Davis P

References (13)

Title : Activation of the cardiac non-neuronal cholinergic system prevents the development of diabetes-associated cardiovascular complications - Saw_2021_Cardiovasc.Diabetol_20_50
Author(s) : Saw EL , Pearson JT , Schwenke DO , Munasinghe PE , Tsuchimochi H , Rawal S , Coffey S , Davis P , Bunton R , Van Hout I , Kai Y , Williams MJA , Kakinuma Y , Fronius M , Katare R
Ref : Cardiovasc Diabetol , 20 :50 , 2021
Abstract : BACKGROUND: Acetylcholine (ACh) plays a crucial role in the function of the heart. Recent evidence suggests that cardiomyocytes possess a non-neuronal cholinergic system (NNCS) that comprises of choline acetyltransferase (ChAT), choline transporter 1 (CHT1), vesicular acetylcholine transporter (VAChT), acetylcholinesterase (AChE) and type-2 muscarinic ACh receptors (M(2)AChR) to synthesize, release, degrade ACh as well as for ACh to transduce a signal. NNCS is linked to cardiac cell survival, angiogenesis and glucose metabolism. Impairment of these functions are hallmarks of diabetic heart disease (DHD). The role of the NNCS in DHD is unknown. The aim of this study was to examine the effect of diabetes on cardiac NNCS and determine if activation of cardiac NNCS is beneficial to the diabetic heart. METHODS: Ventricular samples from type-2 diabetic humans and db/db mice were used to measure the expression pattern of NNCS components (ChAT, CHT1, VAChT, AChE and M(2)AChR) and glucose transporter-4 (GLUT-4) by western blot analysis. To determine the function of the cardiac NNCS in the diabetic heart, a db/db mouse model with cardiac-specific overexpression of ChAT gene was generated (db/db-ChAT-tg). Animals were followed up serially and samples collected at different time points for molecular and histological analysis of cardiac NNCS components and prosurvival and proangiogenic signaling pathways. RESULTS: Immunoblot analysis revealed alterations in the components of cardiac NNCS and GLUT-4 in the type-2 diabetic human and db/db mouse hearts. Interestingly, the dysregulation of cardiac NNCS was followed by the downregulation of GLUT-4 in the db/db mouse heart. Db/db-ChAT-tg mice exhibited preserved cardiac and vascular function in comparison to db/db mice. The improved function was associated with increased cardiac ACh and glucose content, sustained angiogenesis and reduced fibrosis. These beneficial effects were associated with upregulation of the PI3K/Akt/HIF1alpha signaling pathway, and increased expression of its downstream targets-GLUT-4 and VEGF-A. CONCLUSION: We provide the first evidence for dysregulation of the cardiac NNCS in DHD. Increased cardiac ACh is beneficial and a potential new therapeutic strategy to prevent or delay the development of DHD.
ESTHER : Saw_2021_Cardiovasc.Diabetol_20_50
PubMedSearch : Saw_2021_Cardiovasc.Diabetol_20_50
PubMedID: 33618724

Title : Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis - Stinear_2008_Genome.Res_18_729
Author(s) : Stinear TP , Seemann T , Harrison PF , Jenkin GA , Davies JK , Johnson PD , Abdellah Z , Arrowsmith C , Chillingworth T , Churcher C , Clarke K , Cronin A , Davis P , Goodhead I , Holroyd N , Jagels K , Lord A , Moule S , Mungall K , Norbertczak H , Quail MA , Rabbinowitsch E , Walker D , White B , Whitehead S , Small PL , Brosch R , Ramakrishnan L , Fischbach MA , Parkhill J , Cole ST
Ref : Genome Res , 18 :729 , 2008
Abstract : Mycobacterium marinum, a ubiquitous pathogen of fish and amphibia, is a near relative of Mycobacterium tuberculosis, the etiologic agent of tuberculosis in humans. The genome of the M strain of M. marinum comprises a 6,636,827-bp circular chromosome with 5424 CDS, 10 prophages, and a 23-kb mercury-resistance plasmid. Prominent features are the very large number of genes (57) encoding polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) and the most extensive repertoire yet reported of the mycobacteria-restricted PE and PPE proteins, and related-ESX secretion systems. Some of the NRPS genes comprise a novel family and seem to have been acquired horizontally. M. marinum is used widely as a model organism to study M. tuberculosis pathogenesis, and genome comparisons confirmed the close genetic relationship between these two species, as they share 3000 orthologs with an average amino acid identity of 85%. Comparisons with the more distantly related Mycobacterium avium subspecies paratuberculosis and Mycobacterium smegmatis reveal how an ancestral generalist mycobacterium evolved into M. tuberculosis and M. marinum. M. tuberculosis has undergone genome downsizing and extensive lateral gene transfer to become a specialized pathogen of humans and other primates without retaining an environmental niche. M. marinum has maintained a large genome so as to retain the capacity for environmental survival while becoming a broad host range pathogen that produces disease strikingly similar to M. tuberculosis. The work described herein provides a foundation for using M. marinum to better understand the determinants of pathogenesis of tuberculosis.
