Volckaert G

References (15)

Title : The genome of the kinetoplastid parasite, Leishmania major - Ivens_2005_Science_309_436
Author(s) : Ivens AC , Peacock CS , Worthey EA , Murphy L , Aggarwal G , Berriman M , Sisk E , Rajandream MA , Adlem E , Aert R , Anupama A , Apostolou Z , Attipoe P , Bason N , Bauser C , Beck A , Beverley SM , Bianchettin G , Borzym K , Bothe G , Bruschi CV , Collins M , Cadag E , Ciarloni L , Clayton C , Coulson RM , Cronin A , Cruz AK , Davies RM , De Gaudenzi J , Dobson DE , Duesterhoeft A , Fazelina G , Fosker N , Frasch AC , Fraser A , Fuchs M , Gabel C , Goble A , Goffeau A , Harris D , Hertz-Fowler C , Hilbert H , Horn D , Huang Y , Klages S , Knights A , Kube M , Larke N , Litvin L , Lord A , Louie T , Marra M , Masuy D , Matthews K , Michaeli S , Mottram JC , Muller-Auer S , Munden H , Nelson S , Norbertczak H , Oliver K , O'Neil S , Pentony M , Pohl TM , Price C , Purnelle B , Quail MA , Rabbinowitsch E , Reinhardt R , Rieger M , Rinta J , Robben J , Robertson L , Ruiz JC , Rutter S , Saunders D , Schafer M , Schein J , Schwartz DC , Seeger K , Seyler A , Sharp S , Shin H , Sivam D , Squares R , Squares S , Tosato V , Vogt C , Volckaert G , Wambutt R , Warren T , Wedler H , Woodward J , Zhou S , Zimmermann W , Smith DF , Blackwell JM , Stuart KD , Barrell B , Myler PJ
Ref : Science , 309 :436 , 2005
Abstract : Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function. These include genes involved in host-pathogen interactions, such as proteolytic enzymes, and extensive machinery for synthesis of complex surface glycoconjugates. The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Trypanosoma cruzi (Tritryp) genomes suggest that the mechanisms regulating RNA polymerase II-directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling. Abundant RNA-binding proteins are encoded in the Tritryp genomes, consistent with active posttranscriptional regulation of gene expression.
ESTHER : Ivens_2005_Science_309_436
PubMedSearch : Ivens_2005_Science_309_436
PubMedID: 16020728
Gene_locus related to this paper: leima-e9ady6 , leima-L2464.12 , leima-L2802.02 , leima-OPB , leima-q4fw33 , leima-q4fwg8 , leima-q4fwj0 , leima-q4fya7 , leima-q4q0a1 , leima-q4q0t5 , leima-q4q0v0 , leima-q4q1h9 , leima-q4q2c9 , leima-q4q4j7 , leima-q4q4t6 , leima-q4q5j1 , leima-q4q6e9 , leima-q4q7v8 , leima-q4q8a8 , leima-q4q9g9 , leima-q4q080 , leima-q4q398 , leima-q4q615 , leima-q4q819 , leima-q4q871 , leima-q4q942 , leima-q4qae7 , leima-q4qb85 , leima-q4qdz7 , leima-q4qe26 , leima-q4qe31 , leima-q4qe85 , leima-q4qe86 , leima-q4qe87 , leima-q4qe90 , leima-q4qec8 , leima-q4qgz4 , leima-q4qgz5 , leima-q4qhs0 , leima-q4qj45

Title : Functional profiling of the Saccharomyces cerevisiae genome - Giaever_2002_Nature_418_387
Author(s) : Giaever G , Chu AM , Ni L , Connelly C , Riles L , Veronneau S , Dow S , Lucau-Danila A , Anderson K , Andre B , Arkin AP , Astromoff A , El-Bakkoury M , Bangham R , Benito R , Brachat S , Campanaro S , Curtiss M , Davis K , Deutschbauer A , Entian KD , Flaherty P , Foury F , Garfinkel DJ , Gerstein M , Gotte D , Guldener U , Hegemann JH , Hempel S , Herman Z , Jaramillo DF , Kelly DE , Kelly SL , Kotter P , LaBonte D , Lamb DC , Lan N , Liang H , Liao H , Liu L , Luo C , Lussier M , Mao R , Menard P , Ooi SL , Revuelta JL , Roberts CJ , Rose M , Ross-Macdonald P , Scherens B , Schimmack G , Shafer B , Shoemaker DD , Sookhai-Mahadeo S , Storms RK , Strathern JN , Valle G , Voet M , Volckaert G , Wang CY , Ward TR , Wilhelmy J , Winzeler EA , Yang Y , Yen G , Youngman E , Yu K , Bussey H , Boeke JD , Snyder M , Philippsen P , Davis RW , Johnston M
Ref : Nature , 418 :387 , 2002
Abstract : Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.
ESTHER : Giaever_2002_Nature_418_387
PubMedSearch : Giaever_2002_Nature_418_387
PubMedID: 12140549

