Certain alpha/beta hydrolases have the ability to hydrolyze synthetic polyesters. While their partial hydrolysis has a potential for surface functionalization, complete hydrolysis allows recycling of valuable building blocks. Although knowledge about biodegradation of these materials is important regarding their fate in the environment, it is currently limited to aerobic organisms. A lipase from the anaerobic groundwater organism Pelosinus fermentans DSM 17108 (PfL1) was cloned and expressed in Escherichia coli BL21-Gold(DE3) and purified from the cell extract. Biochemical characterization with small substrates showed thermoalkalophilic properties (T opt = 50 degrees C, pHopt = 7.5) and higher activity towards para-nitrophenyl octanoate (12.7 U mg-1) compared to longer and shorter chain lengths (C14 0.7 U mg-1 and C2 4.3 U mg-1, respectively). Crystallization and determination of the 3-D structure displayed the presence of a lid structure and a zinc ion surrounded by an extra domain. These properties classify the enzyme into the I.5 lipase family. PfL1 is able to hydrolyze poly(1,4-butylene adipate-co-terephthalate) (PBAT) polymeric substrates. The hydrolysis of PBAT showed the release of small building blocks as detected by liquid chromatography-mass spectrometry (LC-MS). Protein dynamics seem to be involved with lid opening for the hydrolysis of PBAT by PfL1.
        
Title: Directed evolution of new and improved enzyme functions using an evolutionary intermediate and multidirectional search Porter JL, Boon PL, Murray TP, Huber T, Collyer CA, Ollis DL Ref: ACS Chemical Biology, 10:611, 2015 : PubMed
The ease with which enzymes can be adapted from their native roles and engineered to function specifically for industrial or commercial applications is crucial to enabling enzyme technology to advance beyond its current state. Directed evolution is a powerful tool for engineering enzymes with improved physical and catalytic properties and can be used to evolve enzymes where lack of structural information may thwart the use of rational design. In this study, we take the versatile and diverse alpha/beta hydrolase fold framework, in the form of dienelactone hydrolase, and evolve it over three unique sequential evolutions with a total of 14 rounds of screening to generate a series of enzyme variants. The native enzyme has a low level of promiscuous activity toward p-nitrophenyl acetate but almost undetectable activity toward larger p-nitrophenyl esters. Using p-nitrophenyl acetate as an evolutionary intermediate, we have generated variants with altered specificity and catalytic activity up to 3 orders of magnitude higher than the native enzyme toward the larger nonphysiological p-nitrophenyl ester substrates. Several variants also possess increased stability resulting from the multidimensional approach to screening. Crystal structure analysis and substrate docking show how the enzyme active site changes over the course of the evolutions as either a direct or an indirect result of mutations.
        