ESTHER : Stinear_2008_Genome.Res_18_729
PubMedSearch : Stinear_2008_Genome.Res_18_729
PubMedID: 18403782
Gene_locus related to this paper: mycmm-b2hds9 , mycmm-b2hed7 , mycmm-b2hg81 , mycmm-b2hgg2 , mycmm-b2hgg7 , mycmm-b2hhi7 , mycmm-b2hhu3 , mycmm-b2hiu3 , mycmm-b2hiu5 , mycmm-b2hiw7 , mycmm-b2hiy0 , mycmm-b2hj55 , mycmm-b2hjb4 , mycmm-b2hju3 , mycmm-b2hku1 , mycmm-b2hkw0 , mycmm-b2hlr0 , mycmm-b2hlt7 , mycmm-b2hlt8 , mycmm-b2hlt9 , mycmm-b2hlu0 , mycmm-b2hlv0 , mycmm-b2hlv1 , mycmm-b2hlv2 , mycmm-b2hlx2 , mycmm-b2hm55 , mycmm-b2hnr9 , mycmm-b2hnz5 , mycmm-b2hp80 , mycmm-b2hpp0 , mycmm-b2hq96 , mycmm-b2hr10 , mycmm-b2hsm6 , mycmm-b2hsm8 , mycmm-b2hsy0 , mycmm-b2ht06 , mycmm-b2ht20 , mycmm-b2ht49 , mycmm-dhma , mycmm-metx , mycmr-q5sdq4 , myctu-RV1683 , mycmm-b2h1k1 , mycua-a0pku2 , mycua-a0pl47 , mycua-a0plr3 , mycua-a0pm12 , mycua-a0pm14 , mycua-a0pmv0 , mycua-a0pmx9 , mycua-a0pn71 , mycua-a0ppm6 , mycua-a0pqm2 , mycua-a0pqs2 , mycua-a0prq2 , mycua-a0psb1 , mycua-a0psb4 , mycua-a0psi2 , mycua-a0pth6 , mycua-a0ptq0 , mycua-a0pu55 , mycua-a0pum4 , mycua-a0pv11 , mycua-a0pva4 , mycua-a0pwi8 , mycua-a0pwr6 , mycua-a0pwz5 , mycul-a85a , mycmm-b2hcy1 , mycua-a0pvg7 , mycmm-b2hnj4 , mycmm-b2he93 , mycua-a0pwz4 , mycmm-b2hqy3 , mycua-a0pmc3 , mycmm-b2hnn7 , mycmm-b2he68 , mycmm-b2hqm3 , mycmm-tesa

Title : The nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans: an update on nomenclature - Jones_2007_Invert.Neurosci_7_129
Author(s) : Jones AK , Davis P , Hodgkin J , Sattelle DB
Ref : Invert Neurosci , 7 :129 , 2007
Abstract : The simple nematode, Caenorhabditis elegans, possesses the most extensive known gene family of nicotinic acetylcholine receptor (nAChR)-like subunits. Whilst all show greatest similarity with nAChR subunits of both invertebrates and vertebrates, phylogenetic analysis suggests that just over half of these (32) may represent other members of the cys-loop ligand-gated ion channel superfamily. We have introduced a novel nomenclature system for these "Orphan" subunits, designating them as lgc genes (ligand-gated ion channels of the cys-loop superfamily), which can also be applied in future to unnamed and uncharacterised members of the cys-loop ligand-gated ion channel superfamily. We present here the resulting updated version of the C. elegans nAChR gene family and related ligand-gated ion channel genes.
ESTHER : Jones_2007_Invert.Neurosci_7_129
PubMedSearch : Jones_2007_Invert.Neurosci_7_129
PubMedID: 17503100

Title : The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome - Sebaihia_2006_Nat.Genet_38_779
Author(s) : Sebaihia M , Wren BW , Mullany P , Fairweather NF , Minton N , Stabler R , Thomson NR , Roberts AP , Cerdeno-Tarraga AM , Wang H , Holden MT , Wright A , Churcher C , Quail MA , Baker S , Bason N , Brooks K , Chillingworth T , Cronin A , Davis P , Dowd L , Fraser A , Feltwell T , Hance Z , Holroyd S , Jagels K , Moule S , Mungall K , Price C , Rabbinowitsch E , Sharp S , Simmonds M , Stevens K , Unwin L , Whithead S , Dupuy B , Dougan G , Barrell B , Parkhill J
Ref : Nat Genet , 38 :779 , 2006
Abstract : We determined the complete genome sequence of Clostridium difficile strain 630, a virulent and multidrug-resistant strain. Our analysis indicates that a large proportion (11%) of the genome consists of mobile genetic elements, mainly in the form of conjugative transposons. These mobile elements are putatively responsible for the acquisition by C. difficile of an extensive array of genes involved in antimicrobial resistance, virulence, host interaction and the production of surface structures. The metabolic capabilities encoded in the genome show multiple adaptations for survival and growth within the gut environment. The extreme genome variability was confirmed by whole-genome microarray analysis; it may reflect the organism's niche in the gut and should provide information on the evolution of virulence in this organism.
