Hauser H

References (15)

Title : Sequencing and functional annotation of avian pathogenic Escherichia coli serogroup O78 strains reveal the evolution of E. coli lineages pathogenic for poultry via distinct mechanisms - Dziva_2013_Infect.Immun_81_838
Author(s) : Dziva F , Hauser H , Connor TR , van Diemen PM , Prescott G , Langridge GC , Eckert S , Chaudhuri RR , Ewers C , Mellata M , Mukhopadhyay S , Curtiss R, 3rd , Dougan G , Wieler LH , Thomson NR , Pickard DJ , Stevens MP
Ref : Infect Immun , 81 :838 , 2013
Abstract : Avian pathogenic Escherichia coli (APEC) causes respiratory and systemic disease in poultry. Sequencing of a multilocus sequence type 95 (ST95) serogroup O1 strain previously indicated that APEC resembles E. coli causing extraintestinal human diseases. We sequenced the genomes of two strains of another dominant APEC lineage (ST23 serogroup O78 strains chi7122 and IMT2125) and compared them to each other and to the reannotated APEC O1 sequence. For comparison, we also sequenced a human enterotoxigenic E. coli (ETEC) strain of the same ST23 serogroup O78 lineage. Phylogenetic analysis indicated that the APEC O78 strains were more closely related to human ST23 ETEC than to APEC O1, indicating that separation of pathotypes on the basis of their extraintestinal or diarrheagenic nature is not supported by their phylogeny. The accessory genome of APEC ST23 strains exhibited limited conservation of APEC O1 genomic islands and a distinct repertoire of virulence-associated loci. In light of this diversity, we surveyed the phenotype of 2,185 signature-tagged transposon mutants of chi7122 following intra-air sac inoculation of turkeys. This procedure identified novel APEC ST23 genes that play strain- and tissue-specific roles during infection. For example, genes mediating group 4 capsule synthesis were required for the virulence of chi7122 and were conserved in IMT2125 but absent from APEC O1. Our data reveal the genetic diversity of E. coli strains adapted to cause the same avian disease and indicate that the core genome of the ST23 lineage serves as a chassis for the evolution of E. coli strains adapted to cause avian or human disease via acquisition of distinct virulence genes.
ESTHER : Dziva_2013_Infect.Immun_81_838
PubMedSearch : Dziva_2013_Infect.Immun_81_838
PubMedID: 23275093
Gene_locus related to this paper: ecoli-yaim , ecoli-ycfp , ecoli-yqia , ecoli-Z1930

Title : Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis - Holden_2009_PLoS.One_4_e6072
Author(s) : Holden MT , Hauser H , Sanders M , Ngo TH , Cherevach I , Cronin A , Goodhead I , Mungall K , Quail MA , Price C , Rabbinowitsch E , Sharp S , Croucher NJ , Chieu TB , Mai NT , Diep TS , Chinh NT , Kehoe M , Leigh JA , Ward PN , Dowson CG , Whatmore AM , Chanter N , Iversen P , Gottschalk M , Slater JD , Smith HE , Spratt BG , Xu J , Ye C , Bentley S , Barrell BG , Schultsz C , Maskell DJ , Parkhill J
Ref : PLoS ONE , 4 :e6072 , 2009
Abstract : BACKGROUND: Streptococcus suis is a zoonotic pathogen that infects pigs and can occasionally cause serious infections in humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: The sequencing of whole genomes of S. suis isolates provides opportunities to investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for which genome sequences are currently available. Accordingly, approximately 40% of the approximately 2 Mb genome is unique in comparison to other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation; virtually all of the genome is common to the S. suis strains. The only exceptions are three approximately 90 kb regions, present in the two isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in putative virulence and colonization factors. CONCLUSIONS/SIGNIFICANCE: The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has contributed to the evolution of drug resistance.
ESTHER : Holden_2009_PLoS.One_4_e6072
PubMedSearch : Holden_2009_PLoS.One_4_e6072
PubMedID: 19603075
Gene_locus related to this paper: strsu-q302y4 , strsy-a4vus4 , strsy-a4vwf6

Title : The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients - Holden_2009_J.Bacteriol_191_261
Author(s) : Holden MT , Seth-Smith HM , Crossman LC , Sebaihia M , Bentley SD , Cerdeno-Tarraga AM , Thomson NR , Bason N , Quail MA , Sharp S , Cherevach I , Churcher C , Goodhead I , Hauser H , Holroyd N , Mungall K , Scott P , Walker D , White B , Rose H , Iversen P , Mil-Homens D , Rocha EP , Fialho AM , Baldwin A , Dowson C , Barrell BG , Govan JR , Vandamme P , Hart CA , Mahenthiralingam E , Parkhill J
Ref : Journal of Bacteriology , 191 :261 , 2009
Abstract : Bacterial infections of the lungs of cystic fibrosis (CF) patients cause major complications in the treatment of this common genetic disease. Burkholderia cenocepacia infection is particularly problematic since this organism has high levels of antibiotic resistance, making it difficult to eradicate; the resulting chronic infections are associated with severe declines in lung function and increased mortality rates. B. cenocepacia strain J2315 was isolated from a CF patient and is a member of the epidemic ET12 lineage that originated in Canada or the United Kingdom and spread to Europe. The 8.06-Mb genome of this highly transmissible pathogen comprises three circular chromosomes and a plasmid and encodes a broad array of functions typical of this metabolically versatile genus, as well as numerous virulence and drug resistance functions. Although B. cenocepacia strains can be isolated from soil and can be pathogenic to both plants and man, J2315 is representative of a lineage of B. cenocepacia rarely isolated from the environment and which spreads between CF patients. Comparative analysis revealed that ca. 21% of the genome is unique in comparison to other strains of B. cenocepacia, highlighting the genomic plasticity of this species. Pseudogenes in virulence determinants suggest that the pathogenic response of J2315 may have been recently selected to promote persistence in the CF lung. The J2315 genome contains evidence that its unique and highly adapted genetic content has played a significant role in its success as an epidemic CF pathogen.
ESTHER : Holden_2009_J.Bacteriol_191_261
PubMedSearch : Holden_2009_J.Bacteriol_191_261
PubMedID: 18931103
Gene_locus related to this paper: burcj-b4e794 , 9burk-a0u8m3 , burcj-b4ek59 , burcj-b4ehl7 , burca-q1bk56 , burce-a0a088tsj6 , burcj-b4ecv6

