Daugherty S

References (11)

Title : Genome Sequence of Escherichia coli O157:H7 Strain 2886-75, Associated with the First Reported Case of Human Infection in the United States - Sanjar_2014_Genome.Announc_2_e01120
Author(s) : Sanjar F , Hazen TH , Shah SM , Koenig SS , Agrawal S , Daugherty S , Sadzewicz L , Tallon LJ , Mammel MK , Feng P , Soderlund R , Tarr PI , Debroy C , Dudley EG , Cebula TA , Ravel J , Fraser CM , Rasko DA , Eppinger M
Ref : Genome Announc , 2 : , 2014
Abstract : First identified in 1982 as a human pathogen, enterohemorrhagic Escherichia coli of the O157:H7 serotype is a major cause of food-borne acquired human infections. Here, we report the genome sequence of the first known strain of this serotype isolated in the United States.
ESTHER : Sanjar_2014_Genome.Announc_2_e01120
PubMedSearch : Sanjar_2014_Genome.Announc_2_e01120
PubMedID: 24407635
Gene_locus related to this paper: ecoli-fes , ecoli-ycfp , ecoli-ypt1 , ecoli-yqia , ecoli-Z1930

Title : Genome sequences of 65 Helicobacter pylori strains isolated from asymptomatic individuals and patients with gastric cancer, peptic ulcer disease, or gastritis - Blanchard_2013_Pathog.Dis_68_39
Author(s) : Blanchard TG , Czinn SJ , Correa P , Nakazawa T , Keelan M , Morningstar L , Santana-Cruz I , Maroo A , McCracken C , Shefchek K , Daugherty S , Song Y , Fraser CM , Fricke WF
Ref : Pathog Dis , 68 :39 , 2013
Abstract : Helicobacter pylori, inhabitant of the gastric mucosa of over half of the world population, with decreasing prevalence in the U.S., has been associated with a variety of gastric pathologies. However, the majority of H. pylori-infected individuals remain asymptomatic, and negative correlations between H. pylori and allergic diseases have been reported. Comprehensive genome characterization of H. pylori populations from different human host backgrounds including healthy individuals provides the exciting potential to generate new insights into the open question whether human health outcome is associated with specific H. pylori genotypes or dependent on other environmental factors. We report the genome sequences of 65 H. pylori isolates from individuals with gastric cancer, preneoplastic lesions, peptic ulcer disease, gastritis, and from asymptomatic adults. Isolates were collected from multiple locations in North America (USA and Canada) as well as from Columbia and Japan. The availability of these H. pylori genome sequences from individuals with distinct clinical presentations provides the research community with a resource for detailed investigations into genetic elements that correlate either positively or negatively with the epidemiology, human host adaptation, and gastric pathogenesis and will aid in the characterization of strains that may favor the development of specific pathology, including gastric cancer.
ESTHER : Blanchard_2013_Pathog.Dis_68_39
PubMedSearch : Blanchard_2013_Pathog.Dis_68_39
PubMedID: 23661595
Gene_locus related to this paper: helpy-o25061

Title : Whole-Genome Draft Sequences of 26 Enterohemorrhagic Escherichia coli O157:H7 Strains - Eppinger_2013_Genome.Announc_1_e0013412
Author(s) : Eppinger M , Daugherty S , Agrawal S , Galens K , Sengamalay N , Sadzewicz L , Tallon L , Cebula TA , Mammel MK , Feng P , Soderlund R , Tarr PI , Debroy C , Dudley EG , Fraser CM , Ravel J
Ref : Genome Announc , 1 :e0013412 , 2013
Abstract : First identified in 1982, Escherichia coli O157:H7 is the dominant enterohemorrhagic serotype underlying food-borne human infections in North America. Here, we report the genomes of twenty-six strains derived from patients and the bovine reservoir. These resources enable detailed whole-genome comparisons and permit investigations of genotypic and phenotypic plasticity.
ESTHER : Eppinger_2013_Genome.Announc_1_e0013412
PubMedSearch : Eppinger_2013_Genome.Announc_1_e0013412
PubMedID: 23516226
Gene_locus related to this paper: ecoli-fes , ecoli-estX , ecoli-ycfp , ecoli-yhet , ecoli-ypt1 , ecoli-yqia , ecoli-Z1341 , ecoli-Z1930