ESTHER : Sebaihia_2006_Nat.Genet_38_779
PubMedSearch : Sebaihia_2006_Nat.Genet_38_779
PubMedID: 16804543
Gene_locus related to this paper: pepdi-t4eki5 , clod6-q18a60 , clod6-q183v0 , clodi-HYDD , clodr-c9ynf2 , pepd6-pip , pepdi-g6brr4

Title : The genome of Rhizobium leguminosarum has recognizable core and accessory components - Young_2006_Genome.Biol_7_R34
Author(s) : Young JP , Crossman LC , Johnston AW , Thomson NR , Ghazoui ZF , Hull KH , Wexler M , Curson AR , Todd JD , Poole PS , Mauchline TH , East AK , Quail MA , Churcher C , Arrowsmith C , Cherevach I , Chillingworth T , Clarke K , Cronin A , Davis P , Fraser A , Hance Z , Hauser H , Jagels K , Moule S , Mungall K , Norbertczak H , Rabbinowitsch E , Sanders M , Simmonds M , Whitehead S , Parkhill J
Ref : Genome Biol , 7 :R34 , 2006
Abstract : BACKGROUND: Rhizobium leguminosarum is an alpha-proteobacterial N2-fixing symbiont of legumes that has been the subject of more than a thousand publications. Genes for the symbiotic interaction with plants are well studied, but the adaptations that allow survival and growth in the soil environment are poorly understood. We have sequenced the genome of R. leguminosarum biovar viciae strain 3841. RESULTS: The 7.75 Mb genome comprises a circular chromosome and six circular plasmids, with 61% G+C overall. All three rRNA operons and 52 tRNA genes are on the chromosome; essential protein-encoding genes are largely chromosomal, but most functional classes occur on plasmids as well. Of the 7,263 protein-encoding genes, 2,056 had orthologs in each of three related genomes (Agrobacterium tumefaciens, Sinorhizobium meliloti, and Mesorhizobium loti), and these genes were over-represented in the chromosome and had above average G+C. Most supported the rRNA-based phylogeny, confirming A. tumefaciens to be the closest among these relatives, but 347 genes were incompatible with this phylogeny; these were scattered throughout the genome but were over-represented on the plasmids. An unexpectedly large number of genes were shared by all three rhizobia but were missing from A. tumefaciens. CONCLUSION: Overall, the genome can be considered to have two main components: a 'core', which is higher in G+C, is mostly chromosomal, is shared with related organisms, and has a consistent phylogeny; and an 'accessory' component, which is sporadic in distribution, lower in G+C, and located on the plasmids and chromosomal islands. The accessory genome has a different nucleotide composition from the core despite a long history of coexistence.
ESTHER : Young_2006_Genome.Biol_7_R34
PubMedSearch : Young_2006_Genome.Biol_7_R34
PubMedID: 16640791
Gene_locus related to this paper: rhiec-q2k7y0 , rhiec-q2k107 , rhiec-q2kav5 , rhiec-q2ke86 , rhil3-q1m3b7 , rhil3-q1m3u0 , rhil3-q1m4b4 , rhil3-q1m4e5 , rhil3-q1m4g3 , rhil3-q1m4h0 , rhil3-q1m5k0 , rhil3-q1m5s6 , rhil3-q1m6q0 , rhil3-q1m6u8 , rhil3-q1m6w8 , rhil3-q1m7c2 , rhil3-q1m7c3 , rhil3-q1m7i2 , rhil3-q1m7n3 , rhil3-q1m7q9 , rhil3-q1m7r8 , rhil3-q1m8d0 , rhil3-q1m8u4 , rhil3-q1m9d6 , rhil3-q1m9i6 , rhil3-q1m347 , rhil3-q1m571 , rhil3-q1m580 , rhil3-q1m672 , rhil3-q1m812 , rhil3-q1m841 , rhil3-q1m917 , rhil3-q1m919 , rhil3-q1mbv4 , rhil3-q1mbz5 , rhil3-q1mc48 , rhil3-q1mcr4 , rhil3-q1md19 , rhil3-q1mdd8 , rhil3-q1me05 , rhil3-q1mee4 , rhil3-q1mel6 , rhil3-q1men7 , rhil3-q1mf17 , rhil3-q1mf73 , rhil3-q1mf76 , rhil3-q1mfb0 , rhil3-q1mfp5 , rhil3-q1mg17 , rhil3-q1mg51 , rhil3-q1mg97 , rhil3-q1mgh3 , rhil3-q1mgh5 , rhil3-q1mgu7 , rhil3-q1mgx5 , rhil3-q1mh67 , rhil3-q1mhh7 , rhil3-q1mhz8 , rhil3-q1mi67 , rhil3-q1mi98 , rhil3-q1mia3 , rhil3-q1mig2 , rhil3-q1miz0 , rhil3-q1mj26 , rhil3-q1mj65 , rhil3-q1mjs2 , rhil3-q1mjx4 , rhil3-q1mk84 , rhil3-q1mkk8 , rhil3-q1mli7 , rhil3-q1mlj7 , rhil3-q1mm33 , rhil3-q1mmf9 , rhil3-q1mmp7 , rhil3-q1mmx0 , rhil3-q1mn42 , rhile-Q93EA8 , rhils-c6axl5 , rhils-c6b1w7 , rhilw-b5zrm4 , rhilw-b5zs97 , rhilv-j0vcs5