Title : The genome sequence of Schizosaccharomyces pombe - Wood_2002_Nature_415_871
Author(s) : Wood V , Gwilliam R , Rajandream MA , Lyne M , Lyne R , Stewart A , Sgouros J , Peat N , Hayles J , Baker S , Basham D , Bowman S , Brooks K , Brown D , Brown S , Chillingworth T , Churcher C , Collins M , Connor R , Cronin A , Davis P , Feltwell T , Fraser A , Gentles S , Goble A , Hamlin N , Harris D , Hidalgo J , Hodgson G , Holroyd S , Hornsby T , Howarth S , Huckle EJ , Hunt S , Jagels K , James K , Jones L , Jones M , Leather S , McDonald S , McLean J , Mooney P , Moule S , Mungall K , Murphy L , Niblett D , Odell C , Oliver K , O'Neil S , Pearson D , Quail MA , Rabbinowitsch E , Rutherford K , Rutter S , Saunders D , Seeger K , Sharp S , Skelton J , Simmonds M , Squares R , Squares S , Stevens K , Taylor K , Taylor RG , Tivey A , Walsh S , Warren T , Whitehead S , Woodward J , Volckaert G , Aert R , Robben J , Grymonprez B , Weltjens I , Vanstreels E , Rieger M , Schafer M , Muller-Auer S , Gabel C , Fuchs M , Dusterhoft A , Fritzc C , Holzer E , Moestl D , Hilbert H , Borzym K , Langer I , Beck A , Lehrach H , Reinhardt R , Pohl TM , Eger P , Zimmermann W , Wedler H , Wambutt R , Purnelle B , Goffeau A , Cadieu E , Dreano S , Gloux S , Lelaure V , Mottier S , Galibert F , Aves SJ , Xiang Z , Hunt C , Moore K , Hurst SM , Lucas M , Rochet M , Gaillardin C , Tallada VA , Garzon A , Thode G , Daga RR , Cruzado L , Jimenez J , Sanchez M , del Rey F , Benito J , Dominguez A , Revuelta JL , Moreno S , Armstrong J , Forsburg SL , Cerutti L , Lowe T , McCombie WR , Paulsen I , Potashkin J , Shpakovski GV , Ussery D , Barrell BG , Nurse P
Ref : Nature , 415 :871 , 2002
Abstract : We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.
ESTHER : Wood_2002_Nature_415_871
PubMedSearch : Wood_2002_Nature_415_871
PubMedID: 11859360
Gene_locus related to this paper: schpo-APTH1 , schpo-be46 , schpo-BST1 , schpo-C2E11.08 , schpo-C14C4.15C , schpo-C22H12.03 , schpo-C23C4.16C , schpo-C57A10.08C , schpo-dyr , schpo-este1 , schpo-KEX1 , schpo-PCY1 , schpo-pdat , schpo-PLG7 , schpo-ppme1 , schpo-q9c0y8 , schpo-SPAC4A8.06C , schpo-C22A12.06C , schpo-SPAC977.15 , schpo-SPAPB1A11.02 , schpo-SPBC14C8.15 , schpo-SPBC530.12C , schpo-SPBC1711.12 , schpo-SPBPB2B2.02 , schpo-SPCC5E4.05C , schpo-SPCC417.12 , schpo-SPCC1672.09 , schpo-yb4e , schpo-yblh , schpo-ydw6 , schpo-ye7a , schpo-ye63 , schpo-ye88 , schpo-yeld , schpo-yk68 , schpo-clr3 , schpo-ykv6

Title : Conservation of microstructure between a sequenced region of the genome of rice and multiple segments of the genome of Arabidopsis thaliana - Mayer_2001_Genome.Res_11_1167
Author(s) : Mayer K , Murphy G , Tarchini R , Wambutt R , Volckaert G , Pohl T , Dusterhoft A , Stiekema W , Entian KD , Terryn N , Lemcke K , Haase D , Hall CR , van Dodeweerd AM , Tingey SV , Mewes HW , Bevan MW , Bancroft I
Ref : Genome Res , 11 :1167 , 2001
Abstract : The nucleotide sequence was determined for a 340-kb segment of rice chromosome 2, revealing 56 putative protein-coding genes. This represents a density of one gene per 6.1 kb, which is higher than was reported for a previously sequenced segment of the rice genome. Sixteen of the putative genes were supported by matches to ESTs. The predicted products of 29 of the putative genes showed similarity to known proteins, and a further 17 genes showed similarity only to predicted or hypothetical proteins identified in genome sequence data. The region contains a few transposable elements: one retrotransposon, and one transposon. The segment of the rice genome studied had previously been identified as representing a part of rice chromosome 2 that may be homologous to a segment of Arabidopsis chromosome 4. We confirmed the conservation of gene content and order between the two genome segments. In addition, we identified a further four segments of the Arabidopsis genome that contain conserved gene content and order. In total, 22 of the 56 genes identified in the rice genome segment were represented in this set of Arabidopsis genome segments, with at least five genes present, in conserved order, in each segment. These data are consistent with the hypothesis that the Arabidopsis genome has undergone multiple duplication events. Our results demonstrate that conservation of the genome microstructure can be identified even between monocot and dicot species. However, the frequent occurrence of duplication, and subsequent microstructure divergence, within plant genomes may necessitate the integration of subsets of genes present in multiple redundant segments to deduce evolutionary relationships and identify orthologous genes.
ESTHER : Mayer_2001_Genome.Res_11_1167
PubMedSearch : Mayer_2001_Genome.Res_11_1167
PubMedID: 11435398
Gene_locus related to this paper: orysa-Q949C9 , orysa-Q6H8G1

