus related to this paper: strm5-b4sjf3 , strm5-b4sly1 , strm5-b4smq6 , strm5-b4st20 , strm5-bioh , strmk-b2fhb1 , strmk-b2fju9 , strmk-b2fkx8 , strmk-b2fl50 , strmk-b2fl54 , strmk-b2flj0 , strmk-b2fnc5 , strmk-b2fre3 , strmk-b2frm1 , strmk-b2frs0 , strmk-b2fsp0 , strmk-b2ftw9 , strmk-b2fuf3 , strmk-metx , xanma-P95782 , strmk-b2fmj5 , strmk-b2fpy9 , strmk-b2ftk7 , strmk-b2frv5

Title : Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis - Stinear_2008_Genome.Res_18_729
Author(s) : Stinear TP , Seemann T , Harrison PF , Jenkin GA , Davies JK , Johnson PD , Abdellah Z , Arrowsmith C , Chillingworth T , Churcher C , Clarke K , Cronin A , Davis P , Goodhead I , Holroyd N , Jagels K , Lord A , Moule S , Mungall K , Norbertczak H , Quail MA , Rabbinowitsch E , Walker D , White B , Whitehead S , Small PL , Brosch R , Ramakrishnan L , Fischbach MA , Parkhill J , Cole ST
Ref : Genome Res , 18 :729 , 2008
Abstract : Mycobacterium marinum, a ubiquitous pathogen of fish and amphibia, is a near relative of Mycobacterium tuberculosis, the etiologic agent of tuberculosis in humans. The genome of the M strain of M. marinum comprises a 6,636,827-bp circular chromosome with 5424 CDS, 10 prophages, and a 23-kb mercury-resistance plasmid. Prominent features are the very large number of genes (57) encoding polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) and the most extensive repertoire yet reported of the mycobacteria-restricted PE and PPE proteins, and related-ESX secretion systems. Some of the NRPS genes comprise a novel family and seem to have been acquired horizontally. M. marinum is used widely as a model organism to study M. tuberculosis pathogenesis, and genome comparisons confirmed the close genetic relationship between these two species, as they share 3000 orthologs with an average amino acid identity of 85%. Comparisons with the more distantly related Mycobacterium avium subspecies paratuberculosis and Mycobacterium smegmatis reveal how an ancestral generalist mycobacterium evolved into M. tuberculosis and M. marinum. M. tuberculosis has undergone genome downsizing and extensive lateral gene transfer to become a specialized pathogen of humans and other primates without retaining an environmental niche. M. marinum has maintained a large genome so as to retain the capacity for environmental survival while becoming a broad host range pathogen that produces disease strikingly similar to M. tuberculosis. The work described herein provides a foundation for using M. marinum to better understand the determinants of pathogenesis of tuberculosis.
ESTHER : Stinear_2008_Genome.Res_18_729
PubMedSearch : Stinear_2008_Genome.Res_18_729
PubMedID: 18403782