Title: Purification and partial characterization of a novel thermophilic carboxylesterase with high mesophilic specific activity Wood AN, Fernandez-Lafuente R, Cowan DA Ref: Enzyme Microb Technol, 17:816, 1995 : PubMed
An esterase activity obtained from a strain of Bacillus stearothermophilus was purified 5,133-fold to electrophoretic homogeneity with 26% recovery. The purified esterase had a specific activity of 2,032 mumol min-1 mg-1 based on the hydrolysis of p-nitrophenyl caproate at pH 7.0 and 30 degrees C. The apparent molecular mass was 50,000 +/- 2,000 daltons from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 45,000 +/- 3,000 daltons from gel filtration. Native polyacrylamide gels stained for esterase activity showed three bands. The isoelectric points were estimated to be 5.7, 5.8, and 6.0. Forty amino acid residues were sequenced at the N-terminus. The sequence showed no degeneracy, suggesting that the three esterases are functionally identical carboxylesterases differing by a limited number of amino acids. The enzyme showed maximum activity at pH 7.0 and was very stable at pH 6.0-8.9 with optimum stability at pH 6.0. At this pH and 60 degrees C the half-life was 170 h. Esterase activity was totally inhibited by phenylmethanesulfonyl fluoride, parahydroxymercuribenzoate, eserine, and tosyl-L-phenylalanine, but not by ethylendiaminetetra acetic acid. The esterase obeyed Michaelis-Menten kinetics in the hydrolysis of p-nitrophenyl esters, but both Vmax and KM were protein concentration-dependent. The esterase was able to hydrolyse a number of p-nitrophenyl derivatives (amino acid derivatives and aliphatic acids with different chain lengths).
Dynamic post-translational modifications allow the rapid, specific, and tunable regulation of protein functions in eukaryotic cells. S-acylation is the only reversible lipid modification of proteins, in which a fatty acid, usually palmitate, is covalently attached to a cysteine residue of a protein by a zDHHC palmitoyl acyltransferase enzyme. Depalmitoylation is required for acylation homeostasis and is catalyzed by an enzyme from the alpha/beta hydrolase family of proteins usually acyl-protein thioesterase (APT1). The enzyme responsible for depalmitoylation in Trypanosoma brucei parasites is currently unknown. We demonstrate depalmitoylation activity in live bloodstream and procyclic form trypanosomes sensitive to dose-dependent inhibition with the depalmitoylation inhibitor, palmostatin B. We identified a homologue of human APT1 in Trypanosoma brucei which we named TbAPT-like (TbAPT-L). Epitope-tagging of TbAPT-L at N- and C- termini indicated a cytoplasmic localization. Knockdown or over-expression of TbAPT-L in bloodstream forms led to robust changes in TbAPT-L mRNA and protein expression but had no effect on parasite growth in vitro, or cellular depalmitoylation activity. Esterase activity in cell lysates was also unchanged when TbAPT-L was modulated. Unexpectedly, recombinant TbAPT-L possesses esterase activity with specificity for short- and medium-chain fatty acid substrates, leading to the conclusion, TbAPT-L is a lipase, not a depalmitoylase.
Certain members of the Actinobacteria and Proteobacteria are known to degrade polyethylene terephthalate (PET). Here, we describe the first functional PET-active enzymes from the Bacteroidetes phylum. Using a PETase-specific Hidden-Markov-Model- (HMM-) based search algorithm, we identified several PETase candidates from Flavobacteriaceae and Porphyromonadaceae. Among them, two promiscuous and cold-active esterases derived from Aequorivita sp. (PET27) and Kaistella jeonii (PET30) showed depolymerizing activity on polycaprolactone (PCL), amorphous PET foil and on the polyester polyurethane Impranil((a)) DLN. PET27 is a 37.8 kDa enzyme that released an average of 174.4 nmol terephthalic acid (TPA) after 120 h at 30 degreesC from a 7 mg PET foil platelet in a 200 microl reaction volume, 38-times more than PET30 (37.4 kDa) released under the same conditions. The crystal structure of PET30 without its C-terminal Por-domain (PET30deltaPorC) was solved at 2.1 A and displays high structural similarity to the IsPETase. PET30 shows a Phe-Met-Tyr substrate binding motif, which seems to be a unique feature, as IsPETase, LCC and PET2 all contain Tyr-Met-Trp binding residues, while PET27 possesses a Phe-Met-Trp motif that is identical to Cut190. Microscopic analyses showed that K. jeonii cells are indeed able to bind on and colonize PET surfaces after a few days of incubation. Homologs of PET27 and PET30 were detected in metagenomes, predominantly aquatic habitats, encompassing a wide range of different global climate zones and suggesting a hitherto unknown influence of this bacterial phylum on man-made polymer degradation.
        