Title : Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility - Pearson_2008_J.Bacteriol_190_4027
Author(s) : Pearson MM , Sebaihia M , Churcher C , Quail MA , Seshasayee AS , Luscombe NM , Abdellah Z , Arrosmith C , Atkin B , Chillingworth T , Hauser H , Jagels K , Moule S , Mungall K , Norbertczak H , Rabbinowitsch E , Walker D , Whithead S , Thomson NR , Rather PN , Parkhill J , Mobley HL
Ref : Journal of Bacteriology , 190 :4027 , 2008
Abstract : The gram-negative enteric bacterium Proteus mirabilis is a frequent cause of urinary tract infections in individuals with long-term indwelling catheters or with complicated urinary tracts (e.g., due to spinal cord injury or anatomic abnormality). P. mirabilis bacteriuria may lead to acute pyelonephritis, fever, and bacteremia. Most notoriously, this pathogen uses urease to catalyze the formation of kidney and bladder stones or to encrust or obstruct indwelling urinary catheters. Here we report the complete genome sequence of P. mirabilis HI4320, a representative strain cultured in our laboratory from the urine of a nursing home patient with a long-term (> or =30 days) indwelling urinary catheter. The genome is 4.063 Mb long and has a G+C content of 38.88%. There is a single plasmid consisting of 36,289 nucleotides. Annotation of the genome identified 3,685 coding sequences and seven rRNA loci. Analysis of the sequence confirmed the presence of previously identified virulence determinants, as well as a contiguous 54-kb flagellar regulon and 17 types of fimbriae. Genes encoding a potential type III secretion system were identified on a low-G+C-content genomic island containing 24 intact genes that appear to encode all components necessary to assemble a type III secretion system needle complex. In addition, the P. mirabilis HI4320 genome possesses four tandem copies of the zapE metalloprotease gene, genes encoding six putative autotransporters, an extension of the atf fimbrial operon to six genes, including an mrpJ homolog, and genes encoding at least five iron uptake mechanisms, two potential type IV secretion systems, and 16 two-component regulators.
ESTHER : Pearson_2008_J.Bacteriol_190_4027
PubMedSearch : Pearson_2008_J.Bacteriol_190_4027
PubMedID: 18375554
Gene_locus related to this paper: promh-b4euu8 , promh-b4ev30 , promh-b4evj5 , promh-b4f0a1 , promh-bioh , promi-c2lhp6 , promi-c2lla8 , promi-NRPS , promi-NRPT , promi-k1gzm2 , promh-b4eve8

Title : The genome of the simian and human malaria parasite Plasmodium knowlesi - Pain_2008_Nature_455_799
Author(s) : Pain A , Bohme U , Berry AE , Mungall K , Finn RD , Jackson AP , Mourier T , Mistry J , Pasini EM , Aslett MA , Balasubrammaniam S , Borgwardt K , Brooks K , Carret C , Carver TJ , Cherevach I , Chillingworth T , Clark TG , Galinski MR , Hall N , Harper D , Harris D , Hauser H , Ivens A , Janssen CS , Keane T , Larke N , Lapp S , Marti M , Moule S , Meyer IM , Ormond D , Peters N , Sanders M , Sanders S , Sargeant TJ , Simmonds M , Smith F , Squares R , Thurston S , Tivey AR , Walker D , White B , Zuiderwijk E , Churcher C , Quail MA , Cowman AF , Turner CM , Rajandream MA , Kocken CH , Thomas AW , Newbold CI , Barrell BG , Berriman M
Ref : Nature , 455 :799 , 2008
Abstract : Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome and other sequenced Plasmodium genomes. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.
ESTHER : Pain_2008_Nature_455_799
PubMedSearch : Pain_2008_Nature_455_799
PubMedID: 18843368
Gene_locus related to this paper: plakh-b3kz42 , plakh-b3kz45 , plakh-b3l0y4 , plakh-b3l1r3 , plakh-b3l8u5 , plakh-b3l336 , plakh-b3l571 , plakh-b3la01 , plakh-b3lb44