Gene_locus related to this paper: mycmm-b2hds9 , mycmm-b2hed7 , mycmm-b2hg81 , mycmm-b2hgg2 , mycmm-b2hgg7 , mycmm-b2hhi7 , mycmm-b2hhu3 , mycmm-b2hiu3 , mycmm-b2hiu5 , mycmm-b2hiw7 , mycmm-b2hiy0 , mycmm-b2hj55 , mycmm-b2hjb4 , mycmm-b2hju3 , mycmm-b2hku1 , mycmm-b2hkw0 , mycmm-b2hlr0 , mycmm-b2hlt7 , mycmm-b2hlt8 , mycmm-b2hlt9 , mycmm-b2hlu0 , mycmm-b2hlv0 , mycmm-b2hlv1 , mycmm-b2hlv2 , mycmm-b2hlx2 , mycmm-b2hm55 , mycmm-b2hnr9 , mycmm-b2hnz5 , mycmm-b2hp80 , mycmm-b2hpp0 , mycmm-b2hq96 , mycmm-b2hr10 , mycmm-b2hsm6 , mycmm-b2hsm8 , mycmm-b2hsy0 , mycmm-b2ht06 , mycmm-b2ht20 , mycmm-b2ht49 , mycmm-dhma , mycmm-metx , mycmr-q5sdq4 , myctu-RV1683 , mycmm-b2h1k1 , mycua-a0pku2 , mycua-a0pl47 , mycua-a0plr3 , mycua-a0pm12 , mycua-a0pm14 , mycua-a0pmv0 , mycua-a0pmx9 , mycua-a0pn71 , mycua-a0ppm6 , mycua-a0pqm2 , mycua-a0pqs2 , mycua-a0prq2 , mycua-a0psb1 , mycua-a0psb4 , mycua-a0psi2 , mycua-a0pth6 , mycua-a0ptq0 , mycua-a0pu55 , mycua-a0pum4 , mycua-a0pv11 , mycua-a0pva4 , mycua-a0pwi8 , mycua-a0pwr6 , mycua-a0pwz5 , mycul-a85a , mycmm-b2hcy1 , mycua-a0pvg7 , mycmm-b2hnj4 , mycmm-b2he93 , mycua-a0pwz4 , mycmm-b2hqy3 , mycua-a0pmc3 , mycmm-b2hnn7 , mycmm-b2he68 , mycmm-b2hqm3 , mycmm-tesa

Title : Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18 - Bentley_2007_PLoS.Genet_3_e23
Author(s) : Bentley SD , Vernikos GS , Snyder LA , Churcher C , Arrowsmith C , Chillingworth T , Cronin A , Davis PH , Holroyd NE , Jagels K , Maddison M , Moule S , Rabbinowitsch E , Sharp S , Unwin L , Whitehead S , Quail MA , Achtman M , Barrell B , Saunders NJ , Parkhill J
Ref : PLoS Genet , 3 :e23 , 2007
Abstract : The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements) provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an impact on the interaction with the host tissues, and understanding these mechanisms is important to aid our understanding of the intimate and complex relationship between the human nasopharynx and the meningococcus.
ESTHER : Bentley_2007_PLoS.Genet_3_e23
PubMedSearch : Bentley_2007_PLoS.Genet_3_e23
PubMedID: 17305430
Gene_locus related to this paper: neigo-pip , neima-metx , neimb-q9k0t9 , neime-ESD , neime-NMA2216 , neime-NMB0276 , neime-NMB1828 , neime-NMB1877 , neimf-a1kta9

Title : Comparative genomic analysis of three Leishmania species that cause diverse human disease - Peacock_2007_Nat.Genet_39_839
Author(s) : Peacock CS , Seeger K , Harris D , Murphy L , Ruiz JC , Quail MA , Peters N , Adlem E , Tivey A , Aslett M , Kerhornou A , Ivens A , Fraser A , Rajandream MA , Carver T , Norbertczak H , Chillingworth T , Hance Z , Jagels K , Moule S , Ormond D , Rutter S , Squares R , Whitehead S , Rabbinowitsch E , Arrowsmith C , White B , Thurston S , Bringaud F , Baldauf SL , Faulconbridge A , Jeffares D , Depledge DP , Oyola SO , Hilley JD , Brito LO , Tosi LR , Barrell B , Cruz AK , Mottram JC , Smith DF , Berriman M
Ref : Nat Genet , 39 :839 , 2007
Abstract : Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only approximately 200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader-associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage.