Title : Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana - Tabata_2000_Nature_408_823
Author(s) : Tabata S , Kaneko T , Nakamura Y , Kotani H , Kato T , Asamizu E , Miyajima N , Sasamoto S , Kimura T , Hosouchi T , Kawashima K , Kohara M , Matsumoto M , Matsuno A , Muraki A , Nakayama S , Nakazaki N , Naruo K , Okumura S , Shinpo S , Takeuchi C , Wada T , Watanabe A , Yamada M , Yasuda M , Sato S , de la Bastide M , Huang E , Spiegel L , Gnoj L , O'Shaughnessy A , Preston R , Habermann K , Murray J , Johnson D , Rohlfing T , Nelson J , Stoneking T , Pepin K , Spieth J , Sekhon M , Armstrong J , Becker M , Belter E , Cordum H , Cordes M , Courtney L , Courtney W , Dante M , Du H , Edwards J , Fryman J , Haakensen B , Lamar E , Latreille P , Leonard S , Meyer R , Mulvaney E , Ozersky P , Riley A , Strowmatt C , Wagner-McPherson C , Wollam A , Yoakum M , Bell M , Dedhia N , Parnell L , Shah R , Rodriguez M , See LH , Vil D , Baker J , Kirchoff K , Toth K , King L , Bahret A , Miller B , Marra M , Martienssen R , McCombie WR , Wilson RK , Murphy G , Bancroft I , Volckaert G , Wambutt R , Dusterhoft A , Stiekema W , Pohl T , Entian KD , Terryn N , Hartley N , Bent E , Johnson S , Langham SA , McCullagh B , Robben J , Grymonprez B , Zimmermann W , Ramsperger U , Wedler H , Balke K , Wedler E , Peters S , van Staveren M , Dirkse W , Mooijman P , Lankhorst RK , Weitzenegger T , Bothe G , Rose M , Hauf J , Berneiser S , Hempel S , Feldpausch M , Lamberth S , Villarroel R , Gielen J , Ardiles W , Bents O , Lemcke K , Kolesov G , Mayer K , Rudd S , Schoof H , Schueller C , Zaccaria P , Mewes HW , Bevan M , Fransz P
Ref : Nature , 408 :823 , 2000
Abstract : The genome of the model plant Arabidopsis thaliana has been sequenced by an international collaboration, The Arabidopsis Genome Initiative. Here we report the complete sequence of chromosome 5. This chromosome is 26 megabases long; it is the second largest Arabidopsis chromosome and represents 21% of the sequenced regions of the genome. The sequence of chromosomes 2 and 4 have been reported previously and that of chromosomes 1 and 3, together with an analysis of the complete genome sequence, are reported in this issue. Analysis of the sequence of chromosome 5 yields further insights into centromere structure and the sequence determinants of heterochromatin condensation. The 5,874 genes encoded on chromosome 5 reveal several new functions in plants, and the patterns of gene organization provide insights into the mechanisms and extent of genome evolution in plants.
ESTHER : Tabata_2000_Nature_408_823
PubMedSearch : Tabata_2000_Nature_408_823
PubMedID: 11130714
Gene_locus related to this paper: arath-At5g11650 , arath-At5g16120 , arath-at5g18630 , arath-AT5G20520 , arath-At5g21950 , arath-AT5G27320 , arath-CXE15 , arath-F1N13.220 , arath-F14F8.240 , arath-q3e9e4 , arath-q8lae9 , arath-Q8LFB7 , arath-q9ffg7 , arath-q9fij5 , arath-Q9LVU7 , arath-q66gm8 , arath-SCPL34 , arath-B9DFR3 , arath-a0a1p8bcz0