Title : The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081 - Thomson_2006_PLoS.Genet_2_e206
Author(s) : Thomson NR , Howard S , Wren BW , Holden MT , Crossman L , Challis GL , Churcher C , Mungall K , Brooks K , Chillingworth T , Feltwell T , Abdellah Z , Hauser H , Jagels K , Maddison M , Moule S , Sanders M , Whitehead S , Quail MA , Dougan G , Parkhill J , Prentice MB
Ref : PLoS Genet , 2 :e206 , 2006
Abstract : The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution of other human enteropathogens.
ESTHER : Thomson_2006_PLoS.Genet_2_e206
PubMedSearch : Thomson_2006_PLoS.Genet_2_e206
PubMedID: 17173484
Gene_locus related to this paper: yere8-a1jik0 , yere8-a1jmx1 , yere8-a1jrp7 , yere8-bioh , yere8-menh , yere8-y3204 , yeren-fes , yeren-YPLA , yeren-YqiA , yermo-c4sfz7 , yerpe-y1616 , yerpe-YPO1501 , yerbe-c4rym7

Title : The genome of Rhizobium leguminosarum has recognizable core and accessory components - Young_2006_Genome.Biol_7_R34
Author(s) : Young JP , Crossman LC , Johnston AW , Thomson NR , Ghazoui ZF , Hull KH , Wexler M , Curson AR , Todd JD , Poole PS , Mauchline TH , East AK , Quail MA , Churcher C , Arrowsmith C , Cherevach I , Chillingworth T , Clarke K , Cronin A , Davis P , Fraser A , Hance Z , Hauser H , Jagels K , Moule S , Mungall K , Norbertczak H , Rabbinowitsch E , Sanders M , Simmonds M , Whitehead S , Parkhill J
Ref : Genome Biol , 7 :R34 , 2006
Abstract : BACKGROUND: Rhizobium leguminosarum is an alpha-proteobacterial N2-fixing symbiont of legumes that has been the subject of more than a thousand publications. Genes for the symbiotic interaction with plants are well studied, but the adaptations that allow survival and growth in the soil environment are poorly understood. We have sequenced the genome of R. leguminosarum biovar viciae strain 3841. RESULTS: The 7.75 Mb genome comprises a circular chromosome and six circular plasmids, with 61% G+C overall. All three rRNA operons and 52 tRNA genes are on the chromosome; essential protein-encoding genes are largely chromosomal, but most functional classes occur on plasmids as well. Of the 7,263 protein-encoding genes, 2,056 had orthologs in each of three related genomes (Agrobacterium tumefaciens, Sinorhizobium meliloti, and Mesorhizobium loti), and these genes were over-represented in the chromosome and had above average G+C. Most supported the rRNA-based phylogeny, confirming A. tumefaciens to be the closest among these relatives, but 347 genes were incompatible with this phylogeny; these were scattered throughout the genome but were over-represented on the plasmids. An unexpectedly large number of genes were shared by all three rhizobia but were missing from A. tumefaciens. CONCLUSION: Overall, the genome can be considered to have two main components: a 'core', which is higher in G+C, is mostly chromosomal, is shared with related organisms, and has a consistent phylogeny; and an 'accessory' component, which is sporadic in distribution, lower in G+C, and located on the plasmids and chromosomal islands. The accessory genome has a different nucleotide composition from the core despite a long history of coexistence.
ESTHER : Young_2006_Genome.Biol_7_R34
PubMedSearch : Young_2006_Genome.Biol_7_R34
PubMedID: 16640791
Gene_locus related to this paper: rhiec-q2k7y0 , rhiec-q2k107 , rhiec-q2kav5 , rhiec-q2ke86 , rhil3-q1m3b7 , rhil3-q1m3u0 , rhil3-q1m4b4 , rhil3-q1m4e5 , rhil3-q1m4g3 , rhil3-q1m4h0 , rhil3-q1m5k0 , rhil3-q1m5s6 , rhil3-q1m6q0 , rhil3-q1m6u8 , rhil3-q1m6w8 , rhil3-q1m7c2 , rhil3-q1m7c3 , rhil3-q1m7i2 , rhil3-q1m7n3 , rhil3-q1m7q9 , rhil3-q1m7r8 , rhil3-q1m8d0 , rhil3-q1m8u4 , rhil3-q1m9d6 , rhil3-q1m9i6 , rhil3-q1m347 , rhil3-q1m571 , rhil3-q1m580 , rhil3-q1m672 , rhil3-q1m812 , rhil3-q1m841 , rhil3-q1m917 , rhil3-q1m919 , rhil3-q1mbv4 , rhil3-q1mbz5 , rhil3-q1mc48 , rhil3-q1mcr4 , rhil3-q1md19 , rhil3-q1mdd8 , rhil3-q1me05 , rhil3-q1mee4 , rhil3-q1mel6 , rhil3-q1men7 , rhil3-q1mf17 , rhil3-q1mf73 , rhil3-q1mf76 , rhil3-q1mfb0 , rhil3-q1mfp5 , rhil3-q1mg17 , rhil3-q1mg51 , rhil3-q1mg97 , rhil3-q1mgh3 , rhil3-q1mgh5 , rhil3-q1mgu7 , rhil3-q1mgx5 , rhil3-q1mh67 , rhil3-q1mhh7 , rhil3-q1mhz8 , rhil3-q1mi67 , rhil3-q1mi98 , rhil3-q1mia3 , rhil3-q1mig2 , rhil3-q1miz0 , rhil3-q1mj26 , rhil3-q1mj65 , rhil3-q1mjs2 , rhil3-q1mjx4 , rhil3-q1mk84 , rhil3-q1mkk8 , rhil3-q1mli7 , rhil3-q1mlj7 , rhil3-q1mm33 , rhil3-q1mmf9 , rhil3-q1mmp7 , rhil3-q1mmx0 , rhil3-q1mn42 , rhile-Q93EA8 , rhils-c6axl5 , rhils-c6b1w7 , rhilw-b5zrm4 , rhilw-b5zs97 , rhilv-j0vcs5