Title: Phylogenetic analysis and in-depth characterization of functionally and structurally diverse CE5 cutinases Novy V, Carneiro LV, Shin JH, Larsbrink J, Olsson L Ref: Journal of Biological Chemistry, :101302, 2021 : PubMed
Cutinases are esterases that release fatty acids from the apoplastic layer in plants. As they accept bulky and hydrophobic substrates, cutinases could be used in many applications, ranging from valorization of bark-rich side streams to plastic recycling. Advancement of these applications with cutinases as biocatalysts, however, requires deeper knowledge of the enzymes' biodiversity and structure-function relationships. Here, we mined over 3000 members from Carbohydrate Esterase family 5 (CE5) for putative cutinases and condensed it to 151 genes from known or putative lignocellulose-targeting organisms. The 151 genes were subjected to a phylogenetic analysis. While cutinases with available crystal structures were phylogenetically closely related, we selected nine phylogenic diverse cutinases for characterization. The nine selected cutinases were recombinantly produced and their kinetic activity was characterized against para-nitrophenol substrates esterified with consecutively longer alkyl chains (pNP-C(2) to C(16)). The investigated cutinases each had a unique activity fingerprint against tested pNP-substrates. The five enzymes with the highest activity on pNP-C(12) and C(16), indicative of activity on bulky hydrophobic compounds, were selected for in-depth kinetic and structure-function analysis. All five enzymes showed a decrease in k(cat) values with increasing substrate chain length, while K(M) values and binding energies (calculated from in silico docking analysis) improved. Two cutinases from Fusarium solani and Cryptococcus sp. exhibited outstandingly low K(M) values, resulting in high catalytic efficiencies towards pNP-C(16). Docking analysis suggested that different clades of the phylogenetic tree may harbor enzymes with different modes of substrate interaction, involving a solvent-exposed catalytic triad, a lipase-like lid, or a clamshell-like active site possibly formed by flexible loops.
Amazon Dark Earth (ADE) soil is rich in organic compounds and its fertility has been associated with a high diversity of microorganisms. Herein, we investigate the biochemical and functional features of a novel esterase, Ade1, obtained from a metagenomic library of Amazonian Dark Earth soils of the Amazonian Rainforest, in Brazil. The esterases cleave ester bonds to form a carboxylic and an alcohol group. Esterases and lipases are enzymes found in almost all living organisms, demonstrating their biological relevance. We reported that Ade1 belongs to an alpha/beta-hydrolase superfamily. We suggest that Ade1 is a moonlighting enzyme with hysteresis behavior and quorum-quenching activity, which may play a key role in the metabolism of a Gram-negative proteobacteria. In addition, molecular dynamics simulations reveal that the hysteresis behavior is directly associated with structural properties of the cap domain. Our findings reveal details of the molecular basis, catalytic and structural mechanisms of a novel alpha/beta-hydrolase, which may be applied to other esterases of biotechnological, food, and/or pharmaceutical interest.
        
Title: Pseudomonas aeruginosa esterase PA2949, a bacterial homolog of the human membrane esterase ABHD6: expression, purification and crystallization Bleffert F, Granzin J, Gohlke H, Batra-Safferling R, Jaeger KE, Kovacic F Ref: Acta Crystallographica F Struct Biol Commun, 75:270, 2019 : PubMed
The human membrane-bound alpha/beta-hydrolase domain 6 (ABHD6) protein modulates endocannabinoid signaling, which controls appetite, pain and learning, as well as being linked to Alzheimer's and Parkinson's diseases, through the degradation of the key lipid messenger 2-arachidonylglycerol (2-AG). This makes ABHD6 an attractive therapeutic target that lacks structural information. In order to better understand the molecular mechanism of 2-AG-hydrolyzing enzymes, the PA2949 protein from Pseudomonas aeruginosa, which has 49% sequence similarity to the ABHD6 protein, was cloned, overexpressed, purified and crystallized. Overexpression of PA2949 in the homologous host yielded the membrane-bound enzyme, which was purified in milligram amounts. Besides their sequence similarity, the enzymes both show specificity for the hydrolysis of 2-AG and esters of medium-length fatty acids. PA2949 in the presence of n-octyl beta-D-glucoside showed a higher activity and stability at room temperature than those previously reported for PA2949 overexpressed and purified from Escherichia coli. A suitable expression host and stabilizing detergent were crucial for obtaining crystals, which belonged to the tetragonal space group I4122 and diffracted to a resolution of 2.54 A. This study provides hints on the functional similarity of ABHD6-like proteins in prokaryotes and eukaryotes, and might guide the structural study of these difficult-to-crystallize proteins.
        
