Niblett D

References (3)

Title : The DNA sequence and analysis of human chromosome 6 - Mungall_2003_Nature_425_805
Author(s) : Mungall AJ , Palmer SA , Sims SK , Edwards CA , Ashurst JL , Wilming L , Jones MC , Horton R , Hunt SE , Scott CE , Gilbert JG , Clamp ME , Bethel G , Milne S , Ainscough R , Almeida JP , Ambrose KD , Andrews TD , Ashwell RI , Babbage AK , Bagguley CL , Bailey J , Banerjee R , Barker DJ , Barlow KF , Bates K , Beare DM , Beasley H , Beasley O , Bird CP , Blakey S , Bray-Allen S , Brook J , Brown AJ , Brown JY , Burford DC , Burrill W , Burton J , Carder C , Carter NP , Chapman JC , Clark SY , Clark G , Clee CM , Clegg S , Cobley V , Collier RE , Collins JE , Colman LK , Corby NR , Coville GJ , Culley KM , Dhami P , Davies J , Dunn M , Earthrowl ME , Ellington AE , Evans KA , Faulkner L , Francis MD , Frankish A , Frankland J , French L , Garner P , Garnett J , Ghori MJ , Gilby LM , Gillson CJ , Glithero RJ , Grafham DV , Grant M , Gribble S , Griffiths C , Griffiths M , Hall R , Halls KS , Hammond S , Harley JL , Hart EA , Heath PD , Heathcott R , Holmes SJ , Howden PJ , Howe KL , Howell GR , Huckle E , Humphray SJ , Humphries MD , Hunt AR , Johnson CM , Joy AA , Kay M , Keenan SJ , Kimberley AM , King A , Laird GK , Langford C , Lawlor S , Leongamornlert DA , Leversha M , Lloyd CR , Lloyd DM , Loveland JE , Lovell J , Martin S , Mashreghi-Mohammadi M , Maslen GL , Matthews L , Mccann OT , McLaren SJ , McLay K , McMurray A , Moore MJ , Mullikin JC , Niblett D , Nickerson T , Novik KL , Oliver K , Overton-Larty EK , Parker A , Patel R , Pearce AV , Peck AI , Phillimore B , Phillips S , Plumb RW , Porter KM , Ramsey Y , Ranby SA , Rice CM , Ross MT , Searle SM , Sehra HK , Sheridan E , Skuce CD , Smith S , Smith M , Spraggon L , Squares SL , Steward CA , Sycamore N , Tamlyn-Hall G , Tester J , Theaker AJ , Thomas DW , Thorpe A , Tracey A , Tromans A , Tubby B , Wall M , Wallis JM , West AP , White SS , Whitehead SL , Whittaker H , Wild A , Willey DJ , Wilmer TE , Wood JM , Wray PW , Wyatt JC , Young L , Younger RM , Bentley DR , Coulson A , Durbin R , Hubbard T , Sulston JE , Dunham I , Rogers J , Beck S
Ref : Nature , 425 :805 , 2003
Abstract : Chromosome 6 is a metacentric chromosome that constitutes about 6% of the human genome. The finished sequence comprises 166,880,988 base pairs, representing the largest chromosome sequenced so far. The entire sequence has been subjected to high-quality manual annotation, resulting in the evidence-supported identification of 1,557 genes and 633 pseudogenes. Here we report that at least 96% of the protein-coding genes have been identified, as assessed by multi-species comparative sequence analysis, and provide evidence for the presence of further, otherwise unsupported exons/genes. Among these are genes directly implicated in cancer, schizophrenia, autoimmunity and many other diseases. Chromosome 6 harbours the largest transfer RNA gene cluster in the genome; we show that this cluster co-localizes with a region of high transcriptional activity. Within the essential immune loci of the major histocompatibility complex, we find HLA-B to be the most polymorphic gene on chromosome 6 and in the human genome.
ESTHER : Mungall_2003_Nature_425_805
PubMedSearch : Mungall_2003_Nature_425_805
PubMedID: 14574404
Gene_locus related to this paper: human-ABHD16A , human-BPHL , human-FAM135A , human-PRSS16 , human-SERAC1

