Harris DE

References (5)

Title : Genome of the host-cell transforming parasite Theileria annulata compared with T. parva - Pain_2005_Science_309_131
Author(s) : Pain A , Renauld H , Berriman M , Murphy L , Yeats CA , Weir W , Kerhornou A , Aslett M , Bishop R , Bouchier C , Cochet M , Coulson RM , Cronin A , de Villiers EP , Fraser A , Fosker N , Gardner M , Goble A , Griffiths-Jones S , Harris DE , Katzer F , Larke N , Lord A , Maser P , McKellar S , Mooney P , Morton F , Nene V , O'Neil S , Price C , Quail MA , Rabbinowitsch E , Rawlings ND , Rutter S , Saunders D , Seeger K , Shah T , Squares R , Squares S , Tivey A , Walker AR , Woodward J , Dobbelaere DA , Langsley G , Rajandream MA , McKeever D , Shiels B , Tait A , Barrell B , Hall N
Ref : Science , 309 :131 , 2005
Abstract : Theileria annulata and T. parva are closely related protozoan parasites that cause lymphoproliferative diseases of cattle. We sequenced the genome of T. annulata and compared it with that of T. parva to understand the mechanisms underlying transformation and tropism. Despite high conservation of gene sequences and synteny, the analysis reveals unequally expanded gene families and species-specific genes. We also identify divergent families of putative secreted polypeptides that may reduce immune recognition, candidate regulators of host-cell transformation, and a Theileria-specific protein domain [frequently associated in Theileria (FAINT)] present in a large number of secreted proteins.
ESTHER : Pain_2005_Science_309_131
PubMedSearch : Pain_2005_Science_309_131
PubMedID: 15994557
Gene_locus related to this paper: thean-q4u9u6 , thean-q4ub48 , thean-q4ubz1 , thean-q4uc78 , thean-q4uc93 , thean-q4uck1 , thean-q4udw9 , thean-q4ue56 , thean-q4uf06 , thean-q4ug98 , thean-q4uhj9 , thepa-q4n349

Title : Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei - Bentley_2003_Lancet_361_637
Author(s) : Bentley SD , Maiwald M , Murphy LD , Pallen MJ , Yeats CA , Dover LG , Norbertczak HT , Besra GS , Quail MA , Harris DE , von Herbay A , Goble A , Rutter S , Squares R , Squares S , Barrell BG , Parkhill J , Relman DA
Ref : Lancet , 361 :637 , 2003
Abstract : BACKGROUND: Whipple's disease is a rare multisystem chronic infection, involving the intestinal tract as well as various other organs. The causative agent, Tropheryma whipplei, is a Gram-positive bacterium about which little is known. Our aim was to investigate the biology of this organism by generating and analysing the complete DNA sequence of its genome. METHODS: We isolated and propagated T whipplei strain TW08/27 from the cerebrospinal fluid of a patient diagnosed with Whipple's disease. We generated the complete sequence of the genome by the whole genome shotgun method, and analysed it with a combination of automatic and manual bioinformatic techniques. FINDINGS: Sequencing revealed a condensed 925938 bp genome with a lack of key biosynthetic pathways and a reduced capacity for energy metabolism. A family of large surface proteins was identified, some associated with large amounts of non-coding repetitive DNA, and an unexpected degree of sequence variation. INTERPRETATION: The genome reduction and lack of metabolic capabilities point to a host-restricted lifestyle for the organism. The sequence variation indicates both known and novel mechanisms for the elaboration and variation of surface structures, and suggests that immune evasion and host interaction play an important part in the lifestyle of this persistent bacterial pathogen.
ESTHER : Bentley_2003_Lancet_361_637
PubMedSearch : Bentley_2003_Lancet_361_637
PubMedID: 12606174
Gene_locus related to this paper: trowh-TW083.1 , trowh-TW083.2 , trowh-TWT693