Title : Whole-genome sequences of Bacillus subtilis and close relatives - Earl_2012_J.Bacteriol_194_2378
Author(s) : Earl AM , Eppinger M , Fricke WF , Rosovitz MJ , Rasko DA , Daugherty S , Losick R , Kolter R , Ravel J
Ref : Journal of Bacteriology , 194 :2378 , 2012
Abstract : We sequenced four strains of Bacillus subtilis and the type strains for two closely related species, Bacillus vallismortis and Bacillus mojavensis. We report the high-quality Sanger genome sequences of B. subtilis subspecies subtilis RO-NN-1 and AUSI98, B. subtilis subspecies spizizenii TU-B-10(T) and DV1-B-1, Bacillus mojavensis RO-H-1(T), and Bacillus vallismortis DV1-F-3(T).
ESTHER : Earl_2012_J.Bacteriol_194_2378
PubMedSearch : Earl_2012_J.Bacteriol_194_2378
PubMedID: 22493193
Gene_locus related to this paper: bacsu-YBAC , bacsu-ytxm , bacsu-YVAK

Title : Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice - Fouts_2008_PLoS.Genet_4_e1000141
Author(s) : Fouts DE , Tyler HL , DeBoy RT , Daugherty S , Ren Q , Badger JH , Durkin AS , Huot H , Shrivastava S , Kothari S , Dodson RJ , Mohamoud Y , Khouri H , Roesch LF , Krogfelt KA , Struve C , Triplett EW , Methe BA
Ref : PLoS Genet , 4 :e1000141 , 2008
Abstract : We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%), one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578). Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but important category of bacterial-plant host relationships, which could ultimately enhance growth and nutrition of important agricultural crops and development of plant-derived products and biofuels.
ESTHER : Fouts_2008_PLoS.Genet_4_e1000141
PubMedSearch : Fouts_2008_PLoS.Genet_4_e1000141
PubMedID: 18654632
Gene_locus related to this paper: klep3-b5xp56 , klep3-b5xqp6 , klep3-b5xzn5 , klep3-b5xzy8 , klep3-bioh , klep3-menh , klep7-a6t8q2 , klep7-a6t9v6 , klep7-a6tb98 , klep7-mhpc , klep7-y243 , klep7-y1077 , klepn-c4x8q1 , klepn-w8uta0 , klep3-rutd

Title : The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea - Mongodin_2005_Proc.Natl.Acad.Sci.U.S.A_102_18147
Author(s) : Mongodin EF , Nelson KE , Daugherty S , DeBoy RT , Wister J , Khouri H , Weidman J , Walsh DA , Papke RT , Sanchez Perez G , Sharma AK , Nesbo CL , Macleod D , Bapteste E , Doolittle WF , Charlebois RL , Legault B , Rodriguez-Valera F
Ref : Proc Natl Acad Sci U S A , 102 :18147 , 2005
Abstract : Saturated thalassic brines are among the most physically demanding habitats on Earth: few microbes survive in them. Salinibacter ruber is among these organisms and has been found repeatedly in significant numbers in climax saltern crystallizer communities. The phenotype of this bacterium is remarkably similar to that of the hyperhalophilic Archaea (Haloarchaea). The genome sequence suggests that this resemblance has arisen through convergence at the physiological level (different genes producing similar overall phenotype) and the molecular level (independent mutations yielding similar sequences or structures). Several genes and gene clusters also derive by lateral transfer from (or may have been laterally transferred to) haloarchaea. S. ruber encodes four rhodopsins. One resembles bacterial proteorhodopsins and three are of the haloarchaeal type, previously uncharacterized in a bacterial genome. The impact of these modular adaptive elements on the cell biology and ecology of S. ruber is substantial, affecting salt adaptation, bioenergetics, and photobiology.
ESTHER : Mongodin_2005_Proc.Natl.Acad.Sci.U.S.A_102_18147
PubMedSearch : Mongodin_2005_Proc.Natl.Acad.Sci.U.S.A_102_18147
PubMedID: 16330755
Gene_locus related to this paper: salrd-q2ryx4 , salrd-q2ryz7 , salrd-q2rz15 , salrd-q2rz19 , salrd-q2rz52 , salrd-q2rz84 , salrd-q2rzy1 , salrd-q2s0e4 , salrd-q2s1i8 , salrd-q2s1v7 , salrd-q2s1v9 , salrd-q2s2d6 , salrd-q2s2y7 , salrd-q2s5a6 , salrd-q2s5k5 , salrd-q2s5u7 , salrd-q2s6g6 , salrd-q2s039 , salrd-q2s117 , salrd-q2s215 , salrd-q2s287 , salrd-q2s400 , salrd-q2s402 , salrd-q2s473 , salrd-q2s516 , salrd-q2s564