ESTHER : Peacock_2007_Nat.Genet_39_839
PubMedSearch : Peacock_2007_Nat.Genet_39_839
PubMedID: 17572675
Gene_locus related to this paper: leibr-a4h6l0 , leibr-a4h6l1 , leibr-a4h9b6 , leibr-a4h908 , leibr-a4h956 , leibr-a4h959 , leibr-a4h960 , leibr-a4hen1 , leibr-a4hf07 , leibr-a4hgl0 , leibr-a4hhu6 , leibr-a4hj94 , leibr-a4hk72 , leibr-a4hpa8 , leibr-a4hpz5 , leiin-a4huz4 , leiin-a4hxe0 , leiin-a4hxh8 , leiin-a4hxi1 , leiin-a4hxn7 , leiin-a4hyv9 , leiin-a4i1v9 , leiin-a4i4z6 , leiin-a4i6n9 , leiin-a4i7q7 , leiin-a4idl6 , leima-e9ady6 , leima-OPB , leima-q4q0t5 , leima-q4q8a8 , leima-q4q398 , leima-q4q942 , leima-q4qe85 , leima-q4qe86 , leima-q4qj45

Title : The genome of Rhizobium leguminosarum has recognizable core and accessory components - Young_2006_Genome.Biol_7_R34
Author(s) : Young JP , Crossman LC , Johnston AW , Thomson NR , Ghazoui ZF , Hull KH , Wexler M , Curson AR , Todd JD , Poole PS , Mauchline TH , East AK , Quail MA , Churcher C , Arrowsmith C , Cherevach I , Chillingworth T , Clarke K , Cronin A , Davis P , Fraser A , Hance Z , Hauser H , Jagels K , Moule S , Mungall K , Norbertczak H , Rabbinowitsch E , Sanders M , Simmonds M , Whitehead S , Parkhill J
Ref : Genome Biol , 7 :R34 , 2006
Abstract : BACKGROUND: Rhizobium leguminosarum is an alpha-proteobacterial N2-fixing symbiont of legumes that has been the subject of more than a thousand publications. Genes for the symbiotic interaction with plants are well studied, but the adaptations that allow survival and growth in the soil environment are poorly understood. We have sequenced the genome of R. leguminosarum biovar viciae strain 3841. RESULTS: The 7.75 Mb genome comprises a circular chromosome and six circular plasmids, with 61% G+C overall. All three rRNA operons and 52 tRNA genes are on the chromosome; essential protein-encoding genes are largely chromosomal, but most functional classes occur on plasmids as well. Of the 7,263 protein-encoding genes, 2,056 had orthologs in each of three related genomes (Agrobacterium tumefaciens, Sinorhizobium meliloti, and Mesorhizobium loti), and these genes were over-represented in the chromosome and had above average G+C. Most supported the rRNA-based phylogeny, confirming A. tumefaciens to be the closest among these relatives, but 347 genes were incompatible with this phylogeny; these were scattered throughout the genome but were over-represented on the plasmids. An unexpectedly large number of genes were shared by all three rhizobia but were missing from A. tumefaciens. CONCLUSION: Overall, the genome can be considered to have two main components: a 'core', which is higher in G+C, is mostly chromosomal, is shared with related organisms, and has a consistent phylogeny; and an 'accessory' component, which is sporadic in distribution, lower in G+C, and located on the plasmids and chromosomal islands. The accessory genome has a different nucleotide composition from the core despite a long history of coexistence.
ESTHER : Young_2006_Genome.Biol_7_R34
PubMedSearch : Young_2006_Genome.Biol_7_R34
PubMedID: 16640791