Title: Understanding the interactions of different substrates with wild-type and mutant acylaminoacyl peptidase using molecular dynamics simulations Zhu J, Wang Y, Li X, Han W, Zhao L Ref: J Biomol Struct Dyn, :1, 2017 : PubMed
Acylaminoacylpeptidase (AAP) belongs to peptidase protein family (POP), which can degrade amyloid beta-peptide forms in the brains of patients and hence leads to Alzheimer's disease. And so, AAP is considered to be a novel target in the design of drugs against Alzheimer's disease. In this investigation, six molecular dynamics simulations were used to find that the interaction between the wild-type and R526V AAP with two different substrates (p-nitrophenylcaprylate and Ac-Leu-p-nitroanilide). Our results were as follows: firstly, Ac-Leu-p-nitroanilide bound to R526V AAP to form a more disordered loop (residues 552-562) in the alpha/beta-hydrolase fold like of AAP, which caused an open and inactive AAP domain form, secondly, binding p-nitrophenylcaprylate and Ac-Leu-p-nitroanilide to AAP can decrease the flexibility of residues 225-250, 260-270 and 425-450, in which the ordered secondary structures may contain the suitable geometrical structure and so it is useful to serine attack. Our theoretical results showed that the binding of the two substrates can induce specific conformational changes responsible for the diverse AAP catalytic specificity. These theoretical substrate-induced structural diversities can help explain the abilities of AAPs to recognize and hydrolyze extremely different substrates.
Certain alpha/beta hydrolases have the ability to hydrolyze synthetic polyesters. While their partial hydrolysis has a potential for surface functionalization, complete hydrolysis allows recycling of valuable building blocks. Although knowledge about biodegradation of these materials is important regarding their fate in the environment, it is currently limited to aerobic organisms. A lipase from the anaerobic groundwater organism Pelosinus fermentans DSM 17108 (PfL1) was cloned and expressed in Escherichia coli BL21-Gold(DE3) and purified from the cell extract. Biochemical characterization with small substrates showed thermoalkalophilic properties (T opt = 50 degrees C, pHopt = 7.5) and higher activity towards para-nitrophenyl octanoate (12.7 U mg-1) compared to longer and shorter chain lengths (C14 0.7 U mg-1 and C2 4.3 U mg-1, respectively). Crystallization and determination of the 3-D structure displayed the presence of a lid structure and a zinc ion surrounded by an extra domain. These properties classify the enzyme into the I.5 lipase family. PfL1 is able to hydrolyze poly(1,4-butylene adipate-co-terephthalate) (PBAT) polymeric substrates. The hydrolysis of PBAT showed the release of small building blocks as detected by liquid chromatography-mass spectrometry (LC-MS). Protein dynamics seem to be involved with lid opening for the hydrolysis of PBAT by PfL1.
        
Title: Directed evolution of new and improved enzyme functions using an evolutionary intermediate and multidirectional search Porter JL, Boon PL, Murray TP, Huber T, Collyer CA, Ollis DL Ref: ACS Chemical Biology, 10:611, 2015 : PubMed
The ease with which enzymes can be adapted from their native roles and engineered to function specifically for industrial or commercial applications is crucial to enabling enzyme technology to advance beyond its current state. Directed evolution is a powerful tool for engineering enzymes with improved physical and catalytic properties and can be used to evolve enzymes where lack of structural information may thwart the use of rational design. In this study, we take the versatile and diverse alpha/beta hydrolase fold framework, in the form of dienelactone hydrolase, and evolve it over three unique sequential evolutions with a total of 14 rounds of screening to generate a series of enzyme variants. The native enzyme has a low level of promiscuous activity toward p-nitrophenyl acetate but almost undetectable activity toward larger p-nitrophenyl esters. Using p-nitrophenyl acetate as an evolutionary intermediate, we have generated variants with altered specificity and catalytic activity up to 3 orders of magnitude higher than the native enzyme toward the larger nonphysiological p-nitrophenyl ester substrates. Several variants also possess increased stability resulting from the multidimensional approach to screening. Crystal structure analysis and substrate docking show how the enzyme active site changes over the course of the evolutions as either a direct or an indirect result of mutations.
The ever-increasing production and use of polyvinyl alcohol (PVA) threaten our environment. Yet PVA can be assimilated by microbes in two steps: oxidation and cleavage. Here we report novel alpha/beta-hydrolase structures of oxidized PVA hydrolase (OPH) from two known PVA-degrading organisms, Sphingopyxis sp. 113P3 and Pseudomonas sp. VM15C, including complexes with substrate analogues, acetylacetone and caprylate. The active site is covered by a lid-like beta-ribbon. Unlike other esterase and amidase, OPH is unique in cleaving the CC bond of beta-diketone, although it has a catalytic triad similar to that of most alpha/beta-hydrolases. Analysis of the crystal structures suggests a double-oxyanion-hole mechanism, previously only found in thiolase cleaving beta-ketoacyl-CoA. Three mutations in the lid region showed enhanced activity, with potential in industrial applications.
        
