Tivey A

References (6)

Title : Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans - Jackson_2009_Genome.Res_19_2231
Author(s) : Jackson AP , Gamble JA , Yeomans T , Moran GP , Saunders D , Harris D , Aslett M , Barrell JF , Butler G , Citiulo F , Coleman DC , de Groot PW , Goodwin TJ , Quail MA , McQuillan J , Munro CA , Pain A , Poulter RT , Rajandream MA , Renauld H , Spiering MJ , Tivey A , Gow NA , Barrell B , Sullivan DJ , Berriman M
Ref : Genome Res , 19 :2231 , 2009
Abstract : Candida dubliniensis is the closest known relative of Candida albicans, the most pathogenic yeast species in humans. However, despite both species sharing many phenotypic characteristics, including the ability to form true hyphae, C. dubliniensis is a significantly less virulent and less versatile pathogen. Therefore, to identify C. albicans-specific genes that may be responsible for an increased capacity to cause disease, we have sequenced the C. dubliniensis genome and compared it with the known C. albicans genome sequence. Although the two genome sequences are highly similar and synteny is conserved throughout, 168 species-specific genes are identified, including some encoding known hyphal-specific virulence factors, such as the aspartyl proteinases Sap4 and Sap5 and the proposed invasin Als3. Among the 115 pseudogenes confirmed in C. dubliniensis are orthologs of several filamentous growth regulator (FGR) genes that also have suspected roles in pathogenesis. However, the principal differences in genomic repertoire concern expansion of the TLO gene family of putative transcription factors and the IFA family of putative transmembrane proteins in C. albicans, which represent novel candidate virulence-associated factors. The results suggest that the recent evolutionary histories of C. albicans and C. dubliniensis are quite different. While gene families instrumental in pathogenesis have been elaborated in C. albicans, C. dubliniensis has lost genomic capacity and key pathogenic functions. This could explain why C. albicans is a more potent pathogen in humans than C. dubliniensis.
ESTHER : Jackson_2009_Genome.Res_19_2231
PubMedSearch : Jackson_2009_Genome.Res_19_2231
PubMedID: 19745113
Gene_locus related to this paper: canal-ATG15 , canal-c4yl13 , canal-ppme1 , canal-q5a0c9 , canal-q5ad17 , canal-q5ady2 , canal-q5ag57 , canal-q5ai12 , canal-q5akz5 , canal-q5apu4 , canal-q59m48 , canal-q59nw6 , candc-b9w8x6 , candc-b9w8x7 , candc-b9w905 , candc-b9wa64 , candc-b9wc27 , candc-b9wc30 , candc-b9wc93 , candc-b9wce3 , candc-b9wdh9 , candc-b9wds3 , candc-b9whs3 , candc-b9whs6 , candc-b9whv2 , candc-b9wi60 , candc-b9wid3 , candc-b9wje5 , candc-b9wk97 , candc-CduLAc , candc-b9wkf5 , candc-b9wkj1 , candc-b9wlf0 , candc-b9wmt8 , candc-b9wmx4 , candc-b9wc51 , candc-b9wa43 , candc-b9wl19 , candc-kex1

Title : Comparative genomic analysis of three Leishmania species that cause diverse human disease - Peacock_2007_Nat.Genet_39_839
Author(s) : Peacock CS , Seeger K , Harris D , Murphy L , Ruiz JC , Quail MA , Peters N , Adlem E , Tivey A , Aslett M , Kerhornou A , Ivens A , Fraser A , Rajandream MA , Carver T , Norbertczak H , Chillingworth T , Hance Z , Jagels K , Moule S , Ormond D , Rutter S , Squares R , Whitehead S , Rabbinowitsch E , Arrowsmith C , White B , Thurston S , Bringaud F , Baldauf SL , Faulconbridge A , Jeffares D , Depledge DP , Oyola SO , Hilley JD , Brito LO , Tosi LR , Barrell B , Cruz AK , Mottram JC , Smith DF , Berriman M
Ref : Nat Genet , 39 :839 , 2007
Abstract : Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only approximately 200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader-associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage.
ESTHER : Peacock_2007_Nat.Genet_39_839
PubMedSearch : Peacock_2007_Nat.Genet_39_839
PubMedID: 17572675
Gene_locus related to this paper: leibr-a4h6l0 , leibr-a4h6l1 , leibr-a4h9b6 , leibr-a4h908 , leibr-a4h956 , leibr-a4h959 , leibr-a4h960 , leibr-a4hen1 , leibr-a4hf07 , leibr-a4hgl0 , leibr-a4hhu6 , leibr-a4hj94 , leibr-a4hk72 , leibr-a4hpa8 , leibr-a4hpz5 , leiin-a4huz4 , leiin-a4hxe0 , leiin-a4hxh8 , leiin-a4hxi1 , leiin-a4hxn7 , leiin-a4hyv9 , leiin-a4i1v9 , leiin-a4i4z6 , leiin-a4i6n9 , leiin-a4i7q7 , leiin-a4idl6 , leima-e9ady6 , leima-OPB , leima-q4q0t5 , leima-q4q8a8 , leima-q4q398 , leima-q4q942 , leima-q4qe85 , leima-q4qe86 , leima-q4qj45