Title : The genome of the social amoeba Dictyostelium discoideum - Eichinger_2005_Nature_435_43
Author(s) : Eichinger L , Pachebat JA , Glockner G , Rajandream MA , Sucgang R , Berriman M , Song J , Olsen R , Szafranski K , Xu Q , Tunggal B , Kummerfeld S , Madera M , Konfortov BA , Rivero F , Bankier AT , Lehmann R , Hamlin N , Davies R , Gaudet P , Fey P , Pilcher K , Chen G , Saunders D , Sodergren E , Davis P , Kerhornou A , Nie X , Hall N , Anjard C , Hemphill L , Bason N , Farbrother P , Desany B , Just E , Morio T , Rost R , Churcher C , Cooper J , Haydock S , van Driessche N , Cronin A , Goodhead I , Muzny D , Mourier T , Pain A , Lu M , Harper D , Lindsay R , Hauser H , James K , Quiles M , Madan Babu M , Saito T , Buchrieser C , Wardroper A , Felder M , Thangavelu M , Johnson D , Knights A , Loulseged H , Mungall K , Oliver K , Price C , Quail MA , Urushihara H , Hernandez J , Rabbinowitsch E , Steffen D , Sanders M , Ma J , Kohara Y , Sharp S , Simmonds M , Spiegler S , Tivey A , Sugano S , White B , Walker D , Woodward J , Winckler T , Tanaka Y , Shaulsky G , Schleicher M , Weinstock G , Rosenthal A , Cox EC , Chisholm RL , Gibbs R , Loomis WF , Platzer M , Kay RR , Williams J , Dear PH , Noegel AA , Barrell B , Kuspa A
Ref : Nature , 435 :43 , 2005
Abstract : The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
ESTHER : Eichinger_2005_Nature_435_43
PubMedSearch : Eichinger_2005_Nature_435_43
PubMedID: 15875012
Gene_locus related to this paper: dicdi-abhd , dicdi-ACHE , dicdi-apra , dicdi-cinbp , dicdi-CMBL , dicdi-crysp , dicdi-DPOA , dicdi-P90528 , dicdi-ppme1 , dicdi-Q8MYE7 , dicdi-q54cf7 , dicdi-q54cl7 , dicdi-q54cm0 , dicdi-q54ct5 , dicdi-q54cu1 , dicdi-q54d54 , dicdi-q54d66 , dicdi-q54dj5 , dicdi-q54dy7 , dicdi-q54ek1 , dicdi-q54eq6 , dicdi-q54et1 , dicdi-q54et7 , dicdi-q54f01 , dicdi-q54g24 , dicdi-q54g47 , dicdi-q54gi7 , dicdi-q54gw5 , dicdi-q54gx3 , dicdi-q54h23 , dicdi-q54h73 , dicdi-q54i38 , dicdi-q54ie5 , dicdi-q54in4 , dicdi-q54kz1 , dicdi-q54l36 , dicdi-q54li1 , dicdi-q54m29 , dicdi-q54n21 , dicdi-q54n35 , dicdi-q54n85 , dicdi-q54qe7 , dicdi-q54qi3 , dicdi-q54qk2 , dicdi-q54rl3 , dicdi-q54rl8 , dicdi-q54sy6 , dicdi-q54sz3 , dicdi-q54t49 , dicdi-q54t91 , dicdi-q54th2 , dicdi-q54u01 , dicdi-q54vc2 , dicdi-q54vw1 , dicdi-q54xe3 , dicdi-q54xl3 , dicdi-q54xu1 , dicdi-q54xu2 , dicdi-q54y48 , dicdi-q54yd0 , dicdi-q54ye0 , dicdi-q54yl1 , dicdi-q54yr8 , dicdi-q54z90 , dicdi-q55bx3 , dicdi-q55d01 , dicdi-q55d81 , dicdi-q55du6 , dicdi-q55eu1 , dicdi-q55eu8 , dicdi-q55fk4 , dicdi-q55gk7 , dicdi-Q54ZA6 , dicdi-q86h82 , dicdi-Q86HC9 , dicdi-Q86HM5 , dicdi-Q86HM6 , dicdi-q86iz7 , dicdi-q86jb6 , dicdi-Q86KU7 , dicdi-q550s3 , dicdi-q552c0 , dicdi-q553t5 , dicdi-q555e5 , dicdi-q555h0 , dicdi-q555h1 , dicdi-q557k5 , dicdi-q558u2 , dicdi-Q869Q8 , dicdi-u554 , dicdi-y9086 , dicdi-q54r44 , dicdi-f172a

Title : Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei - Holden_2004_Proc.Natl.Acad.Sci.U.S.A_101_14240
Author(s) : Holden MT , Titball RW , Peacock SJ , Cerdeno-Tarraga AM , Atkins T , Crossman LC , Pitt T , Churcher C , Mungall K , Bentley SD , Sebaihia M , Thomson NR , Bason N , Beacham IR , Brooks K , Brown KA , Brown NF , Challis GL , Cherevach I , Chillingworth T , Cronin A , Crossett B , Davis P , DeShazer D , Feltwell T , Fraser A , Hance Z , Hauser H , Holroyd S , Jagels K , Keith KE , Maddison M , Moule S , Price C , Quail MA , Rabbinowitsch E , Rutherford K , Sanders M , Simmonds M , Songsivilai S , Stevens K , Tumapa S , Vesaratchavest M , Whitehead S , Yeats C , Barrell BG , Oyston PC , Parkhill J
Ref : Proc Natl Acad Sci U S A , 101 :14240 , 2004