Title : Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica - Parkhill_2003_Nat.Genet_35_32
Author(s) : Parkhill J , Sebaihia M , Preston A , Murphy LD , Thomson N , Harris DE , Holden MT , Churcher CM , Bentley SD , Mungall KL , Cerdeno-Tarraga AM , Temple L , James K , Harris B , Quail MA , Achtman M , Atkin R , Baker S , Basham D , Bason N , Cherevach I , Chillingworth T , Collins M , Cronin A , Davis P , Doggett J , Feltwell T , Goble A , Hamlin N , Hauser H , Holroyd S , Jagels K , Leather S , Moule S , Norberczak H , O'Neil S , Ormond D , Price C , Rabbinowitsch E , Rutter S , Sanders M , Saunders D , Seeger K , Sharp S , Simmonds M , Skelton J , Squares R , Squares S , Stevens K , Unwin L , Whitehead S , Barrell BG , Maskell DJ
Ref : Nat Genet , 35 :32 , 2003
Abstract : Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative beta-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.
ESTHER : Parkhill_2003_Nat.Genet_35_32
PubMedSearch : Parkhill_2003_Nat.Genet_35_32
PubMedID: 12910271
Gene_locus related to this paper: borbr-BB0273 , borbr-BB0570 , borbr-BB0670 , borbr-BB1064 , borbr-BB1079 , borbr-BB1247 , borbr-BB1498 , borbr-BB2718 , borbr-BB4129 , borbr-BB4247 , borbr-MHPC , borbr-q7wdw1 , borbr-q7wiz8 , borbr-q7wk25 , borbr-q7wmc2 , borbr-q7wpd9 , borpa-q7w3f3 , borpa-q7w9v8 , borpe-BIOH , borpe-BP0300 , borpe-BP2114 , borpe-BP2146 , borpe-BP2511 , borpe-BP3096 , borpe-BP3623 , borpe-BP3691 , borpe-CATD2 , borpe-METX , borpe-O30449 , borpe-PHBC , borpe-q7vsl4 , borpe-q7vt07 , borpe-q7vtg0 , borpe-q7vtv2 , borpe-q7vus4 , borpe-q7vuv4 , borpe-q7vv11 , borpe-q7vv48 , borpe-q7vvf6 , borpe-q7vwu4 , borpe-q7vyn0 , borpe-q7vyq4 , borpe-q7vz26 , borpe-q7vzb4 , borpe-q7vzj6 , borpe-q7w073

Title : Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) - Bentley_2002_Nature_417_141
Author(s) : Bentley SD , Chater KF , Cerdeno-Tarraga AM , Challis GL , Thomson NR , James KD , Harris DE , Quail MA , Kieser H , Harper D , Bateman A , Brown S , Chandra G , Chen CW , Collins M , Cronin A , Fraser A , Goble A , Hidalgo J , Hornsby T , Howarth S , Huang CH , Kieser T , Larke L , Murphy L , Oliver K , O'Neil S , Rabbinowitsch E , Rajandream MA , Rutherford K , Rutter S , Seeger K , Saunders D , Sharp S , Squares R , Squares S , Taylor K , Warren T , Wietzorrek A , Woodward J , Barrell BG , Parkhill J , Hopwood DA
Ref : Nature , 417 :141 , 2002
Abstract : Streptomyces coelicolor is a representative of the group of soil-dwelling, filamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine. Here we report the 8,667,507 base pair linear chromosome of this organism, containing the largest number of genes so far discovered in a bacterium. The 7,825 predicted genes include more than 20 clusters coding for known or predicted secondary metabolites. The genome contains an unprecedented proportion of regulatory genes, predominantly those likely to be involved in responses to external stimuli and stresses, and many duplicated gene sets that may represent 'tissue-specific' isoforms operating in different phases of colonial development, a unique situation for a bacterium. An ancient synteny was revealed between the central 'core' of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering.
ESTHER : Bentley_2002_Nature_417_141
PubMedSearch : Bentley_2002_Nature_417_141
PubMedID: 12000953
Gene_locus related to this paper: strco-cxest , strco-cxest2 , strco-ester , strco-estli , strco-MMYT , strco-ORF3 , strco-q9f2m1 , strco-q9rdq9 , strco-q9x8r0 , strco-SC1A6.21 , strco-SC3F7.14 , strco-SC4C2.18 , strco-SC10F4.23 , strco-SCBAC20F6.10 , strco-SCD95A , strco-SCE8.12C , strco-SCE63.01 , strco-SCF43.16C , strco-SCJ9A.33C , strco-SCO0047 , strco-SCO0135 , strco-SCO0490 , strco-SCO0503 , strco-SCO0556.1 , strco-SCO0556.2 , strco-SCO1265 , strco-SCO2123 , strco-SCO2516 , strco-SCO2723 , strco-SCO2761 , strco-SCO3396 , strco-SCO3772 , strco-SCO4160 , strco-SCO4900 , strco-SCO5215 , strco-SCO5986 , strco-SCO6351 , strco-SCO6488 , strco-SCO7057 , strco-SCO7121 , strco-SCO7396 , strco-SCO7609 , strco-SCOT , strco-SLPD , strco-TAP