Gene_locus related to this paper: rhiec-q2k7y0 , rhiec-q2k107 , rhiec-q2kav5 , rhiec-q2ke86 , rhil3-q1m3b7 , rhil3-q1m3u0 , rhil3-q1m4b4 , rhil3-q1m4e5 , rhil3-q1m4g3 , rhil3-q1m4h0 , rhil3-q1m5k0 , rhil3-q1m5s6 , rhil3-q1m6q0 , rhil3-q1m6u8 , rhil3-q1m6w8 , rhil3-q1m7c2 , rhil3-q1m7c3 , rhil3-q1m7i2 , rhil3-q1m7n3 , rhil3-q1m7q9 , rhil3-q1m7r8 , rhil3-q1m8d0 , rhil3-q1m8u4 , rhil3-q1m9d6 , rhil3-q1m9i6 , rhil3-q1m347 , rhil3-q1m571 , rhil3-q1m580 , rhil3-q1m672 , rhil3-q1m812 , rhil3-q1m841 , rhil3-q1m917 , rhil3-q1m919 , rhil3-q1mbv4 , rhil3-q1mbz5 , rhil3-q1mc48 , rhil3-q1mcr4 , rhil3-q1md19 , rhil3-q1mdd8 , rhil3-q1me05 , rhil3-q1mee4 , rhil3-q1mel6 , rhil3-q1men7 , rhil3-q1mf17 , rhil3-q1mf73 , rhil3-q1mf76 , rhil3-q1mfb0 , rhil3-q1mfp5 , rhil3-q1mg17 , rhil3-q1mg51 , rhil3-q1mg97 , rhil3-q1mgh3 , rhil3-q1mgh5 , rhil3-q1mgu7 , rhil3-q1mgx5 , rhil3-q1mh67 , rhil3-q1mhh7 , rhil3-q1mhz8 , rhil3-q1mi67 , rhil3-q1mi98 , rhil3-q1mia3 , rhil3-q1mig2 , rhil3-q1miz0 , rhil3-q1mj26 , rhil3-q1mj65 , rhil3-q1mjs2 , rhil3-q1mjx4 , rhil3-q1mk84 , rhil3-q1mkk8 , rhil3-q1mli7 , rhil3-q1mlj7 , rhil3-q1mm33 , rhil3-q1mmf9 , rhil3-q1mmp7 , rhil3-q1mmx0 , rhil3-q1mn42 , rhile-Q93EA8 , rhils-c6axl5 , rhils-c6b1w7 , rhilw-b5zrm4 , rhilw-b5zs97 , rhilv-j0vcs5

Title : Common inheritance of chromosome Ia associated with clonal expansion of Toxoplasma gondii - Khan_2006_Genome.Res_16_1119
Author(s) : Khan A , Bohme U , Kelly KA , Adlem E , Brooks K , Simmonds M , Mungall K , Quail MA , Arrowsmith C , Chillingworth T , Churcher C , Harris D , Collins M , Fosker N , Fraser A , Hance Z , Jagels K , Moule S , Murphy L , O'Neil S , Rajandream MA , Saunders D , Seeger K , Whitehead S , Mayr T , Xuan X , Watanabe J , Suzuki Y , Wakaguri H , Sugano S , Sugimoto C , Paulsen I , Mackey AJ , Roos DS , Hall N , Berriman M , Barrell B , Sibley LD , Ajioka JW
Ref : Genome Res , 16 :1119 , 2006
Abstract : Toxoplasma gondii is a globally distributed protozoan parasite that can infect virtually all warm-blooded animals and humans. Despite the existence of a sexual phase in the life cycle, T. gondii has an unusual population structure dominated by three clonal lineages that predominate in North America and Europe, (Types I, II, and III). These lineages were founded by common ancestors approximately10,000 yr ago. The recent origin and widespread distribution of the clonal lineages is attributed to the circumvention of the sexual cycle by a new mode of transmission-asexual transmission between intermediate hosts. Asexual transmission appears to be multigenic and although the specific genes mediating this trait are unknown, it is predicted that all members of the clonal lineages should share the same alleles. Genetic mapping studies suggested that chromosome Ia was unusually monomorphic compared with the rest of the genome. To investigate this further, we sequenced chromosome Ia and chromosome Ib in the Type I strain, RH, and the Type II strain, ME49. Comparative genome analyses of the two chromosomal sequences revealed that the same copy of chromosome Ia was inherited in each lineage, whereas chromosome Ib maintained the same high frequency of between-strain polymorphism as the rest of the genome. Sampling of chromosome Ia sequence in seven additional representative strains from the three clonal lineages supports a monomorphic inheritance, which is unique within the genome. Taken together, our observations implicate a specific combination of alleles on chromosome Ia in the recent origin and widespread success of the clonal lineages of T. gondii.