Abstract : Burkholderia pseudomallei is a recognized biothreat agent and the causative agent of melioidosis. This Gram-negative bacterium exists as a soil saprophyte in melioidosis-endemic areas of the world and accounts for 20% of community-acquired septicaemias in northeastern Thailand where half of those affected die. Here we report the complete genome of B. pseudomallei, which is composed of two chromosomes of 4.07 megabase pairs and 3.17 megabase pairs, showing significant functional partitioning of genes between them. The large chromosome encodes many of the core functions associated with central metabolism and cell growth, whereas the small chromosome carries more accessory functions associated with adaptation and survival in different niches. Genomic comparisons with closely and more distantly related bacteria revealed a greater level of gene order conservation and a greater number of orthologous genes on the large chromosome, suggesting that the two replicons have distinct evolutionary origins. A striking feature of the genome was the presence of 16 genomic islands (GIs) that together made up 6.1% of the genome. Further analysis revealed these islands to be variably present in a collection of invasive and soil isolates but entirely absent from the clonally related organism B. mallei. We propose that variable horizontal gene acquisition by B. pseudomallei is an important feature of recent genetic evolution and that this has resulted in a genetically diverse pathogenic species.
ESTHER : Holden_2004_Proc.Natl.Acad.Sci.U.S.A_101_14240
PubMedSearch : Holden_2004_Proc.Natl.Acad.Sci.U.S.A_101_14240
PubMedID: 15377794
Gene_locus related to this paper: burma-a5j5w8 , burma-a5tj72 , burma-a5tq93 , burma-metx , burma-q62a61 , burma-q62ar2.1 , burma-q62ar2.2 , burma-q62ax8 , burma-q62b60 , burma-q62b79 , burma-q62bh9 , burma-q62bl4 , burma-q62bl7 , burma-q62c00 , burma-q62cg5 , burma-q62d41 , burma-q62d56 , burma-q62d83 , burma-q62dg2 , burma-q62du7 , burma-q62e67 , burma-q62eb8 , burma-q62ed8 , burma-q62f28 , burma-q62fx7 , burma-q62g26 , burma-q62gx9 , burma-q62gy2 , burma-q62hq2 , burma-q62i62 , burma-q62ib8 , burma-q62ie8 , burma-q62j07 , burma-q62j15 , burma-q62jn5 , burma-q62jy7 , burma-q62kb7 , burma-q62kg0 , burma-q62kh9 , burma-q62lp7 , burma-q62m40 , burma-q62mc3 , burma-q62mf4 , burma-q62mq7 , burma-q629m1 , burma-q629p4 , burma-q629u0 , burp1-q3jvq2 , burps-a4lm41 , burps-q3v7s4 , burps-q63hx2 , burps-q63i95 , burps-q63im5 , burps-q63is4 , burps-q63ja6 , burps-q63ja9 , burps-q63jh5 , burps-q63l17 , burps-q63l41 , burps-q63l44 , burps-q63lt9 , burps-q63me1 , burps-q63mj7 , burps-q63mj8 , burps-q63mn8 , burps-q63mr2 , burps-q63n52 , burps-q63p18 , burps-q63p99 , burps-q63ug2 , burps-q63ug5 , burps-q63xf9 , burps-q63y36 , burps-q63y45 , burps-q63y52 , burps-q63y59 , burta-q2t474 , burps-hboh

Title : Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica - Parkhill_2003_Nat.Genet_35_32
Author(s) : Parkhill J , Sebaihia M , Preston A , Murphy LD , Thomson N , Harris DE , Holden MT , Churcher CM , Bentley SD , Mungall KL , Cerdeno-Tarraga AM , Temple L , James K , Harris B , Quail MA , Achtman M , Atkin R , Baker S , Basham D , Bason N , Cherevach I , Chillingworth T , Collins M , Cronin A , Davis P , Doggett J , Feltwell T , Goble A , Hamlin N , Hauser H , Holroyd S , Jagels K , Leather S , Moule S , Norberczak H , O'Neil S , Ormond D , Price C , Rabbinowitsch E , Rutter S , Sanders M , Saunders D , Seeger K , Sharp S , Simmonds M , Skelton J , Squares R , Squares S , Stevens K , Unwin L , Whitehead S , Barrell BG , Maskell DJ
Ref : Nat Genet , 35 :32 , 2003
Abstract : Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative beta-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.