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome IV - Jacq_1997_Nature_387_75
Author(s) : Jacq C , Alt-Morbe J , Andre B , Arnold W , Bahr A , Ballesta JP , Bargues M , Baron L , Becker A , Biteau N , Blocker H , Blugeon C , Boskovic J , Brandt P , Bruckner M , Buitrago MJ , Coster F , Delaveau T , del Rey F , Dujon B , Eide LG , Garcia-Cantalejo JM , Goffeau A , Gomez-Peris AC , Granotier C , Hanemann V , Hankeln T , Hoheisel JD , Jager W , Jimenez A , Jonniaux JL , Kramer C , Kuster H , Laamanen P , Legros Y , Louis E , Muller-Rieker S , Monnet A , Moro M , Muller-Auer S , Nussbaumer B , Paricio N , Paulin L , Perea J , Perez-Alonso M , Perez-Ortin JE , Pohl TM , Prydz H , Purnelle B , Rasmussen SW , Remacha M , Revuelta JL , Rieger M , Salom D , Saluz HP , Saiz JE , Saren AM , Schafer M , Scharfe M , Schmidt ER , Schneider C , Scholler P , Schwarz S , Soler-Mira A , Urrestarazu LA , Verhasselt P , Vissers S , Voet M , Volckaert G , Wagner G , Wambutt R , Wedler E , Wedler H , Wolfl S , Harris DE , Bowman S , Brown D , Churcher CM , Connor R , Dedman K , Gentles S , Hamlin N , Hunt S , Jones L , McDonald S , Murphy L , Niblett D , Odell C , Oliver K , Rajandream MA , Richards C , Shore L , Walsh SV , Barrell BG , Dietrich FS , Mulligan J , Allen E , Araujo R , Aviles E , Berno A , Carpenter J , Chen E , Cherry JM , Chung E , Duncan M , Hunicke-Smith S , Hyman R , Komp C , Lashkari D , Lew H , Lin D , Mosedale D , Nakahara K , Namath A , Oefner P , Oh C , Petel FX , Roberts D , Schramm S , Schroeder M , Shogren T , Shroff N , Winant A , Yelton M , Botstein D , Davis RW , Johnston M , Hillier L , Riles L , Albermann K , Hani J , Heumann K , Kleine K , Mewes HW , Zollner A , Zaccaria P
Ref : Nature , 387 :75 , 1997
Abstract : The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome IV has been determined. Apart from chromosome XII, which contains the 1-2 Mb rDNA cluster, chromosome IV is the longest S. cerevisiae chromosome. It was split into three parts, which were sequenced by a consortium from the European Community, the Sanger Centre, and groups from St Louis and Stanford in the United States. The sequence of 1,531,974 base pairs contains 796 predicted or known genes, 318 (39.9%) of which have been previously identified. Of the 478 new genes, 225 (28.3%) are homologous to previously identified genes and 253 (32%) have unknown functions or correspond to spurious open reading frames (ORFs). On average there is one gene approximately every two kilobases. Superimposed on alternating regional variations in G+C composition, there is a large central domain with a lower G+C content that contains all the yeast transposon (Ty) elements and most of the tRNA genes. Chromosome IV shares with chromosomes II, V, XII, XIII and XV some long clustered duplications which partly explain its origin.
ESTHER : Jacq_1997_Nature_387_75
PubMedSearch : Jacq_1997_Nature_387_75
PubMedID: 9169867
Gene_locus related to this paper: yeast-dlhh , yeast-ECM18 , yeast-YDL109C , yeast-YDR428C , yeast-YDR444W