Title : The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 - Buell_2003_Proc.Natl.Acad.Sci.U.S.A_100_10181
Author(s) : Buell CR , Joardar V , Lindeberg M , Selengut J , Paulsen IT , Gwinn ML , Dodson RJ , DeBoy RT , Durkin AS , Kolonay JF , Madupu R , Daugherty S , Brinkac L , Beanan MJ , Haft DH , Nelson WC , Davidsen T , Zafar N , Zhou L , Liu J , Yuan Q , Khouri H , Fedorova N , Tran B , Russell D , Berry K , Utterback T , Van Aken SE , Feldblyum TV , D'Ascenzo M , Deng WL , Ramos AR , Alfano JR , Cartinhour S , Chatterjee AK , Delaney TP , Lazarowitz SG , Martin GB , Schneider DJ , Tang X , Bender CL , White O , Fraser CM , Collmer A
Ref : Proc Natl Acad Sci U S A , 100 :10181 , 2003
Abstract : We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.
ESTHER : Buell_2003_Proc.Natl.Acad.Sci.U.S.A_100_10181
PubMedSearch : Buell_2003_Proc.Natl.Acad.Sci.U.S.A_100_10181
PubMedID: 12928499
Gene_locus related to this paper: pse14-q48ia0 , psesm-IRP1 , psesm-METX , psesm-q87y20 , psesm-q88a39 , psesm-q881b4 , psesm-q889k3 , psesy-BIOH , psesy-CFA7 , psesy-CFA9 , psesy-CMAT , psesy-ESTA , psesy-IRP4 , psesy-PHAB , psesy-PHAC , psesy-PHAG1 , psesy-PHAG2 , psesy-PIP , psesy-PSPTO0162 , psesy-PSPTO0421 , psesy-PSPTO0508 , psesy-PSPTO0675 , psesy-PSPTO0715 , psesy-PSPTO1154 , psesy-PSPTO1504 , psesy-PSPTO1559 , psesy-PSPTO1580 , psesy-PSPTO1604 , psesy-PSPTO1677 , psesy-PSPTO1766 , psesy-PSPTO1863 , psesy-PSPTO2042 , psesy-PSPTO2134 , psesy-PSPTO2150 , psesy-PSPTO2209 , psesy-PSPTO2217 , psesy-PSPTO2218 , psesy-PSPTO2293 , psesy-PSPTO2495 , psesy-PSPTO2674 , psesy-PSPTO2830 , psesy-PSPTO3135 , psesy-PSPTO3138 , psesy-PSPTO3264 , psesy-PSPTO3282 , psesy-PSPTO3306 , psesy-PSPTO3485 , psesy-PSPTO3572 , psesy-PSPTO3911 , psesy-PSPTO4089 , psesy-PSPTO4178 , psesy-PSPTO4277 , psesy-PSPTO4430 , psesy-PSPTO4519 , psesy-PSPTO4540 , psesy-PSPTO4699 , psesy-PSPTO4708 , psesy-PSPTO4781 , psesy-PSPTO4843 , psesy-PSPTO4964 , psesy-PSPTO5218 , psesy-PSPTO5299 , psesy-PSPTO5448 , psesy-PSPTO5537 , psesy-SYLD , psesy-SYPC , psesy-SYRE , psesm-q87v84