Title: A novel thermostable carboxylesterase from Geobacillus thermodenitrificans: evidence for a new carboxylesterase family Charbonneau DM, Meddeb-Mouelhi F, Beauregard M Ref: J Biochem, 148:299, 2010 : PubMed
A novel gene encoding an esterase from Geobacillus thermodenitrificans strain CMB-A2 was cloned, sequenced and functionally expressed in Escherichia coli M15. Sequence analysis revealed an open reading frame of 747 bp corresponding to a polypeptide of 249 amino acid residues (named EstGtA2). After purification, a specific activity of 2.58 U mg(-1) was detected using p-NP caprylate (C8) at 50 degrees C and pH 8.0 (optimal conditions). The enzyme catalyses the hydrolysis of triglycerides (tributyrin) and a variety of p-nitrophenyl esters with different fatty acyl chain length (C4-C16). The enzyme has potential for various industrial applications since it is characterized by its activity under a wide range of pH, from 25 to 65 degrees C. Using Geobacillus stearothermophilus Est30 esterase structure as template, a model of EstGtA2 was built using ESyPred3D. Analysis of this structural model allowed identifying putative sequence features that control EstGtA2 enzymatic properties. Based on sequence properties, multiple sequence comparisons and phylogenetic analyses, this enzyme appears to belong to a new family of carboxylesterases.
        
Title: Morphing activity between structurally similar enzymes: from heme-free bromoperoxidase to lipase Chen B, Cai Z, Wu W, Huang Y, Pleiss J, Lin Z Ref: Biochemistry, 48:11496, 2009 : PubMed
In this study, to explore the plasticity of the alpha/beta-hydrolase fold family, we converted bromoperoxidase A2 (BPO-A2) from Streptomyces aureofaciens to a lipase by structure comparison with lipase A (LipA) from Bacillus subtilis. These two enzymes have similar structures (2.1 A rmsd) and a very low level of sequence identity ( approximately 18%). A variant BL1 was constructed by deleting the caplike domain of BPO-A2 and further fine-tuning the newly formed substrate binding site. The lipase activity was successfully transplanted on BL1, while the halogenation activity was totally lost. BL1 also showed higher hydrolytic activities toward long chain p-nitrophenyl esters, such as p-nitrophenyl caprylate (3.7-fold) and p-nitrophenyl palmitate (7.0-fold), while its activity toward a short chain ester (p-nitrophenyl acetate) decreased dramatically, to only 1.2% of that of BPO-A2. After two rounds of directed evolution and site-directed mutagenesis on selected residues, several mutants with both improved hydrolytic activities and substrate preferences toward long chain substrates were obtained. The highest hydrolytic activity toward p-nitrophenyl palmitate of the best mutant BL1-2-E8-plusI was improved by 40-fold compared with that of BL1. These results demonstrate the possibility of manipulating the caplike domain of alpha/beta-hydrolase fold enzymes and provide further understanding of the structure-function relationship of the alpha/beta-hydrolase fold enzymes. The design strategy used in this study could serve as a useful approach for constructing variants with targeted catalytic properties using the alpha/beta-hydrolase fold.
        