Title : The genome of the social amoeba Dictyostelium discoideum - Eichinger_2005_Nature_435_43
Author(s) : Eichinger L , Pachebat JA , Glockner G , Rajandream MA , Sucgang R , Berriman M , Song J , Olsen R , Szafranski K , Xu Q , Tunggal B , Kummerfeld S , Madera M , Konfortov BA , Rivero F , Bankier AT , Lehmann R , Hamlin N , Davies R , Gaudet P , Fey P , Pilcher K , Chen G , Saunders D , Sodergren E , Davis P , Kerhornou A , Nie X , Hall N , Anjard C , Hemphill L , Bason N , Farbrother P , Desany B , Just E , Morio T , Rost R , Churcher C , Cooper J , Haydock S , van Driessche N , Cronin A , Goodhead I , Muzny D , Mourier T , Pain A , Lu M , Harper D , Lindsay R , Hauser H , James K , Quiles M , Madan Babu M , Saito T , Buchrieser C , Wardroper A , Felder M , Thangavelu M , Johnson D , Knights A , Loulseged H , Mungall K , Oliver K , Price C , Quail MA , Urushihara H , Hernandez J , Rabbinowitsch E , Steffen D , Sanders M , Ma J , Kohara Y , Sharp S , Simmonds M , Spiegler S , Tivey A , Sugano S , White B , Walker D , Woodward J , Winckler T , Tanaka Y , Shaulsky G , Schleicher M , Weinstock G , Rosenthal A , Cox EC , Chisholm RL , Gibbs R , Loomis WF , Platzer M , Kay RR , Williams J , Dear PH , Noegel AA , Barrell B , Kuspa A
Ref : Nature , 435 :43 , 2005
Abstract : The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
ESTHER : Eichinger_2005_Nature_435_43
PubMedSearch : Eichinger_2005_Nature_435_43
PubMedID: 15875012
Gene_locus related to this paper: dicdi-abhd , dicdi-ACHE , dicdi-apra , dicdi-cinbp , dicdi-CMBL , dicdi-crysp , dicdi-DPOA , dicdi-P90528 , dicdi-ppme1 , dicdi-Q8MYE7 , dicdi-q54cf7 , dicdi-q54cl7 , dicdi-q54cm0 , dicdi-q54ct5 , dicdi-q54cu1 , dicdi-q54d54 , dicdi-q54d66 , dicdi-q54dj5 , dicdi-q54dy7 , dicdi-q54ek1 , dicdi-q54eq6 , dicdi-q54et1 , dicdi-q54et7 , dicdi-q54f01 , dicdi-q54g24 , dicdi-q54g47 , dicdi-q54gi7 , dicdi-q54gw5 , dicdi-q54gx3 , dicdi-q54h23 , dicdi-q54h73 , dicdi-q54i38 , dicdi-q54ie5 , dicdi-q54in4 , dicdi-q54kz1 , dicdi-q54l36 , dicdi-q54li1 , dicdi-q54m29 , dicdi-q54n21 , dicdi-q54n35 , dicdi-q54n85 , dicdi-q54qe7 , dicdi-q54qi3 , dicdi-q54qk2 , dicdi-q54rl3 , dicdi-q54rl8 , dicdi-q54sy6 , dicdi-q54sz3 , dicdi-q54t49 , dicdi-q54t91 , dicdi-q54th2 , dicdi-q54u01 , dicdi-q54vc2 , dicdi-q54vw1 , dicdi-q54xe3 , dicdi-q54xl3 , dicdi-q54xu1 , dicdi-q54xu2 , dicdi-q54y48 , dicdi-q54yd0 , dicdi-q54ye0 , dicdi-q54yl1 , dicdi-q54yr8 , dicdi-q54z90 , dicdi-q55bx3 , dicdi-q55d01 , dicdi-q55d81 , dicdi-q55du6 , dicdi-q55eu1 , dicdi-q55eu8 , dicdi-q55fk4 , dicdi-q55gk7 , dicdi-Q54ZA6 , dicdi-q86h82 , dicdi-Q86HC9 , dicdi-Q86HM5 , dicdi-Q86HM6 , dicdi-q86iz7 , dicdi-q86jb6 , dicdi-Q86KU7 , dicdi-q550s3 , dicdi-q552c0 , dicdi-q553t5 , dicdi-q555e5 , dicdi-q555h0 , dicdi-q555h1 , dicdi-q557k5 , dicdi-q558u2 , dicdi-Q869Q8 , dicdi-u554 , dicdi-y9086 , dicdi-q54r44 , dicdi-f172a