Title : Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana - Mayer_1999_Nature_402_769
Author(s) : Mayer K , Schuller C , Wambutt R , Murphy G , Volckaert G , Pohl T , Dusterhoft A , Stiekema W , Entian KD , Terryn N , Harris B , Ansorge W , Brandt P , Grivell L , Rieger M , Weichselgartner M , de Simone V , Obermaier B , Mache R , Muller M , Kreis M , Delseny M , Puigdomenech P , Watson M , Schmidtheini T , Reichert B , Portatelle D , Perez-Alonso M , Boutry M , Bancroft I , Vos P , Hoheisel J , Zimmermann W , Wedler H , Ridley P , Langham SA , McCullagh B , Bilham L , Robben J , Van der Schueren J , Grymonprez B , Chuang YJ , Vandenbussche F , Braeken M , Weltjens I , Voet M , Bastiaens I , Aert R , Defoor E , Weitzenegger T , Bothe G , Ramsperger U , Hilbert H , Braun M , Holzer E , Brandt A , Peters S , van Staveren M , Dirske W , Mooijman P , Klein Lankhorst R , Rose M , Hauf J , Kotter P , Berneiser S , Hempel S , Feldpausch M , Lamberth S , Van den Daele H , De Keyser A , Buysshaert C , Gielen J , Villarroel R , De Clercq R , van Montagu M , Rogers J , Cronin A , Quail M , Bray-Allen S , Clark L , Doggett J , Hall S , Kay M , Lennard N , McLay K , Mayes R , Pettett A , Rajandream MA , Lyne M , Benes V , Rechmann S , Borkova D , Blocker H , Scharfe M , Grimm M , Lohnert TH , Dose S , de Haan M , Maarse A , Schafer M , Muller-Auer S , Gabel C , Fuchs M , Fartmann B , Granderath K , Dauner D , Herzl A , Neumann S , Argiriou A , Vitale D , Liguori R , Piravandi E , Massenet O , Quigley F , Clabauld G , Mundlein A , Felber R , Schnabl S , Hiller R , Schmidt W , Lecharny A , Aubourg S , Chefdor F , Cooke R , Berger C , Montfort A , Casacuberta E , Gibbons T , Weber N , Vandenbol M , Bargues M , Terol J , Torres A , Perez-Perez A , Purnelle B , Bent E , Johnson S , Tacon D , Jesse T , Heijnen L , Schwarz S , Scholler P , Heber S , Francs P , Bielke C , Frishman D , Haase D , Lemcke K , Mewes HW , Stocker S , Zaccaria P , Bevan M , Wilson RK , de la Bastide M , Habermann K , Parnell L , Dedhia N , Gnoj L , Schutz K , Huang E , Spiegel L , Sehkon M , Murray J , Sheet P , Cordes M , Abu-Threideh J , Stoneking T , Kalicki J , Graves T , Harmon G , Edwards J , Latreille P , Courtney L , Cloud J , Abbott A , Scott K , Johnson D , Minx P , Bentley D , Fulton B , Miller N , Greco T , Kemp K , Kramer J , Fulton L , Mardis E , Dante M , Pepin K , Hillier L , Nelson J , Spieth J , Ryan E , Andrews S , Geisel C , Layman D , Du H , Ali J , Berghoff A , Jones K , Drone K , Cotton M , Joshu C , Antonoiu B , Zidanic M , Strong C , Sun H , Lamar B , Yordan C , Ma P , Zhong J , Preston R , Vil D , Shekher M , Matero A , Shah R , Swaby IK , O'Shaughnessy A , Rodriguez M , Hoffmann J , Till S , Granat S , Shohdy N , Hasegawa A , Hameed A , Lodhi M , Johnson A , Chen E , Marra M , Martienssen R , McCombie WR
Ref : Nature , 402 :769 , 1999
Abstract : The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.
ESTHER : Mayer_1999_Nature_402_769
PubMedSearch : Mayer_1999_Nature_402_769
PubMedID: 10617198
Gene_locus related to this paper: arath-AT4G00500 , arath-AT4G16690 , arath-AT4G17480 , arath-AT4G24380 , arath-AT4g30610 , arath-o65513 , arath-o65713 , arath-LPAAT , arath-f4jt64

Title : Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. - Bevan_1998_Nature_391_485
Author(s) : Bevan M , Bancroft I , Bent E , Love K , Goodman H , Dean C , Bergkamp R , Dirkse W , van Staveren M , Stiekema W , Drost L , Ridley P , Hudson SA , Patel K , Murphy G , Piffanelli P , Wedler H , Wedler E , Wambutt R , Weitzenegger T , Pohl TM , Terryn N , Gielen J , Villarroel R , De Clerck R , van Montagu M , Lecharny A , Auborg S , Gy I , Kreis M , Lao N , Kavanagh T , Hempel S , Kotter P , Entian KD , Rieger M , Schaeffer M , Funk B , Mueller-Auer S , Silvey M , James R , Montfort A , Pons A , Puigdomenech P , Douka A , Voukelatou E , Milioni D , Hatzopoulos P , Piravandi E , Obermaier B , Hilbert H , Duesterhoft A , Moores T , Jones JDG , Eneva T , Palme K , Benes V , Rechman S , Ansorge W , Cooke R , Berger C , Delseny M , Voet M , Volckaert G , Mewes HW , Klosterman S , Schueller C , Chalwatzis N
Ref : Nature , 391 :485 , 1998
Abstract : The plant Arabidopsis thaliana (Arabidopsis) has become an important model species for the study of many aspects of plant biology. The relatively small size of the nuclear genome and the availability of extensive physical maps of the five chromosomes provide a feasible basis for initiating sequencing of the five chromosomes. The YAC (yeast artificial chromosome)-based physical map of chromosome 4 was used to construct a sequence-ready map of cosmid and BAC (bacterial artificial chromosome) clones covering a 1.9-megabase (Mb) contiguous region, and the sequence of this region is reported here. Analysis of the sequence revealed an average gene density of one gene every 4.8 kilobases (kb), and 54% of the predicted genes had significant similarity to known genes. Other interesting features were found, such as the sequence of a disease-resistance gene locus, the distribution of retroelements, the frequent occurrence of clustered gene families, and the sequence of several classes of genes not previously encountered in plants.
ESTHER : Bevan_1998_Nature_391_485
PubMedSearch : Bevan_1998_Nature_391_485
PubMedID: 9461215
Gene_locus related to this paper: arath-a4vcl8 , arath-AT4G00500 , arath-AT4g09900 , arath-AT4g12830 , arath-AT4G14290 , arath-AT4G15100 , arath-AT4G16070 , arath-AT4G16690 , arath-AT4G17150 , arath-AT4G17470 , arath-AT4G17480 , arath-AT4G17483 , arath-At4g18550 , arath-SOBR1 , arath-SOBRL , arath-AT4G24380 , arath-AT4G25770 , arath-AT4g30610 , arath-AT4G31020 , arath-AT4G36195 , arath-AT4G37150 , arath-SCP29 , arath-At3g54240 , arath-KAI2.D14L