Title: Characterization and heterologous gene expression of a novel esterase from Lactobacillus casei CL96 Choi YJ, Miguez CB, Lee BH Ref: Applied Environmental Microbiology, 70:3213, 2004 : PubMed
A novel esterase gene (estI) of Lactobacillus casei CL96 was localized on a 3.3-kb BamHI DNA fragment containing an open reading frame (ORF) of 1,800 bp. The ORF of estI was isolated by PCR and expressed in Escherichia coli, the methylotrophic bacterium Methylobacterium extorquens, and the methylotrophic yeast Pichia pastoris under the control of T7, methanol dehydrogenase (P(mxaF)), and alcohol oxidase (AOX1) promoters, respectively. The amino acid sequence of EstI indicated that the esterase is a novel member of the GHSMG family of lipolytic enzymes and that the enzyme contains a lipase-like catalytic triad, consisting of Ser325, Asp516, and His558. E. coli BL21(DE3)/pLysS containing estI expressed a novel 67.5-kDa protein corresponding to EstI in an N-terminal fusion with the S. tag peptide. The recombinant L. casei CL96 EstI protein was purified to electrophoretic homogeneity in a one-step affinity chromatography procedure on S-protein agarose. The optimum pH and temperature of the purified enzyme were 7.0 and 37 degrees C, respectively. Among the pNP (p-nitrophenyl) esters tested, the most selective substrate was pNP-caprylate (C(8)), with K(m) and k(cat) values of 14 +/- 1.08 microM and 1,245 +/- 42.3 S(-1), respectively.
        
Title: A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase Eggert T, Pencreac'h G, Douchet I, Verger R, Jaeger KE Ref: European Journal of Biochemistry, 267:6459, 2000 : PubMed
A novel gene lipB, which encodes an extracellular lipolytic enzyme, was identified in the Bacillus subtilis genomic DNA sequence. We have cloned and overexpressed lipB in B. subtilis and Escherichia coli and have also purified the enzyme from a B. subtilis culture supernatant to electrophoretic homogeneity. Four different lipase assays were used to determine its catalytic activity: pH-stat, spectrophotometry, fluorimetry and the monomolecular film technique. LipB preferentially hydrolysed triacylglycerol-esters and p-nitrophenyl-esters of fatty acids with short chain lengths of <= 10 carbon atoms. Triolein, which is a typical substrate for true lipases, was not hydrolysed at all. These results led us to classify LipB as an esterase rather than a lipase. The catalytic triad of LipB consists of residues Ser78, Asp134, and His157 as demonstrated by amino-acid sequence alignments and site-directed mutagenesis. The nucleophile Ser78 is located in a lipase-specific consensus sequence, which is Ala-X-Ser-X-Gly for most Bacillus lipases. All other bacterial lipases contain a glycine residue instead of the alanine at position-2 with respect to the catalytic serine. We have investigated the role of this alanine residue by constructing LipB variant A76G, thereby restoring the lipase-specific consensus motif. When compared with LipB this variant showed a markedly reduced thermostability but an increased stability at pH 5-7. Determination of the specific activities of wild-type LipB and variant A76G using a monomolecular film of the substrate monoolein revealed an interesting result: the A76G substitution had converted the esterase LipB into a monoacylglycerol hydrolase.
        
Title: Purification and partial characterization of a novel thermophilic carboxylesterase with high mesophilic specific activity Wood AN, Fernandez-Lafuente R, Cowan DA Ref: Enzyme Microb Technol, 17:816, 1995 : PubMed
An esterase activity obtained from a strain of Bacillus stearothermophilus was purified 5,133-fold to electrophoretic homogeneity with 26% recovery. The purified esterase had a specific activity of 2,032 mumol min-1 mg-1 based on the hydrolysis of p-nitrophenyl caproate at pH 7.0 and 30 degrees C. The apparent molecular mass was 50,000 +/- 2,000 daltons from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 45,000 +/- 3,000 daltons from gel filtration. Native polyacrylamide gels stained for esterase activity showed three bands. The isoelectric points were estimated to be 5.7, 5.8, and 6.0. Forty amino acid residues were sequenced at the N-terminus. The sequence showed no degeneracy, suggesting that the three esterases are functionally identical carboxylesterases differing by a limited number of amino acids. The enzyme showed maximum activity at pH 7.0 and was very stable at pH 6.0-8.9 with optimum stability at pH 6.0. At this pH and 60 degrees C the half-life was 170 h. Esterase activity was totally inhibited by phenylmethanesulfonyl fluoride, parahydroxymercuribenzoate, eserine, and tosyl-L-phenylalanine, but not by ethylendiaminetetra acetic acid. The esterase obeyed Michaelis-Menten kinetics in the hydrolysis of p-nitrophenyl esters, but both Vmax and KM were protein concentration-dependent. The esterase was able to hydrolyse a number of p-nitrophenyl derivatives (amino acid derivatives and aliphatic acids with different chain lengths).