Title : Genome of the host-cell transforming parasite Theileria annulata compared with T. parva - Pain_2005_Science_309_131
Author(s) : Pain A , Renauld H , Berriman M , Murphy L , Yeats CA , Weir W , Kerhornou A , Aslett M , Bishop R , Bouchier C , Cochet M , Coulson RM , Cronin A , de Villiers EP , Fraser A , Fosker N , Gardner M , Goble A , Griffiths-Jones S , Harris DE , Katzer F , Larke N , Lord A , Maser P , McKellar S , Mooney P , Morton F , Nene V , O'Neil S , Price C , Quail MA , Rabbinowitsch E , Rawlings ND , Rutter S , Saunders D , Seeger K , Shah T , Squares R , Squares S , Tivey A , Walker AR , Woodward J , Dobbelaere DA , Langsley G , Rajandream MA , McKeever D , Shiels B , Tait A , Barrell B , Hall N
Ref : Science , 309 :131 , 2005
Abstract : Theileria annulata and T. parva are closely related protozoan parasites that cause lymphoproliferative diseases of cattle. We sequenced the genome of T. annulata and compared it with that of T. parva to understand the mechanisms underlying transformation and tropism. Despite high conservation of gene sequences and synteny, the analysis reveals unequally expanded gene families and species-specific genes. We also identify divergent families of putative secreted polypeptides that may reduce immune recognition, candidate regulators of host-cell transformation, and a Theileria-specific protein domain [frequently associated in Theileria (FAINT)] present in a large number of secreted proteins.
ESTHER : Pain_2005_Science_309_131
PubMedSearch : Pain_2005_Science_309_131
PubMedID: 15994557
Gene_locus related to this paper: thean-q4u9u6 , thean-q4ub48 , thean-q4ubz1 , thean-q4uc78 , thean-q4uc93 , thean-q4uck1 , thean-q4udw9 , thean-q4ue56 , thean-q4uf06 , thean-q4ug98 , thean-q4uhj9 , thepa-q4n349