Title : The sequence of a nearly unclonable 22.8 kb segment on the left arm chromosome VII from Saccharomyces cerevisiae reveals ARO2, RPL9A, TIP1, MRF1 genes and six new open reading frames - Voet_1997_Yeast_13_177
Author(s) : Voet M , Defoor E , Verhasselt P , Riles L , Robben J , Volckaert G
Ref : Yeast , 13 :177 , 1997
Abstract : The nucleotide sequence of 22,803 bp on the left arm of chromosome VII was determined by polymerase chain reaction-based approaches to compensate for the unstable character of cosmid clones from this region of the chromosome. The coding density of the sequence is particularly high (more than 83%). Twelve open reading frames (ORFs) longer than 300 bp were found, two of which (at the left side) have been described previously (James et al., 1995) after sequencing of an overlapping cosmid. Four other ORFs correspond to published sequences of the known genes ARO2, RPL9A, TIP1 and MRF1. ARO2 codes for chorismate synthetase. RPL9A for protein L9 of the large ribosomal subunit and MRF1 for a mitochondrial translation release factor. The TIP1 product interacts with Sec20p and is thus involved in transport from endoplasmic reticulum to Golgi. Five of the remaining ORFs have not been identified previously, while the sixth (YGL142c) has been partially sequenced as it lies 5' upstream of MRF1. These six ORFs are relatively large (between 933 and 3657 nucleotides). YGL146c, YGL142c, YGL140c and YGL139w have no significant homology to any protein sequence presently available in the public databases, but show two, nine, nine and eight putative transmembrane spans, respectively. YGL144c has a serine active site signature of lipases. YGL141w has limited homology to several human proteins, one of which mediates complex formation between papillomavirus E6 oncoprotein and tumor suppressor protein p53.
ESTHER : Voet_1997_Yeast_13_177
PubMedSearch : Voet_1997_Yeast_13_177
PubMedID: 9046099
Gene_locus related to this paper: yeast-ROG1

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications - Philippsen_1997_Nature_387_93
Author(s) : Philippsen P , Kleine K , Pohlmann R , Dusterhoft A , Hamberg K , Hegemann JH , Obermaier B , Urrestarazu LA , Aert R , Albermann K , Altmann R , Andre B , Baladron V , Ballesta JP , Becam AM , Beinhauer J , Boskovic J , Buitrago MJ , Bussereau F , Coster F , Crouzet M , D'Angelo M , Dal Pero F , De Antoni A , del Rey F , Doignon F , Domdey H , Dubois E , Fiedler T , Fleig U , Floeth M , Fritz C , Gaillardin C , Garcia-Cantalejo JM , Glansdorff NN , Goffeau A , Gueldener U , Herbert C , Heumann K , Heuss-Neitzel D , Hilbert H , Hinni K , Iraqui Houssaini I , Jacquet M , Jimenez A , Jonniaux JL , Karpfinger L , Lanfranchi G , Lepingle A , Levesque H , Lyck R , Maftahi M , Mallet L , Maurer KC , Messenguy F , Mewes HW , Mosti D , Nasr F , Nicaud JM , Niedenthal RK , Pandolfo D , Pierard A , Piravandi E , Planta RJ , Pohl TM , Purnelle B , Rebischung C , Remacha M , Revuelta JL , Rinke M , Saiz JE , Sartorello F , Scherens B , Sen-Gupta M , Soler-Mira A , Urbanus JH , Valle G , van Dyck L , Verhasselt P , Vierendeels F , Vissers S , Voet M , Volckaert G , Wach A , Wambutt R , Wedler H , Zollner A , Hani J
Ref : Nature , 387 :93 , 1997
Abstract : In 1992 we started assembling an ordered library of cosmid clones from chromosome XIV of the yeast Saccharomyces cerevisiae. At that time, only 49 genes were known to be located on this chromosome and we estimated that 80% to 90% of its genes were yet to be discovered. In 1993, a team of 20 European laboratories began the systematic sequence analysis of chromosome XIV. The completed and intensively checked final sequence of 784,328 base pairs was released in April, 1996. Substantial parts had been published before or had previously been made available on request. The sequence contained 419 known or presumptive protein-coding genes, including two pseudogenes and three retrotransposons, 14 tRNA genes, and three small nuclear RNA genes. For 116 (30%) protein-coding sequences, one or more structural homologues were identified elsewhere in the yeast genome. Half of them belong to duplicated groups of 6-14 loosely linked genes, in most cases with conserved gene order and orientation (relaxed interchromosomal synteny). We have considered the possible evolutionary origins of this unexpected feature of yeast genome organization.
ESTHER : Philippsen_1997_Nature_387_93
PubMedSearch : Philippsen_1997_Nature_387_93
PubMedID: 9169873
Gene_locus related to this paper: yeast-SCYNR064C , yeast-hda1