Title : The genome sequence of Schizosaccharomyces pombe - Wood_2002_Nature_415_871
Author(s) : Wood V , Gwilliam R , Rajandream MA , Lyne M , Lyne R , Stewart A , Sgouros J , Peat N , Hayles J , Baker S , Basham D , Bowman S , Brooks K , Brown D , Brown S , Chillingworth T , Churcher C , Collins M , Connor R , Cronin A , Davis P , Feltwell T , Fraser A , Gentles S , Goble A , Hamlin N , Harris D , Hidalgo J , Hodgson G , Holroyd S , Hornsby T , Howarth S , Huckle EJ , Hunt S , Jagels K , James K , Jones L , Jones M , Leather S , McDonald S , McLean J , Mooney P , Moule S , Mungall K , Murphy L , Niblett D , Odell C , Oliver K , O'Neil S , Pearson D , Quail MA , Rabbinowitsch E , Rutherford K , Rutter S , Saunders D , Seeger K , Sharp S , Skelton J , Simmonds M , Squares R , Squares S , Stevens K , Taylor K , Taylor RG , Tivey A , Walsh S , Warren T , Whitehead S , Woodward J , Volckaert G , Aert R , Robben J , Grymonprez B , Weltjens I , Vanstreels E , Rieger M , Schafer M , Muller-Auer S , Gabel C , Fuchs M , Dusterhoft A , Fritzc C , Holzer E , Moestl D , Hilbert H , Borzym K , Langer I , Beck A , Lehrach H , Reinhardt R , Pohl TM , Eger P , Zimmermann W , Wedler H , Wambutt R , Purnelle B , Goffeau A , Cadieu E , Dreano S , Gloux S , Lelaure V , Mottier S , Galibert F , Aves SJ , Xiang Z , Hunt C , Moore K , Hurst SM , Lucas M , Rochet M , Gaillardin C , Tallada VA , Garzon A , Thode G , Daga RR , Cruzado L , Jimenez J , Sanchez M , del Rey F , Benito J , Dominguez A , Revuelta JL , Moreno S , Armstrong J , Forsburg SL , Cerutti L , Lowe T , McCombie WR , Paulsen I , Potashkin J , Shpakovski GV , Ussery D , Barrell BG , Nurse P
Ref : Nature , 415 :871 , 2002
Abstract : We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.
ESTHER : Wood_2002_Nature_415_871
PubMedSearch : Wood_2002_Nature_415_871
PubMedID: 11859360
Gene_locus related to this paper: schpo-APTH1 , schpo-be46 , schpo-BST1 , schpo-C2E11.08 , schpo-C14C4.15C , schpo-C22H12.03 , schpo-C23C4.16C , schpo-C57A10.08C , schpo-dyr , schpo-este1 , schpo-KEX1 , schpo-PCY1 , schpo-pdat , schpo-PLG7 , schpo-ppme1 , schpo-q9c0y8 , schpo-SPAC4A8.06C , schpo-C22A12.06C , schpo-SPAC977.15 , schpo-SPAPB1A11.02 , schpo-SPBC14C8.15 , schpo-SPBC530.12C , schpo-SPBC1711.12 , schpo-SPBPB2B2.02 , schpo-SPCC5E4.05C , schpo-SPCC417.12 , schpo-SPCC1672.09 , schpo-yb4e , schpo-yblh , schpo-ydw6 , schpo-ye7a , schpo-ye63 , schpo-ye88 , schpo-yeld , schpo-yk68 , schpo-clr3 , schpo-ykv6

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome IV - Jacq_1997_Nature_387_75
Author(s) : Jacq C , Alt-Morbe J , Andre B , Arnold W , Bahr A , Ballesta JP , Bargues M , Baron L , Becker A , Biteau N , Blocker H , Blugeon C , Boskovic J , Brandt P , Bruckner M , Buitrago MJ , Coster F , Delaveau T , del Rey F , Dujon B , Eide LG , Garcia-Cantalejo JM , Goffeau A , Gomez-Peris AC , Granotier C , Hanemann V , Hankeln T , Hoheisel JD , Jager W , Jimenez A , Jonniaux JL , Kramer C , Kuster H , Laamanen P , Legros Y , Louis E , Muller-Rieker S , Monnet A , Moro M , Muller-Auer S , Nussbaumer B , Paricio N , Paulin L , Perea J , Perez-Alonso M , Perez-Ortin JE , Pohl TM , Prydz H , Purnelle B , Rasmussen SW , Remacha M , Revuelta JL , Rieger M , Salom D , Saluz HP , Saiz JE , Saren AM , Schafer M , Scharfe M , Schmidt ER , Schneider C , Scholler P , Schwarz S , Soler-Mira A , Urrestarazu LA , Verhasselt P , Vissers S , Voet M , Volckaert G , Wagner G , Wambutt R , Wedler E , Wedler H , Wolfl S , Harris DE , Bowman S , Brown D , Churcher CM , Connor R , Dedman K , Gentles S , Hamlin N , Hunt S , Jones L , McDonald S , Murphy L , Niblett D , Odell C , Oliver K , Rajandream MA , Richards C , Shore L , Walsh SV , Barrell BG , Dietrich FS , Mulligan J , Allen E , Araujo R , Aviles E , Berno A , Carpenter J , Chen E , Cherry JM , Chung E , Duncan M , Hunicke-Smith S , Hyman R , Komp C , Lashkari D , Lew H , Lin D , Mosedale D , Nakahara K , Namath A , Oefner P , Oh C , Petel FX , Roberts D , Schramm S , Schroeder M , Shogren T , Shroff N , Winant A , Yelton M , Botstein D , Davis RW , Johnston M , Hillier L , Riles L , Albermann K , Hani J , Heumann K , Kleine K , Mewes HW , Zollner A , Zaccaria P
Ref : Nature , 387 :75 , 1997
Abstract : The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome IV has been determined. Apart from chromosome XII, which contains the 1-2 Mb rDNA cluster, chromosome IV is the longest S. cerevisiae chromosome. It was split into three parts, which were sequenced by a consortium from the European Community, the Sanger Centre, and groups from St Louis and Stanford in the United States. The sequence of 1,531,974 base pairs contains 796 predicted or known genes, 318 (39.9%) of which have been previously identified. Of the 478 new genes, 225 (28.3%) are homologous to previously identified genes and 253 (32%) have unknown functions or correspond to spurious open reading frames (ORFs). On average there is one gene approximately every two kilobases. Superimposed on alternating regional variations in G+C composition, there is a large central domain with a lower G+C content that contains all the yeast transposon (Ty) elements and most of the tRNA genes. Chromosome IV shares with chromosomes II, V, XII, XIII and XV some long clustered duplications which partly explain its origin.
ESTHER : Jacq_1997_Nature_387_75
PubMedSearch : Jacq_1997_Nature_387_75
PubMedID: 9169867
Gene_locus related to this paper: yeast-dlhh , yeast-ECM18 , yeast-YDL109C , yeast-YDR428C , yeast-YDR444W