Title : The genome of the African trypanosome Trypanosoma brucei - Berriman_2005_Science_309_416
Author(s) : Berriman M , Ghedin E , Hertz-Fowler C , Blandin G , Renauld H , Bartholomeu DC , Lennard NJ , Caler E , Hamlin NE , Haas B , Bohme U , Hannick L , Aslett MA , Shallom J , Marcello L , Hou L , Wickstead B , Alsmark UC , Arrowsmith C , Atkin RJ , Barron AJ , Bringaud F , Brooks K , Carrington M , Cherevach I , Chillingworth TJ , Churcher C , Clark LN , Corton CH , Cronin A , Davies RM , Doggett J , Djikeng A , Feldblyum T , Field MC , Fraser A , Goodhead I , Hance Z , Harper D , Harris BR , Hauser H , Hostetler J , Ivens A , Jagels K , Johnson D , Johnson J , Jones K , Kerhornou AX , Koo H , Larke N , Landfear S , Larkin C , Leech V , Line A , Lord A , MacLeod A , Mooney PJ , Moule S , Martin DM , Morgan GW , Mungall K , Norbertczak H , Ormond D , Pai G , Peacock CS , Peterson J , Quail MA , Rabbinowitsch E , Rajandream MA , Reitter C , Salzberg SL , Sanders M , Schobel S , Sharp S , Simmonds M , Simpson AJ , Tallon L , Turner CM , Tait A , Tivey AR , Van Aken S , Walker D , Wanless D , Wang S , White B , White O , Whitehead S , Woodward J , Wortman J , Adams MD , Embley TM , Gull K , Ullu E , Barry JD , Fairlamb AH , Opperdoes F , Barrell BG , Donelson JE , Hall N , Fraser CM , Melville SE , El-Sayed NM
Ref : Science , 309 :416 , 2005
Abstract : African trypanosomes cause human sleeping sickness and livestock trypanosomiasis in sub-Saharan Africa. We present the sequence and analysis of the 11 megabase-sized chromosomes of Trypanosoma brucei. The 26-megabase genome contains 9068 predicted genes, including approximately 900 pseudogenes and approximately 1700 T. brucei-specific genes. Large subtelomeric arrays contain an archive of 806 variant surface glycoprotein (VSG) genes used by the parasite to evade the mammalian immune system. Most VSG genes are pseudogenes, which may be used to generate expressed mosaic genes by ectopic recombination. Comparisons of the cytoskeleton and endocytic trafficking systems with those of humans and other eukaryotic organisms reveal major differences. A comparison of metabolic pathways encoded by the genomes of T. brucei, T. cruzi, and Leishmania major reveals the least overall metabolic capability in T. brucei and the greatest in L. major. Horizontal transfer of genes of bacterial origin has contributed to some of the metabolic differences in these parasites, and a number of novel potential drug targets have been identified.
ESTHER : Berriman_2005_Science_309_416
PubMedSearch : Berriman_2005_Science_309_416
PubMedID: 16020726
Gene_locus related to this paper: tryb2-q6h9e3 , tryb2-q6ha27 , tryb2-q38cd5 , tryb2-q38cd6 , tryb2-q38cd7 , tryb2-q38dc1 , tryb2-q38de4 , tryb2-q38ds6 , tryb2-q38dx1 , tryb2-q380z6 , tryb2-q382c1 , tryb2-q382l4 , tryb2-q383a9 , tryb2-q386e3 , tryb2-q387r7 , tryb2-q388n1 , tryb2-q389w3 , trybr-PEPTB , trycr-q4cq28 , trycr-q4cq94 , trycr-q4cq95 , trycr-q4cq96 , trycr-q4csm0 , trycr-q4cwv3 , trycr-q4cx66 , trycr-q4cxr6 , trycr-q4cyc5 , trycr-q4cyf6 , trycr-q4d3a2 , trycr-q4d3x3 , trycr-q4d3y4 , trycr-q4d6h1 , trycr-q4d8h8 , trycr-q4d8h9 , trycr-q4d8i0 , trycr-q4d786 , trycr-q4d975 , trycr-q4da08 , trycr-q4dap6 , trycr-q4dbm2 , trycr-q4dbn1 , trycr-q4ddw7 , trycr-q4de42 , trycr-q4dhn8 , trycr-q4dkk8 , trycr-q4dkk9 , trycr-q4dm56 , trycr-q4dqa6 , trycr-q4dt91 , trycr-q4dvp2 , trycr-q4dw34 , trycr-q4dwm3 , trycr-q4dy49 , trycr-q4dy82 , trycr-q4dzp6 , trycr-q4e3m8 , trycr-q4e4t5 , trycr-q4e5d1 , trycr-q4e5z2