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome IV - Jacq_1997_Nature_387_75
Author(s) : Jacq C , Alt-Morbe J , Andre B , Arnold W , Bahr A , Ballesta JP , Bargues M , Baron L , Becker A , Biteau N , Blocker H , Blugeon C , Boskovic J , Brandt P , Bruckner M , Buitrago MJ , Coster F , Delaveau T , del Rey F , Dujon B , Eide LG , Garcia-Cantalejo JM , Goffeau A , Gomez-Peris AC , Granotier C , Hanemann V , Hankeln T , Hoheisel JD , Jager W , Jimenez A , Jonniaux JL , Kramer C , Kuster H , Laamanen P , Legros Y , Louis E , Muller-Rieker S , Monnet A , Moro M , Muller-Auer S , Nussbaumer B , Paricio N , Paulin L , Perea J , Perez-Alonso M , Perez-Ortin JE , Pohl TM , Prydz H , Purnelle B , Rasmussen SW , Remacha M , Revuelta JL , Rieger M , Salom D , Saluz HP , Saiz JE , Saren AM , Schafer M , Scharfe M , Schmidt ER , Schneider C , Scholler P , Schwarz S , Soler-Mira A , Urrestarazu LA , Verhasselt P , Vissers S , Voet M , Volckaert G , Wagner G , Wambutt R , Wedler E , Wedler H , Wolfl S , Harris DE , Bowman S , Brown D , Churcher CM , Connor R , Dedman K , Gentles S , Hamlin N , Hunt S , Jones L , McDonald S , Murphy L , Niblett D , Odell C , Oliver K , Rajandream MA , Richards C , Shore L , Walsh SV , Barrell BG , Dietrich FS , Mulligan J , Allen E , Araujo R , Aviles E , Berno A , Carpenter J , Chen E , Cherry JM , Chung E , Duncan M , Hunicke-Smith S , Hyman R , Komp C , Lashkari D , Lew H , Lin D , Mosedale D , Nakahara K , Namath A , Oefner P , Oh C , Petel FX , Roberts D , Schramm S , Schroeder M , Shogren T , Shroff N , Winant A , Yelton M , Botstein D , Davis RW , Johnston M , Hillier L , Riles L , Albermann K , Hani J , Heumann K , Kleine K , Mewes HW , Zollner A , Zaccaria P
Ref : Nature , 387 :75 , 1997
Abstract : The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome IV has been determined. Apart from chromosome XII, which contains the 1-2 Mb rDNA cluster, chromosome IV is the longest S. cerevisiae chromosome. It was split into three parts, which were sequenced by a consortium from the European Community, the Sanger Centre, and groups from St Louis and Stanford in the United States. The sequence of 1,531,974 base pairs contains 796 predicted or known genes, 318 (39.9%) of which have been previously identified. Of the 478 new genes, 225 (28.3%) are homologous to previously identified genes and 253 (32%) have unknown functions or correspond to spurious open reading frames (ORFs). On average there is one gene approximately every two kilobases. Superimposed on alternating regional variations in G+C composition, there is a large central domain with a lower G+C content that contains all the yeast transposon (Ty) elements and most of the tRNA genes. Chromosome IV shares with chromosomes II, V, XII, XIII and XV some long clustered duplications which partly explain its origin.
ESTHER : Jacq_1997_Nature_387_75
PubMedSearch : Jacq_1997_Nature_387_75
PubMedID: 9169867
Gene_locus related to this paper: yeast-dlhh , yeast-ECM18 , yeast-YDL109C , yeast-YDR428C , yeast-YDR444W