ESTHER : Parkhill_2003_Nat.Genet_35_32
PubMedSearch : Parkhill_2003_Nat.Genet_35_32
PubMedID: 12910271
Gene_locus related to this paper: borbr-BB0273 , borbr-BB0570 , borbr-BB0670 , borbr-BB1064 , borbr-BB1079 , borbr-BB1247 , borbr-BB1498 , borbr-BB2718 , borbr-BB4129 , borbr-BB4247 , borbr-MHPC , borbr-q7wdw1 , borbr-q7wiz8 , borbr-q7wk25 , borbr-q7wmc2 , borbr-q7wpd9 , borpa-q7w3f3 , borpa-q7w9v8 , borpe-BIOH , borpe-BP0300 , borpe-BP2114 , borpe-BP2146 , borpe-BP2511 , borpe-BP3096 , borpe-BP3623 , borpe-BP3691 , borpe-CATD2 , borpe-METX , borpe-O30449 , borpe-PHBC , borpe-q7vsl4 , borpe-q7vt07 , borpe-q7vtg0 , borpe-q7vtv2 , borpe-q7vus4 , borpe-q7vuv4 , borpe-q7vv11 , borpe-q7vv48 , borpe-q7vvf6 , borpe-q7vwu4 , borpe-q7vyn0 , borpe-q7vyq4 , borpe-q7vz26 , borpe-q7vzb4 , borpe-q7vzj6 , borpe-q7w073

Title : Sequence of Plasmodium falciparum chromosomes 1, 3-9 and 13 - Hall_2002_Nature_419_527
Author(s) : Hall N , Pain A , Berriman M , Churcher C , Harris B , Harris D , Mungall K , Bowman S , Atkin R , Baker S , Barron A , Brooks K , Buckee CO , Burrows C , Cherevach I , Chillingworth C , Chillingworth T , Christodoulou Z , Clark L , Clark R , Corton C , Cronin A , Davies R , Davis P , Dear P , Dearden F , Doggett J , Feltwell T , Goble A , Goodhead I , Gwilliam R , Hamlin N , Hance Z , Harper D , Hauser H , Hornsby T , Holroyd S , Horrocks P , Humphray S , Jagels K , James KD , Johnson D , Kerhornou A , Knights A , Konfortov B , Kyes S , Larke N , Lawson D , Lennard N , Line A , Maddison M , McLean J , Mooney P , Moule S , Murphy L , Oliver K , Ormond D , Price C , Quail MA , Rabbinowitsch E , Rajandream MA , Rutter S , Rutherford KM , Sanders M , Simmonds M , Seeger K , Sharp S , Smith R , Squares R , Squares S , Stevens K , Taylor K , Tivey A , Unwin L , Whitehead S , Woodward J , Sulston JE , Craig A , Newbold C , Barrell BG
Ref : Nature , 419 :527 , 2002
Abstract : Since the sequencing of the first two chromosomes of the malaria parasite, Plasmodium falciparum, there has been a concerted effort to sequence and assemble the entire genome of this organism. Here we report the sequence of chromosomes 1, 3-9 and 13 of P. falciparum clone 3D7--these chromosomes account for approximately 55% of the total genome. We describe the methods used to map, sequence and annotate these chromosomes. By comparing our assemblies with the optical map, we indicate the completeness of the resulting sequence. During annotation, we assign Gene Ontology terms to the predicted gene products, and observe clustering of some malaria-specific terms to specific chromosomes. We identify a highly conserved sequence element found in the intergenic region of internal var genes that is not associated with their telomeric counterparts.