Title : Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis - Paulsen_2003_Science_299_2071
Author(s) : Paulsen IT , Banerjei L , Myers GS , Nelson KE , Seshadri R , Read TD , Fouts DE , Eisen JA , Gill SR , Heidelberg JF , Tettelin H , Dodson RJ , Umayam L , Brinkac L , Beanan M , Daugherty S , DeBoy RT , Durkin S , Kolonay J , Madupu R , Nelson W , Vamathevan J , Tran B , Upton J , Hansen T , Shetty J , Khouri H , Utterback T , Radune D , Ketchum KA , Dougherty BA , Fraser CM
Ref : Science , 299 :2071 , 2003
Abstract : The complete genome sequence of Enterococcus faecalis V583, a vancomycin-resistant clinical isolate, revealed that more than a quarter of the genome consists of probable mobile or foreign DNA. One of the predicted mobile elements is a previously unknown vanB vancomycin-resistance conjugative transposon. Three plasmids were identified, including two pheromone-sensing conjugative plasmids, one encoding a previously undescribed pheromone inhibitor. The apparent propensity for the incorporation of mobile elements probably contributed to the rapid acquisition and dissemination of drug resistance in the enterococci.
ESTHER : Paulsen_2003_Science_299_2071
PubMedSearch : Paulsen_2003_Science_299_2071
PubMedID: 12663927
Gene_locus related to this paper: entfa-EF0101 , entfa-EF0274 , entfa-EF0381 , entfa-EF0449 , entfa-EF0667 , entfa-EF0786 , entfa-EF1028 , entfa-EF1236 , entfa-EF1505 , entfa-EF1536 , entfa-EF1670 , entfa-EF2618 , entfa-EF2728 , entfa-EF2792 , entfa-EF2963 , entfa-EF3191

Title : Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis - Heidelberg_2002_Nat.Biotechnol_20_1118
Author(s) : Heidelberg JF , Paulsen IT , Nelson KE , Gaidos EJ , Nelson WC , Read TD , Eisen JA , Seshadri R , Ward N , Methe B , Clayton RA , Meyer T , Tsapin A , Scott J , Beanan M , Brinkac L , Daugherty S , DeBoy RT , Dodson RJ , Durkin AS , Haft DH , Kolonay JF , Madupu R , Peterson JD , Umayam LA , White O , Wolf AM , Vamathevan J , Weidman J , Impraim M , Lee K , Berry K , Lee C , Mueller J , Khouri H , Gill J , Utterback TR , McDonald LA , Feldblyum TV , Smith HO , Venter JC , Nealson KH , Fraser CM
Ref : Nat Biotechnol , 20 :1118 , 2002
Abstract : Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities, conferred in part by multicomponent, branched electron transport systems. Here we report the sequencing of the S. oneidensis genome, which consists of a 4,969,803-base pair circular chromosome with 4,758 predicted protein-encoding open reading frames (CDS) and a 161,613-base pair plasmid with 173 CDSs. We identified the first Shewanella lambda-like phage, providing a potential tool for further genome engineering. Genome analysis revealed 39 c-type cytochromes, including 32 previously unidentified in S. oneidensis, and a novel periplasmic [Fe] hydrogenase, which are integral members of the electron transport system. This genome sequence represents a critical step in the elucidation of the pathways for reduction (and bioremediation) of pollutants such as uranium (U) and chromium (Cr), and offers a starting point for defining this organism's complex electron transport systems and metal ion-reducing capabilities.
ESTHER : Heidelberg_2002_Nat.Biotechnol_20_1118
PubMedSearch : Heidelberg_2002_Nat.Biotechnol_20_1118
PubMedID: 12368813
Gene_locus related to this paper: sheon-BIOH , sheon-LYPA , sheon-PIP , sheon-PTRB , sheon-q8ej95 , sheon-SO0071 , sheon-SO0614 , sheon-SO0616 , sheon-SO0801 , sheon-SO0880 , sheoe-SO0967 , sheon-SO1006 , sheon-SO1224 , sheon-SO1310 , sheon-SO1534 , sheon-SO1539 , sheon-SO1686 , sheon-SO1743 , sheon-SO1976 , sheon-SO1999 , sheon-SO2024 , sheon-SO2047 , sheon-SO2055 , sheon-SO2223 , sheon-SO2333 , sheon-SO2473 , sheon-SO2582 , sheon-SO2753 , sheon-SO2934 , sheon-SO3025 , sheon-SO3900 , sheon-SO3990 , sheon-SO4252 , sheon-SO4400 , sheon-SO4537 , sheon-SO4543 , sheon-SO4574 , sheon-SO4618 , sheon-SO4650 , sheon-SOA0048 , shefn-SfSFGH , sheon-ym51