Title : Sequence analysis of a 37.6 kbp cosmid clone from the right arm of Saccharomyces cerevisiae chromosome XII, carrying YAP3, HOG1, SNR6, tRNA-Arg3 and 23 new open reading frames, among which several homologies to proteins involved in cell division control and to mammalian growth factors and other animal proteins are found - Verhasselt_1997_Yeast_13_241
Author(s) : Verhasselt P , Volckaert G
Ref : Yeast , 13 :241 , 1997
Abstract : The nucleotide sequence of 37,639 bp of the right arm of chromosome XII has been determined. Twenty-five open reading frames (ORFs) longer than 300 bp were detected, two of which extend into the flanking cosmids. Only two (L2931 and L2961) of the 25 ORFs correspond to previously sequenced genes (HOG1 and YAP3, respectively). Another ORF is distinct from YAP3 but shows pronounced similarity to it. About half of the remaining ORFs show similarity to other genes or display characteristic protein signatures. In particular, ORF L2952 has striking homology with the probable cell cycle control protein crn of Drosophila melanogaster. L2949 has significant similarity to the human ZFM1 (related to a potential suppressor oncogene) and mouse CW17R genes, though it lacks the carboxy-terminal oligoproline and oligoglutamine stretches encoded by these mammalian genes. The small ORF L2922 is similar to part of the much larger yeast flocculation gene FLO1. Other sequences found in the 37639 bp fragment are one delta and one solo-sigma element, the tRNA-Arg3 gene, the small nuclear RNA gene SNR6 and three ARS consensus sequences.
ESTHER : Verhasselt_1997_Yeast_13_241
PubMedSearch : Verhasselt_1997_Yeast_13_241
PubMedID: 9090053
Gene_locus related to this paper: yeast-YLR118c

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome XV - Dujon_1997_Nature_387_98
Author(s) : Dujon B , Albermann K , Aldea M , Alexandraki D , Ansorge W , Arino J , Benes V , Bohn C , Bolotin-Fukuhara M , Bordonne R , Boyer J , Camasses A , Casamayor A , Casas C , Cheret G , Cziepluch C , Daignan-Fornier B , Dang DV , de Haan M , Delius H , Durand P , Fairhead C , Feldmann H , Gaillon L , Galisson F , Gamo FJ , Gancedo C , Goffeau A , Goulding SE , Grivell LA , Habbig B , Hand NJ , Hani J , Hattenhorst U , Hebling U , Hernando Y , Herrero E , Heumann K , Hiesel R , Hilger F , Hofmann B , Hollenberg CP , Hughes B , Jauniaux JC , Kalogeropoulos A , Katsoulou C , Kordes E , Lafuente MJ , Landt O , Louis EJ , Maarse AC , Madania A , Mannhaupt G , Marck C , Martin RP , Mewes HW , Michaux G , Paces V , Parle-McDermott AG , Pearson BM , Perrin A , Pettersson B , Poch O , Pohl TM , Poirey R , Portetelle D , Pujol A , Purnelle B , Ramezani Rad M , Rechmann S , Schwager C , Schweizer M , Sor F , Sterky F , Tarassov IA , Teodoru C , Tettelin H , Thierry A , Tobiasch E , Tzermia M , Uhlen M , Unseld M , Valens M , Vandenbol M , Vetter I , Vlcek C , Voet M , Volckaert G , Voss H , Wambutt R , Wedler H , Wiemann S , Winsor B , Wolfe KH , Zollner A , Zumstein E , Kleine K
Ref : Nature , 387 :98 , 1997
Abstract : Chromosome XV was one of the last two chromosomes of Saccharomyces cerevisiae to be discovered. It is the third-largest yeast chromosome after chromosomes XII and IV, and is very similar in size to chromosome VII. It alone represents 9% of the yeast genome (8% if ribosomal DNA is included). When systematic sequencing of chromosome XV was started, 93 genes or markers were identified, and most of them were mapped. However, very little else was known about chromosome XV which, in contrast to shorter chromosomes, had not been the object of comprehensive genetic or molecular analysis. It was therefore decided to start sequencing chromosome XV only in the third phase of the European Yeast Genome Sequencing Programme, after experience was gained on chromosomes III, XI and II. The sequence of chromosome XV has been determined from a set of partly overlapping cosmid clones derived from a unique yeast strain, and physically mapped at 3.3-kilobase resolution before sequencing. As well as numerous new open reading frames (ORFs) and genes encoding tRNA or small RNA molecules, the sequence of 1,091,283 base pairs confirms the high proportion of orphan genes and reveals a number of ancestral and successive duplications with other yeast chromosomes.
ESTHER : Dujon_1997_Nature_387_98
PubMedSearch : Dujon_1997_Nature_387_98
PubMedID: 9169874
Gene_locus related to this paper: yeast-FSH3 , yeast-yo059