ESTHER : Hall_2002_Nature_419_527
PubMedSearch : Hall_2002_Nature_419_527
PubMedID: 12368867
Gene_locus related to this paper: plaf7-c0h4q4 , plafa-MAL6P1.135 , plafa-PFD0185C , plafa-PFI1775W , plafa-PFI1800W

Title : The genome sequence of Schizosaccharomyces pombe - Wood_2002_Nature_415_871
Author(s) : Wood V , Gwilliam R , Rajandream MA , Lyne M , Lyne R , Stewart A , Sgouros J , Peat N , Hayles J , Baker S , Basham D , Bowman S , Brooks K , Brown D , Brown S , Chillingworth T , Churcher C , Collins M , Connor R , Cronin A , Davis P , Feltwell T , Fraser A , Gentles S , Goble A , Hamlin N , Harris D , Hidalgo J , Hodgson G , Holroyd S , Hornsby T , Howarth S , Huckle EJ , Hunt S , Jagels K , James K , Jones L , Jones M , Leather S , McDonald S , McLean J , Mooney P , Moule S , Mungall K , Murphy L , Niblett D , Odell C , Oliver K , O'Neil S , Pearson D , Quail MA , Rabbinowitsch E , Rutherford K , Rutter S , Saunders D , Seeger K , Sharp S , Skelton J , Simmonds M , Squares R , Squares S , Stevens K , Taylor K , Taylor RG , Tivey A , Walsh S , Warren T , Whitehead S , Woodward J , Volckaert G , Aert R , Robben J , Grymonprez B , Weltjens I , Vanstreels E , Rieger M , Schafer M , Muller-Auer S , Gabel C , Fuchs M , Dusterhoft A , Fritzc C , Holzer E , Moestl D , Hilbert H , Borzym K , Langer I , Beck A , Lehrach H , Reinhardt R , Pohl TM , Eger P , Zimmermann W , Wedler H , Wambutt R , Purnelle B , Goffeau A , Cadieu E , Dreano S , Gloux S , Lelaure V , Mottier S , Galibert F , Aves SJ , Xiang Z , Hunt C , Moore K , Hurst SM , Lucas M , Rochet M , Gaillardin C , Tallada VA , Garzon A , Thode G , Daga RR , Cruzado L , Jimenez J , Sanchez M , del Rey F , Benito J , Dominguez A , Revuelta JL , Moreno S , Armstrong J , Forsburg SL , Cerutti L , Lowe T , McCombie WR , Paulsen I , Potashkin J , Shpakovski GV , Ussery D , Barrell BG , Nurse P
Ref : Nature , 415 :871 , 2002
Abstract : We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.
ESTHER : Wood_2002_Nature_415_871
PubMedSearch : Wood_2002_Nature_415_871
PubMedID: 11859360
Gene_locus related to this paper: schpo-APTH1 , schpo-be46 , schpo-BST1 , schpo-C2E11.08 , schpo-C14C4.15C , schpo-C22H12.03 , schpo-C23C4.16C , schpo-C57A10.08C , schpo-dyr , schpo-este1 , schpo-KEX1 , schpo-PCY1 , schpo-pdat , schpo-PLG7 , schpo-ppme1 , schpo-q9c0y8 , schpo-SPAC4A8.06C , schpo-C22A12.06C , schpo-SPAC977.15 , schpo-SPAPB1A11.02 , schpo-SPBC14C8.15 , schpo-SPBC530.12C , schpo-SPBC1711.12 , schpo-SPBPB2B2.02 , schpo-SPCC5E4.05C , schpo-SPCC417.12 , schpo-SPCC1672.09 , schpo-yb4e , schpo-yblh , schpo-ydw6 , schpo-ye7a , schpo-ye63 , schpo-ye88 , schpo-yeld , schpo-yk68 , schpo-clr3 , schpo-ykv6

Title : Genome sequence of Yersinia pestis, the causative agent of plague. - Parkhill_2001_Nature_413_523
Author(s) : Parkhill J , Wren BW , Thomson NR , Titball RW , Holden MTG , Prentice MB , Sebaihia M , James KD , Churcher C , Mungall KL , Baker S , Basham D , Bentley SD , Brooks K , Cerdeno-Tarraga AM , Chillingworth T , Cronin A , Davies RM , Davis P , Dougan G , Feltwell T , Hamlin N , Holroyd S , Jagels K , Karlyshev AV , Leather S , Moule S , Oyston PCF , Quail M , Rutherford K , Simmonds M , Skelton J , Stevens K , Whitehead S , Barrell BG
Ref : Nature , 413 :523 , 2001
Abstract : The Gram-negative bacterium Yersinia pestis is the causative agent of the systemic invasive infectious disease classically referred to as plague, and has been responsible for three human pandemics: the Justinian plague (sixth to eighth centuries), the Black Death (fourteenth to nineteenth centuries) and modern plague (nineteenth century to the present day). The recent identification of strains resistant to multiple drugs and the potential use of Y. pestis as an agent of biological warfare mean that plague still poses a threat to human health. Here we report the complete genome sequence of Y. pestis strain CO92, consisting of a 4.65-megabase (Mb) chromosome and three plasmids of 96.2 kilobases (kb), 70.3 kb and 9.6 kb. The genome is unusually rich in insertion sequences and displays anomalies in GC base-composition bias, indicating frequent intragenomic recombination. Many genes seem to have been acquired from other bacteria and viruses (including adhesins, secretion systems and insecticidal toxins). The genome contains around 150 pseudogenes, many of which are remnants of a redundant enteropathogenic lifestyle. The evidence of ongoing genome fluidity, expansion and decay suggests Y. pestis is a pathogen that has undergone large-scale genetic flux and provides a unique insight into the ways in which new and highly virulent pathogens evolve.