Title : Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance - Holden_2004_Proc.Natl.Acad.Sci.U.S.A_101_9786
Author(s) : Holden MT , Feil EJ , Lindsay JA , Peacock SJ , Day NP , Enright MC , Foster TJ , Moore CE , Hurst L , Atkin R , Barron A , Bason N , Bentley SD , Chillingworth C , Chillingworth T , Churcher C , Clark L , Corton C , Cronin A , Doggett J , Dowd L , Feltwell T , Hance Z , Harris B , Hauser H , Holroyd S , Jagels K , James KD , Lennard N , Line A , Mayes R , Moule S , Mungall K , Ormond D , Quail MA , Rabbinowitsch E , Rutherford K , Sanders M , Sharp S , Simmonds M , Stevens K , Whitehead S , Barrell BG , Spratt BG , Parkhill J
Ref : Proc Natl Acad Sci U S A , 101 :9786 , 2004
Abstract : Staphylococcus aureus is an important nosocomial and community-acquired pathogen. Its genetic plasticity has facilitated the evolution of many virulent and drug-resistant strains, presenting a major and constantly changing clinical challenge. We sequenced the approximately 2.8-Mbp genomes of two disease-causing S. aureus strains isolated from distinct clinical settings: a recent hospital-acquired representative of the epidemic methicillin-resistant S. aureus EMRSA-16 clone (MRSA252), a clinically important and globally prevalent lineage; and a representative of an invasive community-acquired methicillin-susceptible S. aureus clone (MSSA476). A comparative-genomics approach was used to explore the mechanisms of evolution of clinically important S. aureus genomes and to identify regions affecting virulence and drug resistance. The genome sequences of MRSA252 and MSSA476 have a well conserved core region but differ markedly in their accessory genetic elements. MRSA252 is the most genetically diverse S. aureus strain sequenced to date: approximately 6% of the genome is novel compared with other published genomes, and it contains several unique genetic elements. MSSA476 is methicillin-susceptible, but it contains a novel Staphylococcal chromosomal cassette (SCC) mec-like element (designated SCC(476)), which is integrated at the same site on the chromosome as SCCmec elements in MRSA strains but encodes a putative fusidic acid resistance protein. The crucial role that accessory elements play in the rapid evolution of S. aureus is clearly illustrated by comparing the MSSA476 genome with that of an extremely closely related MRSA community-acquired strain; the differential distribution of large mobile elements carrying virulence and drug-resistance determinants may be responsible for the clinically important phenotypic differences in these strains.
ESTHER : Holden_2004_Proc.Natl.Acad.Sci.U.S.A_101_9786
PubMedSearch : Holden_2004_Proc.Natl.Acad.Sci.U.S.A_101_9786
PubMedID: 15213324
Gene_locus related to this paper: staau-d2feb3 , staau-d2uin3 , staau-LIP , staau-lipas , staau-MW0741 , staau-MW2456 , staau-q6gfm6 , staau-SA0011 , staau-SA0569 , staau-SA0572 , staau-SA0897 , staau-SA1143 , staau-SA2240 , staau-SA2306 , staau-SA2367 , staau-SA2422 , staau-SAV0321 , staau-SAV0446 , staau-SAV0457 , staau-SAV0655 , staau-SAV1014 , staau-SAV1765 , staau-SAV1793 , staau-SAV2188 , staau-SAV2350 , staau-SAV2594

Title : Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors - Bell_2004_Proc.Natl.Acad.Sci.U.S.A_101_11105
Author(s) : Bell KS , Sebaihia M , Pritchard L , Holden MT , Hyman LJ , Holeva MC , Thomson NR , Bentley SD , Churcher LJ , Mungall K , Atkin R , Bason N , Brooks K , Chillingworth T , Clark K , Doggett J , Fraser A , Hance Z , Hauser H , Jagels K , Moule S , Norbertczak H , Ormond D , Price C , Quail MA , Sanders M , Walker D , Whitehead S , Salmond GP , Birch PR , Parkhill J , Toth IK
Ref : Proc Natl Acad Sci U S A , 101 :11105 , 2004
Abstract : The bacterial family Enterobacteriaceae is notable for its well studied human pathogens, including Salmonella, Yersinia, Shigella, and Escherichia spp. However, it also contains several plant pathogens. We report the genome sequence of a plant pathogenic enterobacterium, Erwinia carotovora subsp. atroseptica (Eca) strain SCRI1043, the causative agent of soft rot and blackleg potato diseases. Approximately 33% of Eca genes are not shared with sequenced enterobacterial human pathogens, including some predicted to facilitate unexpected metabolic traits, such as nitrogen fixation and opine catabolism. This proportion of genes also contains an overrepresentation of pathogenicity determinants, including possible horizontally acquired gene clusters for putative type IV secretion and polyketide phytotoxin synthesis. To investigate whether these gene clusters play a role in the disease process, an arrayed set of insertional mutants was generated, and mutations were identified. Plant bioassays showed that these mutants were significantly reduced in virulence, demonstrating both the presence of novel pathogenicity determinants in Eca, and the impact of functional genomics in expanding our understanding of phytopathogenicity in the Enterobacteriaceae.
ESTHER : Bell_2004_Proc.Natl.Acad.Sci.U.S.A_101_11105
PubMedSearch : Bell_2004_Proc.Natl.Acad.Sci.U.S.A_101_11105
PubMedID: 15263089
Gene_locus related to this paper: erwct-q6czi2 , erwct-q6czl9 , erwct-q6czu1 , erwct-q6d0l3 , erwct-q6d1e3 , erwct-q6d1l9 , erwct-q6d2k4 , erwct-q6d2x2 , erwct-q6d3m9 , erwct-q6d4b7 , erwct-q6d6t8 , erwct-q6d7j1 , erwct-q6d7p5 , erwct-q6d7w3 , erwct-q6d8k2 , erwct-q6d8q7 , erwct-q6d9l2 , erwct-q6d041 , erwct-q6d134 , erwct-q6d207 , erwct-q6d508 , erwct-q6d615 , erwct-q6d673 , erwct-q6d739.1 , erwct-q6d739.2 , erwct-q6d884 , erwct-q6da42 , erwct-q6da66 , erwct-q6dac1 , erwct-q6dar9 , erwct-Y3465