Title : Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440 - Nelson_2002_Environ.Microbiol_4_799
Author(s) : Nelson KE , Weinel C , Paulsen IT , Dodson RJ , Hilbert H , Martins dos Santos VA , Fouts DE , Gill SR , Pop M , Holmes M , Brinkac L , Beanan M , DeBoy RT , Daugherty S , Kolonay J , Madupu R , Nelson W , White O , Peterson J , Khouri H , Hance I , Chris Lee P , Holtzapple E , Scanlan D , Tran K , Moazzez A , Utterback T , Rizzo M , Lee K , Kosack D , Moestl D , Wedler H , Lauber J , Stjepandic D , Hoheisel J , Straetz M , Heim S , Kiewitz C , Eisen JA , Timmis KN , Dusterhoft A , Tummler B , Fraser CM
Ref : Environ Microbiol , 4 :799 , 2002
Abstract : Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.
ESTHER : Nelson_2002_Environ.Microbiol_4_799
PubMedSearch : Nelson_2002_Environ.Microbiol_4_799
PubMedID: 12534463
Gene_locus related to this paper: psep1-a5wa77 , psep1-a5wax1 , psepk-q88nk6 , psepk-q88qt0 , psepu-acoc , psepu-BIOH , psepu-bpest , psepu-ESTB , psepu-LIP , psepu-METX , psepu-PHAC1 , psepu-PHAC2 , psepu-PHAG , psepu-PHAZ , psepu-PIP , psepu-PP0375 , psepu-PP0498 , psepu-PP0532 , psepu-PP1064 , psepu-PP1184 , psepu-PP1310 , psepu-PP1500 , psepu-PP1617 , psepu-PP1829 , psepu-PP1979 , psepu-PP2083 , psepu-PP2201 , psepu-PP2236 , psepu-PP2567 , psepu-PP2804 , psepu-PP2934 , psepu-PP3195 , psepu-PP3367 , psepu-PP3404 , psepu-PP3645 , psepu-PP3807 , psepu-PP3812 , psepu-PP3943 , psepu-PP4164 , psepu-PP4165 , psepu-PP4178 , psepu-PP4249 , psepu-PP4540 , psepu-PP4551 , psepu-PP4583 , psepu-PP4624 , psepu-PP4634 , psepu-PP4916 , psepu-PP5117 , psepu-PP5161 , psepu-PP5167 , psepu-PPSD , psepu-Q8KQK1 , psepu-q9wwz4

Title : Cloning, expression, and mutagenesis of phosphatidylinositol-specific phospholipase C from Staphylococcus aureus: a potential staphylococcal virulence factor - Daugherty_1993_Infect.Immun_61_5078
Author(s) : Daugherty S , Low MG
Ref : Infect Immun , 61 :5078 , 1993
Abstract : Staphylococcus aureus secretes a phosphatidylinositol (PI)-specific phospholipase C (PI-PLC) which is able to hydrolyze the membrane lipid PI and membrane protein anchors containing glycosyl-PI. The gene for PI-PLC (plc) was cloned from S. aureus into Escherichia coli. Oligonucleotide probes based on partial protein sequence and polyclonal antibodies raised against the purified protein were used to identify positive clones. E. coli transformed with a plasmid containing the plc gene expressed PI-PLC enzyme activity which was abolished by mutagenesis with a tetracycline resistance gene. The plc gene was present in all 15 S. aureus strains examined but not in any of 6 coagulase-negative staphylococcal species. The plc gene contained 984 bp and coded for a mature protein with a calculated molecular mass of 34,107 Da. Amino acid sequence comparisons indicated that the staphylococcal plc gene was similar (51 to 56%) to the PI-PLCs from Bacillus cereus, Bacillus thuringiensis, and Listeria monocytogenes. The recombinant PI-PLC expressed in E. coli was purified and exhibited biochemical properties identical to those of the native PI-PLC from S. aureus. PI-PLC production was decreased in agr mutant strains of S. aureus. However, PI-PLC production by both agr+ and agr mutant strains exhibited a similar dependence on the type of medium used. These data suggested that PI-PLC production was regulated by both agr-dependent and agr-independent mechanisms.
ESTHER : Daugherty_1993_Infect.Immun_61_5078
PubMedSearch : Daugherty_1993_Infect.Immun_61_5078
PubMedID: 8225585