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome XII - Johnston_1997_Nature_387_87
Author(s) : Johnston M , Hillier L , Riles L , Albermann K , Andre B , Ansorge W , Benes V , Bruckner M , Delius H , Dubois E , Dusterhoft A , Entian KD , Floeth M , Goffeau A , Hebling U , Heumann K , Heuss-Neitzel D , Hilbert H , Hilger F , Kleine K , Kotter P , Louis EJ , Messenguy F , Mewes HW , Miosga T , Mostl D , Muller-Auer S , Nentwich U , Obermaier B , Piravandi E , Pohl TM , Portetelle D , Purnelle B , Rechmann S , Rieger M , Rinke M , Rose M , Scharfe M , Scherens B , Scholler P , Schwager C , Schwarz S , Underwood AP , Urrestarazu LA , Vandenbol M , Verhasselt P , Vierendeels F , Voet M , Volckaert G , Voss H , Wambutt , Wedler E , Wedler H , Zimmermann FK , Zollner A , Hani J , Hoheisel JD
Ref : Nature , 387 :87 , 1997
Abstract : The yeast Saccharomyces cerevisiae is the pre-eminent organism for the study of basic functions of eukaryotic cells. All of the genes of this simple eukaryotic cell have recently been revealed by an international collaborative effort to determine the complete DNA sequence of its nuclear genome. Here we describe some of the features of chromosome XII.
ESTHER : Johnston_1997_Nature_387_87
PubMedSearch : Johnston_1997_Nature_387_87
PubMedID: 9169871
Gene_locus related to this paper: yeast-ict1 , yeast-YLR118c

Title : Twelve open reading frames revealed in the 23.6 kb segment flanking the centromere on the Saccharomyces cerevisiae chromosome XIV right arm - Verhasselt_1994_Yeast_10_1355
Author(s) : Verhasselt P , Aert R , Voet M , Volckaert G
Ref : Yeast , 10 :1355 , 1994
Abstract : The nucleotide sequence of 23.6 kb of the right arm of chromosome XIV is described, starting from the centromeric region. Both strands were sequenced with an average redundancy of 4.87 per base pair. The overall G+C content is 38.8% (42.5% for putative coding regions versus 29.4% for non-coding regions). Twelve open reading frames (ORFs) greater than 100 amino acids were detected. Codon frequencies of the twelve ORFs agree with codon usage in Saccharomyces cerevisiae and all show the characteristics of low level expressed genes. Five ORFs (N2019, N2029, N2031, N2048 and N2050) are encoded by previously sequenced genes (the mitochondrial citrate synthase gene, FUN34, RPC34, PRP2 and URK1, respectively). ORF N2052 shows the characteristics of a transmembrane protein. Other elements in this region are a tRNA(Pro) gene, a tRNA(Asn) gene, a tau 34 and a truncated delta 34 element. Nucleotide sequence comparison results in relocation of the SIS1 gene to the left arm of the chromosome as confirmed by colinearity analysis.
ESTHER : Verhasselt_1994_Yeast_10_1355
PubMedSearch : Verhasselt_1994_Yeast_10_1355
PubMedID: 7900425
Gene_locus related to this paper: yeast-pdat

Title : Cloning, sequence determination, and expression of a 32-kilodalton-protein gene of Mycobacterium tuberculosis - Borremans_1989_Infect.Immun_57_3123
Author(s) : Borremans M , De Wit L , Volckaert G , Ooms J , De Bruyn J , Huygen K , van Vooren JP , Stelandre M , Verhofstadt R , Content J
Ref : Infect Immun , 57 :3123 , 1989
Abstract : We describe the identification of the gene encoding an immunodominant 32-kilodalton (kDa) protein of Mycobacterium tuberculosis. The 32-kDa antigen is abundantly secreted into the culture supernatant of a variety of mycobacteria and appears to be a major stimulant of cellular and humoral immunity against mycobacteria. Recombinant clones expressing a 140- or 125-kDa beta-galactosidase fusion protein reactive with rabbit polyclonal anti-32 kDa protein serum were detected. The corresponding DNA sequence contains a 1,008-base-pair coding region. The deduced amino acid sequence corresponds to a 336-residue protein including the previously determined NH2-terminal sequence of the 32-kDa protein (J. De Bruyn, K. Huygen, R. Bosmans, M. Fauville, R. Lippens, J. P. Van Vooren, P. Falmagne, M. Weckx, H. G. Wiker, M. Harboe, and M. Turneer, Microb. Pathog. 2:351-366, 1987). Upstream of this NH2-terminal region, the gene codes for a signal peptide required for the secretion of a 294-amino-acid-long mature protein. A putative promoter sequence could be located upstream of the open reading frame. Comparison of the M. tuberculosis 32-kDa antigen with the Mycobacterium bovis BCG alpha-antigen (K. Matsuo, R. Yamaguchi, A. Yamazaki, H. Tasaka, and T. Yamada, J. Bacteriol. 170:3847-3854, 1988) revealed 73.8% homology between DNA sequences and 72.8% homology between amino acid sequences (signal and mature protein). Finally, the 140-kDa fusion protein could selectively be recognized by human tuberculous sera. This result confirms our previous finding that the 32-kDa antigen could be a valuable tool for the serological diagnosis of tuberculosis. Moreover, the availability of recombinant proteins opens perspectives for the localization of relevant B- and T-cell epitope regions on the 32-kDa antigen.
ESTHER : Borremans_1989_Infect.Immun_57_3123
PubMedSearch : Borremans_1989_Infect.Immun_57_3123
PubMedID: 2506131
Gene_locus related to this paper: myctu-a85a