ESTHER : Khan_2006_Genome.Res_16_1119
PubMedSearch : Khan_2006_Genome.Res_16_1119
PubMedID: 16902086
Gene_locus related to this paper: toxgo-q1jt22

Title : The genome of the African trypanosome Trypanosoma brucei - Berriman_2005_Science_309_416
Author(s) : Berriman M , Ghedin E , Hertz-Fowler C , Blandin G , Renauld H , Bartholomeu DC , Lennard NJ , Caler E , Hamlin NE , Haas B , Bohme U , Hannick L , Aslett MA , Shallom J , Marcello L , Hou L , Wickstead B , Alsmark UC , Arrowsmith C , Atkin RJ , Barron AJ , Bringaud F , Brooks K , Carrington M , Cherevach I , Chillingworth TJ , Churcher C , Clark LN , Corton CH , Cronin A , Davies RM , Doggett J , Djikeng A , Feldblyum T , Field MC , Fraser A , Goodhead I , Hance Z , Harper D , Harris BR , Hauser H , Hostetler J , Ivens A , Jagels K , Johnson D , Johnson J , Jones K , Kerhornou AX , Koo H , Larke N , Landfear S , Larkin C , Leech V , Line A , Lord A , MacLeod A , Mooney PJ , Moule S , Martin DM , Morgan GW , Mungall K , Norbertczak H , Ormond D , Pai G , Peacock CS , Peterson J , Quail MA , Rabbinowitsch E , Rajandream MA , Reitter C , Salzberg SL , Sanders M , Schobel S , Sharp S , Simmonds M , Simpson AJ , Tallon L , Turner CM , Tait A , Tivey AR , Van Aken S , Walker D , Wanless D , Wang S , White B , White O , Whitehead S , Woodward J , Wortman J , Adams MD , Embley TM , Gull K , Ullu E , Barry JD , Fairlamb AH , Opperdoes F , Barrell BG , Donelson JE , Hall N , Fraser CM , Melville SE , El-Sayed NM
Ref : Science , 309 :416 , 2005
Abstract : African trypanosomes cause human sleeping sickness and livestock trypanosomiasis in sub-Saharan Africa. We present the sequence and analysis of the 11 megabase-sized chromosomes of Trypanosoma brucei. The 26-megabase genome contains 9068 predicted genes, including approximately 900 pseudogenes and approximately 1700 T. brucei-specific genes. Large subtelomeric arrays contain an archive of 806 variant surface glycoprotein (VSG) genes used by the parasite to evade the mammalian immune system. Most VSG genes are pseudogenes, which may be used to generate expressed mosaic genes by ectopic recombination. Comparisons of the cytoskeleton and endocytic trafficking systems with those of humans and other eukaryotic organisms reveal major differences. A comparison of metabolic pathways encoded by the genomes of T. brucei, T. cruzi, and Leishmania major reveals the least overall metabolic capability in T. brucei and the greatest in L. major. Horizontal transfer of genes of bacterial origin has contributed to some of the metabolic differences in these parasites, and a number of novel potential drug targets have been identified.
ESTHER : Berriman_2005_Science_309_416
PubMedSearch : Berriman_2005_Science_309_416
PubMedID: 16020726
Gene_locus related to this paper: tryb2-q6h9e3 , tryb2-q6ha27 , tryb2-q38cd5 , tryb2-q38cd6 , tryb2-q38cd7 , tryb2-q38dc1 , tryb2-q38de4 , tryb2-q38ds6 , tryb2-q38dx1 , tryb2-q380z6 , tryb2-q382c1 , tryb2-q382l4 , tryb2-q383a9 , tryb2-q386e3 , tryb2-q387r7 , tryb2-q388n1 , tryb2-q389w3 , trybr-PEPTB , trycr-q4cq28 , trycr-q4cq94 , trycr-q4cq95 , trycr-q4cq96 , trycr-q4csm0 , trycr-q4cwv3 , trycr-q4cx66 , trycr-q4cxr6 , trycr-q4cyc5 , trycr-q4cyf6 , trycr-q4d3a2 , trycr-q4d3x3 , trycr-q4d3y4 , trycr-q4d6h1 , trycr-q4d8h8 , trycr-q4d8h9 , trycr-q4d8i0 , trycr-q4d786 , trycr-q4d975 , trycr-q4da08 , trycr-q4dap6 , trycr-q4dbm2 , trycr-q4dbn1 , trycr-q4ddw7 , trycr-q4de42 , trycr-q4dhn8 , trycr-q4dkk8 , trycr-q4dkk9 , trycr-q4dm56 , trycr-q4dqa6 , trycr-q4dt91 , trycr-q4dvp2 , trycr-q4dw34 , trycr-q4dwm3 , trycr-q4dy49 , trycr-q4dy82 , trycr-q4dzp6 , trycr-q4e3m8 , trycr-q4e4t5 , trycr-q4e5d1 , trycr-q4e5z2