Title : The genome of the social amoeba Dictyostelium discoideum - Eichinger_2005_Nature_435_43
Author(s) : Eichinger L , Pachebat JA , Glockner G , Rajandream MA , Sucgang R , Berriman M , Song J , Olsen R , Szafranski K , Xu Q , Tunggal B , Kummerfeld S , Madera M , Konfortov BA , Rivero F , Bankier AT , Lehmann R , Hamlin N , Davies R , Gaudet P , Fey P , Pilcher K , Chen G , Saunders D , Sodergren E , Davis P , Kerhornou A , Nie X , Hall N , Anjard C , Hemphill L , Bason N , Farbrother P , Desany B , Just E , Morio T , Rost R , Churcher C , Cooper J , Haydock S , van Driessche N , Cronin A , Goodhead I , Muzny D , Mourier T , Pain A , Lu M , Harper D , Lindsay R , Hauser H , James K , Quiles M , Madan Babu M , Saito T , Buchrieser C , Wardroper A , Felder M , Thangavelu M , Johnson D , Knights A , Loulseged H , Mungall K , Oliver K , Price C , Quail MA , Urushihara H , Hernandez J , Rabbinowitsch E , Steffen D , Sanders M , Ma J , Kohara Y , Sharp S , Simmonds M , Spiegler S , Tivey A , Sugano S , White B , Walker D , Woodward J , Winckler T , Tanaka Y , Shaulsky G , Schleicher M , Weinstock G , Rosenthal A , Cox EC , Chisholm RL , Gibbs R , Loomis WF , Platzer M , Kay RR , Williams J , Dear PH , Noegel AA , Barrell B , Kuspa A
Ref : Nature , 435 :43 , 2005
Abstract : The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
ESTHER : Eichinger_2005_Nature_435_43
PubMedSearch : Eichinger_2005_Nature_435_43
PubMedID: 15875012
Gene_locus related to this paper: dicdi-abhd , dicdi-ACHE , dicdi-apra , dicdi-cinbp , dicdi-CMBL , dicdi-crysp , dicdi-DPOA , dicdi-P90528 , dicdi-ppme1 , dicdi-Q8MYE7 , dicdi-q54cf7 , dicdi-q54cl7 , dicdi-q54cm0 , dicdi-q54ct5 , dicdi-q54cu1 , dicdi-q54d54 , dicdi-q54d66 , dicdi-q54dj5 , dicdi-q54dy7 , dicdi-q54ek1 , dicdi-q54eq6 , dicdi-q54et1 , dicdi-q54et7 , dicdi-q54f01 , dicdi-q54g24 , dicdi-q54g47 , dicdi-q54gi7 , dicdi-q54gw5 , dicdi-q54gx3 , dicdi-q54h23 , dicdi-q54h73 , dicdi-q54i38 , dicdi-q54ie5 , dicdi-q54in4 , dicdi-q54kz1 , dicdi-q54l36 , dicdi-q54li1 , dicdi-q54m29 , dicdi-q54n21 , dicdi-q54n35 , dicdi-q54n85 , dicdi-q54qe7 , dicdi-q54qi3 , dicdi-q54qk2 , dicdi-q54rl3 , dicdi-q54rl8 , dicdi-q54sy6 , dicdi-q54sz3 , dicdi-q54t49 , dicdi-q54t91 , dicdi-q54th2 , dicdi-q54u01 , dicdi-q54vc2 , dicdi-q54vw1 , dicdi-q54xe3 , dicdi-q54xl3 , dicdi-q54xu1 , dicdi-q54xu2 , dicdi-q54y48 , dicdi-q54yd0 , dicdi-q54ye0 , dicdi-q54yl1 , dicdi-q54yr8 , dicdi-q54z90 , dicdi-q55bx3 , dicdi-q55d01 , dicdi-q55d81 , dicdi-q55du6 , dicdi-q55eu1 , dicdi-q55eu8 , dicdi-q55fk4 , dicdi-q55gk7 , dicdi-Q54ZA6 , dicdi-q86h82 , dicdi-Q86HC9 , dicdi-Q86HM5 , dicdi-Q86HM6 , dicdi-q86iz7 , dicdi-q86jb6 , dicdi-Q86KU7 , dicdi-q550s3 , dicdi-q552c0 , dicdi-q553t5 , dicdi-q555e5 , dicdi-q555h0 , dicdi-q555h1 , dicdi-q557k5 , dicdi-q558u2 , dicdi-Q869Q8 , dicdi-u554 , dicdi-y9086 , dicdi-q54r44 , dicdi-f172a

Title : Sequence of Plasmodium falciparum chromosomes 1, 3-9 and 13 - Hall_2002_Nature_419_527
Author(s) : Hall N , Pain A , Berriman M , Churcher C , Harris B , Harris D , Mungall K , Bowman S , Atkin R , Baker S , Barron A , Brooks K , Buckee CO , Burrows C , Cherevach I , Chillingworth C , Chillingworth T , Christodoulou Z , Clark L , Clark R , Corton C , Cronin A , Davies R , Davis P , Dear P , Dearden F , Doggett J , Feltwell T , Goble A , Goodhead I , Gwilliam R , Hamlin N , Hance Z , Harper D , Hauser H , Hornsby T , Holroyd S , Horrocks P , Humphray S , Jagels K , James KD , Johnson D , Kerhornou A , Knights A , Konfortov B , Kyes S , Larke N , Lawson D , Lennard N , Line A , Maddison M , McLean J , Mooney P , Moule S , Murphy L , Oliver K , Ormond D , Price C , Quail MA , Rabbinowitsch E , Rajandream MA , Rutter S , Rutherford KM , Sanders M , Simmonds M , Seeger K , Sharp S , Smith R , Squares R , Squares S , Stevens K , Taylor K , Tivey A , Unwin L , Whitehead S , Woodward J , Sulston JE , Craig A , Newbold C , Barrell BG
Ref : Nature , 419 :527 , 2002
Abstract : Since the sequencing of the first two chromosomes of the malaria parasite, Plasmodium falciparum, there has been a concerted effort to sequence and assemble the entire genome of this organism. Here we report the sequence of chromosomes 1, 3-9 and 13 of P. falciparum clone 3D7--these chromosomes account for approximately 55% of the total genome. We describe the methods used to map, sequence and annotate these chromosomes. By comparing our assemblies with the optical map, we indicate the completeness of the resulting sequence. During annotation, we assign Gene Ontology terms to the predicted gene products, and observe clustering of some malaria-specific terms to specific chromosomes. We identify a highly conserved sequence element found in the intergenic region of internal var genes that is not associated with their telomeric counterparts.
ESTHER : Hall_2002_Nature_419_527
PubMedSearch : Hall_2002_Nature_419_527
PubMedID: 12368867
Gene_locus related to this paper: plaf7-c0h4q4 , plafa-MAL6P1.135 , plafa-PFD0185C , plafa-PFI1775W , plafa-PFI1800W