Title : Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei - Holden_2004_Proc.Natl.Acad.Sci.U.S.A_101_14240
Author(s) : Holden MT , Titball RW , Peacock SJ , Cerdeno-Tarraga AM , Atkins T , Crossman LC , Pitt T , Churcher C , Mungall K , Bentley SD , Sebaihia M , Thomson NR , Bason N , Beacham IR , Brooks K , Brown KA , Brown NF , Challis GL , Cherevach I , Chillingworth T , Cronin A , Crossett B , Davis P , DeShazer D , Feltwell T , Fraser A , Hance Z , Hauser H , Holroyd S , Jagels K , Keith KE , Maddison M , Moule S , Price C , Quail MA , Rabbinowitsch E , Rutherford K , Sanders M , Simmonds M , Songsivilai S , Stevens K , Tumapa S , Vesaratchavest M , Whitehead S , Yeats C , Barrell BG , Oyston PC , Parkhill J
Ref : Proc Natl Acad Sci U S A , 101 :14240 , 2004
Abstract : Burkholderia pseudomallei is a recognized biothreat agent and the causative agent of melioidosis. This Gram-negative bacterium exists as a soil saprophyte in melioidosis-endemic areas of the world and accounts for 20% of community-acquired septicaemias in northeastern Thailand where half of those affected die. Here we report the complete genome of B. pseudomallei, which is composed of two chromosomes of 4.07 megabase pairs and 3.17 megabase pairs, showing significant functional partitioning of genes between them. The large chromosome encodes many of the core functions associated with central metabolism and cell growth, whereas the small chromosome carries more accessory functions associated with adaptation and survival in different niches. Genomic comparisons with closely and more distantly related bacteria revealed a greater level of gene order conservation and a greater number of orthologous genes on the large chromosome, suggesting that the two replicons have distinct evolutionary origins. A striking feature of the genome was the presence of 16 genomic islands (GIs) that together made up 6.1% of the genome. Further analysis revealed these islands to be variably present in a collection of invasive and soil isolates but entirely absent from the clonally related organism B. mallei. We propose that variable horizontal gene acquisition by B. pseudomallei is an important feature of recent genetic evolution and that this has resulted in a genetically diverse pathogenic species.
ESTHER : Holden_2004_Proc.Natl.Acad.Sci.U.S.A_101_14240
PubMedSearch : Holden_2004_Proc.Natl.Acad.Sci.U.S.A_101_14240
PubMedID: 15377794
Gene_locus related to this paper: burma-a5j5w8 , burma-a5tj72 , burma-a5tq93 , burma-metx , burma-q62a61 , burma-q62ar2.1 , burma-q62ar2.2 , burma-q62ax8 , burma-q62b60 , burma-q62b79 , burma-q62bh9 , burma-q62bl4 , burma-q62bl7 , burma-q62c00 , burma-q62cg5 , burma-q62d41 , burma-q62d56 , burma-q62d83 , burma-q62dg2 , burma-q62du7 , burma-q62e67 , burma-q62eb8 , burma-q62ed8 , burma-q62f28 , burma-q62fx7 , burma-q62g26 , burma-q62gx9 , burma-q62gy2 , burma-q62hq2 , burma-q62i62 , burma-q62ib8 , burma-q62ie8 , burma-q62j07 , burma-q62j15 , burma-q62jn5 , burma-q62jy7 , burma-q62kb7 , burma-q62kg0 , burma-q62kh9 , burma-q62lp7 , burma-q62m40 , burma-q62mc3 , burma-q62mf4 , burma-q62mq7 , burma-q629m1 , burma-q629p4 , burma-q629u0 , burp1-q3jvq2 , burps-a4lm41 , burps-q3v7s4 , burps-q63hx2 , burps-q63i95 , burps-q63im5 , burps-q63is4 , burps-q63ja6 , burps-q63ja9 , burps-q63jh5 , burps-q63l17 , burps-q63l41 , burps-q63l44 , burps-q63lt9 , burps-q63me1 , burps-q63mj7 , burps-q63mj8 , burps-q63mn8 , burps-q63mr2 , burps-q63n52 , burps-q63p18 , burps-q63p99 , burps-q63ug2 , burps-q63ug5 , burps-q63xf9 , burps-q63y36 , burps-q63y45 , burps-q63y52 , burps-q63y59 , burta-q2t474 , burps-hboh

Title : Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica - Parkhill_2003_Nat.Genet_35_32
Author(s) : Parkhill J , Sebaihia M , Preston A , Murphy LD , Thomson N , Harris DE , Holden MT , Churcher CM , Bentley SD , Mungall KL , Cerdeno-Tarraga AM , Temple L , James K , Harris B , Quail MA , Achtman M , Atkin R , Baker S , Basham D , Bason N , Cherevach I , Chillingworth T , Collins M , Cronin A , Davis P , Doggett J , Feltwell T , Goble A , Hamlin N , Hauser H , Holroyd S , Jagels K , Leather S , Moule S , Norberczak H , O'Neil S , Ormond D , Price C , Rabbinowitsch E , Rutter S , Sanders M , Saunders D , Seeger K , Sharp S , Simmonds M , Skelton J , Squares R , Squares S , Stevens K , Unwin L , Whitehead S , Barrell BG , Maskell DJ
Ref : Nat Genet , 35 :32 , 2003
Abstract : Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative beta-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.
ESTHER : Parkhill_2003_Nat.Genet_35_32
PubMedSearch : Parkhill_2003_Nat.Genet_35_32
PubMedID: 12910271
Gene_locus related to this paper: borbr-BB0273 , borbr-BB0570 , borbr-BB0670 , borbr-BB1064 , borbr-BB1079 , borbr-BB1247 , borbr-BB1498 , borbr-BB2718 , borbr-BB4129 , borbr-BB4247 , borbr-MHPC , borbr-q7wdw1 , borbr-q7wiz8 , borbr-q7wk25 , borbr-q7wmc2 , borbr-q7wpd9 , borpa-q7w3f3 , borpa-q7w9v8 , borpe-BIOH , borpe-BP0300 , borpe-BP2114 , borpe-BP2146 , borpe-BP2511 , borpe-BP3096 , borpe-BP3623 , borpe-BP3691 , borpe-CATD2 , borpe-METX , borpe-O30449 , borpe-PHBC , borpe-q7vsl4 , borpe-q7vt07 , borpe-q7vtg0 , borpe-q7vtv2 , borpe-q7vus4 , borpe-q7vuv4 , borpe-q7vv11 , borpe-q7vv48 , borpe-q7vvf6 , borpe-q7vwu4 , borpe-q7vyn0 , borpe-q7vyq4 , borpe-q7vz26 , borpe-q7vzb4 , borpe-q7vzj6 , borpe-q7w073