ESTHER : Parkhill_2001_Nature_413_523
PubMedSearch : Parkhill_2001_Nature_413_523
PubMedID: 11586360
Gene_locus related to this paper: yerpe-BIOH , yerpe-dlhh , yerpe-IRP1 , yerpe-PIP , yerpe-PLDB , yerpe-PTRB , yerpe-q8zey9 , yerpe-y1616 , yerpe-y3224 , yerpe-YBTT , yerpe-YPLA , yerpe-YPO0180 , yerpe-YPO0667 , yerpe-YPO0773 , yerpe-YPO0776 , yerpe-YPO0986 , yerpe-YPO1501 , yerpe-YPO1997 , yerpe-YPO2002 , yerpe-YPO2336 , yerpe-YPO2526 , yerpe-YPO2638 , yerpe-YPO2814 , yerpe-YPO4014

Title : Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 - Parkhill_2001_Nature_413_848
Author(s) : Parkhill J , Dougan G , James KD , Thomson NR , Pickard D , Wain J , Churcher C , Mungall KL , Bentley SD , Holden MT , Sebaihia M , Baker S , Basham D , Brooks K , Chillingworth T , Connerton P , Cronin A , Davis P , Davies RM , Dowd L , White N , Farrar J , Feltwell T , Hamlin N , Haque A , Hien TT , Holroyd S , Jagels K , Krogh A , Larsen TS , Leather S , Moule S , O'Gaora P , Parry C , Quail M , Rutherford K , Simmonds M , Skelton J , Stevens K , Whitehead S , Barrell BG
Ref : Nature , 413 :848 , 2001
Abstract : Salmonella enterica serovar Typhi (S. typhi) is the aetiological agent of typhoid fever, a serious invasive bacterial disease of humans with an annual global burden of approximately 16 million cases, leading to 600,000 fatalities. Many S. enterica serovars actively invade the mucosal surface of the intestine but are normally contained in healthy individuals by the local immune defence mechanisms. However, S. typhi has evolved the ability to spread to the deeper tissues of humans, including liver, spleen and bone marrow. Here we have sequenced the 4,809,037-base pair (bp) genome of a S. typhi (CT18) that is resistant to multiple drugs, revealing the presence of hundreds of insertions and deletions compared with the Escherichia coli genome, ranging in size from single genes to large islands. Notably, the genome sequence identifies over two hundred pseudogenes, several corresponding to genes that are known to contribute to virulence in Salmonella typhimurium. This genetic degradation may contribute to the human-restricted host range for S. typhi. CT18 harbours a 218,150-bp multiple-drug-resistance incH1 plasmid (pHCM1), and a 106,516-bp cryptic plasmid (pHCM2), which shows recent common ancestry with a virulence plasmid of Yersinia pestis.
ESTHER : Parkhill_2001_Nature_413_848
PubMedSearch : Parkhill_2001_Nature_413_848
PubMedID: 11677608
Gene_locus related to this paper: salen-OPDB , salti-q8z717 , salty-AES , salty-BIOH , salty-ENTF , salty-FES , salty-IROD , salty-IROE , salty-PLDB , salty-STM2547 , salty-STM4506 , salty-STY1441 , salty-STY2428 , salty-STY3846 , salty-yafa , salty-YBFF , salty-ycfp , salty-YFBB , salty-YJFP , salty-YQIA

Title : Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491 - Parkhill_2000_Nature_404_502
Author(s) : Parkhill J , Achtman M , James KD , Bentley SD , Churcher C , Klee SR , Morelli G , Basham D , Brown D , Chillingworth T , Davies RM , Davis P , Devlin K , Feltwell T , Hamlin N , Holroyd S , Jagels K , Leather S , Moule S , Mungall K , Quail MA , Rajandream MA , Rutherford KM , Simmonds M , Skelton J , Whitehead S , Spratt BG , Barrell BG
Ref : Nature , 404 :502 , 2000
Abstract : Neisseria meningitidis causes bacterial meningitis and is therefore responsible for considerable morbidity and mortality in both the developed and the developing world. Meningococci are opportunistic pathogens that colonize the nasopharynges and oropharynges of asymptomatic carriers. For reasons that are still mostly unknown, they occasionally gain access to the blood, and subsequently to the cerebrospinal fluid, to cause septicaemia and meningitis. N. meningitidis strains are divided into a number of serogroups on the basis of the immunochemistry of their capsular polysaccharides; serogroup A strains are responsible for major epidemics and pandemics of meningococcal disease, and therefore most of the morbidity and mortality associated with this disease. Here we have determined the complete genome sequence of a serogroup A strain of Neisseria meningitidis, Z2491. The sequence is 2,184,406 base pairs in length, with an overall G+C content of 51.8%, and contains 2,121 predicted coding sequences. The most notable feature of the genome is the presence of many hundreds of repetitive elements, ranging from short repeats, positioned either singly or in large multiple arrays, to insertion sequences and gene duplications of one kilobase or more. Many of these repeats appear to be involved in genome fluidity and antigenic variation in this important human pathogen.
ESTHER : Parkhill_2000_Nature_404_502
PubMedSearch : Parkhill_2000_Nature_404_502
PubMedID: 10761919
Gene_locus related to this paper: neima-metx , neimb-q9k0t9 , neime-ESD , neime-NMA2216 , neime-NMB0276 , neime-NMB1877 , neimf-a1kta9 , neime-r0tza2