Title : The genome sequence of Schizosaccharomyces pombe - Wood_2002_Nature_415_871
Author(s) : Wood V , Gwilliam R , Rajandream MA , Lyne M , Lyne R , Stewart A , Sgouros J , Peat N , Hayles J , Baker S , Basham D , Bowman S , Brooks K , Brown D , Brown S , Chillingworth T , Churcher C , Collins M , Connor R , Cronin A , Davis P , Feltwell T , Fraser A , Gentles S , Goble A , Hamlin N , Harris D , Hidalgo J , Hodgson G , Holroyd S , Hornsby T , Howarth S , Huckle EJ , Hunt S , Jagels K , James K , Jones L , Jones M , Leather S , McDonald S , McLean J , Mooney P , Moule S , Mungall K , Murphy L , Niblett D , Odell C , Oliver K , O'Neil S , Pearson D , Quail MA , Rabbinowitsch E , Rutherford K , Rutter S , Saunders D , Seeger K , Sharp S , Skelton J , Simmonds M , Squares R , Squares S , Stevens K , Taylor K , Taylor RG , Tivey A , Walsh S , Warren T , Whitehead S , Woodward J , Volckaert G , Aert R , Robben J , Grymonprez B , Weltjens I , Vanstreels E , Rieger M , Schafer M , Muller-Auer S , Gabel C , Fuchs M , Dusterhoft A , Fritzc C , Holzer E , Moestl D , Hilbert H , Borzym K , Langer I , Beck A , Lehrach H , Reinhardt R , Pohl TM , Eger P , Zimmermann W , Wedler H , Wambutt R , Purnelle B , Goffeau A , Cadieu E , Dreano S , Gloux S , Lelaure V , Mottier S , Galibert F , Aves SJ , Xiang Z , Hunt C , Moore K , Hurst SM , Lucas M , Rochet M , Gaillardin C , Tallada VA , Garzon A , Thode G , Daga RR , Cruzado L , Jimenez J , Sanchez M , del Rey F , Benito J , Dominguez A , Revuelta JL , Moreno S , Armstrong J , Forsburg SL , Cerutti L , Lowe T , McCombie WR , Paulsen I , Potashkin J , Shpakovski GV , Ussery D , Barrell BG , Nurse P
Ref : Nature , 415 :871 , 2002
Abstract : We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.
ESTHER : Wood_2002_Nature_415_871
PubMedSearch : Wood_2002_Nature_415_871
PubMedID: 11859360
Gene_locus related to this paper: schpo-APTH1 , schpo-be46 , schpo-BST1 , schpo-C2E11.08 , schpo-C14C4.15C , schpo-C22H12.03 , schpo-C23C4.16C , schpo-C57A10.08C , schpo-dyr , schpo-este1 , schpo-KEX1 , schpo-PCY1 , schpo-pdat , schpo-PLG7 , schpo-ppme1 , schpo-q9c0y8 , schpo-SPAC4A8.06C , schpo-C22A12.06C , schpo-SPAC977.15 , schpo-SPAPB1A11.02 , schpo-SPBC14C8.15 , schpo-SPBC530.12C , schpo-SPBC1711.12 , schpo-SPBPB2B2.02 , schpo-SPCC5E4.05C , schpo-SPCC417.12 , schpo-SPCC1672.09 , schpo-yb4e , schpo-yblh , schpo-ydw6 , schpo-ye7a , schpo-ye63 , schpo-ye88 , schpo-yeld , schpo-yk68 , schpo-clr3 , schpo-ykv6