Title : Sequence of Plasmodium falciparum chromosomes 1, 3-9 and 13 - Hall_2002_Nature_419_527
Author(s) : Hall N , Pain A , Berriman M , Churcher C , Harris B , Harris D , Mungall K , Bowman S , Atkin R , Baker S , Barron A , Brooks K , Buckee CO , Burrows C , Cherevach I , Chillingworth C , Chillingworth T , Christodoulou Z , Clark L , Clark R , Corton C , Cronin A , Davies R , Davis P , Dear P , Dearden F , Doggett J , Feltwell T , Goble A , Goodhead I , Gwilliam R , Hamlin N , Hance Z , Harper D , Hauser H , Hornsby T , Holroyd S , Horrocks P , Humphray S , Jagels K , James KD , Johnson D , Kerhornou A , Knights A , Konfortov B , Kyes S , Larke N , Lawson D , Lennard N , Line A , Maddison M , McLean J , Mooney P , Moule S , Murphy L , Oliver K , Ormond D , Price C , Quail MA , Rabbinowitsch E , Rajandream MA , Rutter S , Rutherford KM , Sanders M , Simmonds M , Seeger K , Sharp S , Smith R , Squares R , Squares S , Stevens K , Taylor K , Tivey A , Unwin L , Whitehead S , Woodward J , Sulston JE , Craig A , Newbold C , Barrell BG
Ref : Nature , 419 :527 , 2002
Abstract : Since the sequencing of the first two chromosomes of the malaria parasite, Plasmodium falciparum, there has been a concerted effort to sequence and assemble the entire genome of this organism. Here we report the sequence of chromosomes 1, 3-9 and 13 of P. falciparum clone 3D7--these chromosomes account for approximately 55% of the total genome. We describe the methods used to map, sequence and annotate these chromosomes. By comparing our assemblies with the optical map, we indicate the completeness of the resulting sequence. During annotation, we assign Gene Ontology terms to the predicted gene products, and observe clustering of some malaria-specific terms to specific chromosomes. We identify a highly conserved sequence element found in the intergenic region of internal var genes that is not associated with their telomeric counterparts.
ESTHER : Hall_2002_Nature_419_527
PubMedSearch : Hall_2002_Nature_419_527
PubMedID: 12368867
Gene_locus related to this paper: plaf7-c0h4q4 , plafa-MAL6P1.135 , plafa-PFD0185C , plafa-PFI1775W , plafa-PFI1800W

Title : Antioxidant treatment during liver resection for alleviation of ischemia-reperfusion injury - Cerwenka_1998_Hepatogastroenterology_45_777
Author(s) : Cerwenka H , Bacher H , Werkgartner G , el-Shabrawi A , Quehenberger F , Hauser H , Mischinger HJ
Ref : Hepato-Gastroenterology , 45 :777 , 1998
Abstract : BACKGROUND/AIMS Many experimental studies on ischemia-reperfusion injury in animals suggest a preventive effect of antioxidants, but the clinical significance of these findings is still unclear. The aim of our study was to evaluate the effect of antioxidant treatment with vitamins on liver function parameters during liver resection. METHODOLOGY: Our prospective randomized study comprised 58 patients undergoing major liver surgery, including the Pringle maneuver. In the treatment group 32 patients received a multivitamin infusion (Omnibionta) which included 10 mg of alpha-tocopherol acetate, 2 mg of DL-alpha-tocopherol and 1 g of ascorbate. The control group consisted of 26 patients. Various parameters associated with liver function, such as transaminases, lactate, ammonia, bilirubin, cholinesterase and clotting parameters were measured preoperatively, at the beginning of liver ischemia, 15, 30 and 60 minutes after reperfusion onset and every 12 hours after the operation. RESULTS: The Mann-Whitney-Wilcoxon-Test showed statistically significant differences in the postischemic changes between the treatment group and the control group for the Quick test (prothrombin time): p = 0.01. The transaminases were also markedly better in the treatment group (splitting-up slightly more delayed than with the Quick test). A smaller effect was seen with cholinesterase. Lactate, however, increased intraoperatively with a strong correlation to the duration of ischemia and returned quickly to baseline values without any remarkable influence of the antioxidant treatment. CONCLUSION: In our study, antioxidant treatment with a multivitamin infusion showed a positive effect on postischemic liver function parameters.
ESTHER : Cerwenka_1998_Hepatogastroenterology_45_777
PubMedSearch : Cerwenka_1998_Hepatogastroenterology_45_777
PubMedID: 9684133