Title: Transcription Factor CfSte12 of Colletotrichum fructicola Is a Key Regulator of Early Apple Glomerella Leaf Spot Pathogenesis Liu W, Liang X, Gleason ML, Cao M, Zhang R, Sun G Ref: Applied Environmental Microbiology, 87:, 2020 : PubMed
Glomerella leaf spot (GLS), caused by Colletotrichum fructicola, is a rapidly emerging disease leading to defoliation, fruit spot, and storage fruit rot on apple in China. Little is known about the mechanisms of GLS pathogenesis. Early transcriptome analysis revealed that expression of the zinc finger transcription factor Ste12 gene in C. fructicola (CfSte12) was upregulated in appressoria and leaf infection. To investigate functions of CfSte12 during pathogenesis, we constructed gene deletion mutants (deltaCfSte12) by homologous recombination. Phenotypic analysis revealed that CfSte12 was involved in pathogenesis of nonwounded apple fruit and leaf, as well as wounded apple fruit. Subsequent histological studies revealed that loss of pathogenicity by deltaCfSte12 on apple leaf was expressed as defects of conidium germination, appressorium development, and appressorium-mediated penetration. Further RNA sequencing-based transcriptome comparison revealed that CfSte12 modulates the expression of genes related to appressorium function (e.g., genes for the tetraspanin PLS1, Gas1-like proteins, cutinases, and melanin biosynthesis) and candidate effectors likely involved in plant interaction. In sum, our results demonstrated that CfSte12 is a key regulator of early apple GLS pathogenesis in C. fructicola In addition, CfSte12 is also needed for sexual development of perithecia and ascospores.IMPORTANCE Glomerella leaf spot (GLS) is an emerging fungal disease of apple that causes huge economic losses in Asia, North America, and South America. The damage inflicted by GLS manifests in rapid necrosis of leaves, severe defoliation, and necrotic spot on the fruit surface. However, few studies have addressed mechanisms of GLS pathogenesis. In this study, we identified and characterized a key pathogenicity-related transcription factor, CfSte12, of Colletotrichum fructicola that contributes to GLS pathogenesis. We provide evidence that the CfSte12 protein regulates many important pathogenic processes of GLS, including conidium germination, appressorium formation, appressorium-mediated penetration, and colonization. CfSte12 also impacts development of structures needed for sexual reproduction which are vital for the GLS disease cycle. These results reveal a key pathogenicity-related transcription factor, CfSte12, in C. fructicola that causes GLS.
Objective: DBPR108, a novel dipeptidyl-peptidase-4 inhibitor, has shown great antihyperglycemic effect in animal models. This study was to evaluate the efficacy and safety of DBPR108 monotherapy in type 2 diabetes mellitus (T2DM).Methods: This was a 12-week, double-blind, placebo-controlled phase II clinical trial. The newly diagnosed or inadequately controlled untreated T2DM patients were randomized to receive 50, 100, 200 mg DBPR108 or placebo in a ratio of 1:1:1:1. The primary efficacy outcome was HbA1c change from baseline to week 12. Relevant secondary efficacy parameters and safety were assessed. The clinical trial registration is NCT04124484.Results: Overall, 271 of the 276 randomized patients, who received 50 mg (n = 68), 100 mg (n = 67), 200 mg (n = 69) DBPR108 or placebo (n = 67), were included in full analysis set. At week 12, HbA1c change from baseline was -0.04 +/- 0.77 in placebo group, -0.51 +/- 0.71, -0.75 +/- 0.73, and -0.57 +/- 0.78 (%, p < .001 vs. placebo) in 50, 100, and 200 mg DBPR108 groups, respectively. Since week 4, DBPR108 monotherapy resulted in significant improvements in secondary efficacy parameters. At end of 12-week treatment, the goal of HbA1c >=7% was achieved in 29.85, 58.82, 55.22, and 47.83% of the patients in placebo, 50, 100, and 200 mg DBPR108 groups, respectively. The incidence of adverse events did not show significant difference between DBPR108 and placebo except mild hypoglycemia in DBPR108 200 mg group.Conclusions: The study results support DBPR108 100 mg once daily as the primary dosing regimen for T2DM patients in phase III development program.
The perception mechanism for the strigolactone (SL) class of plant hormones has been a subject of debate because their receptor, DWARF14 (D14), is an alpha/beta-hydrolase that can cleave SLs. Here we show via time-course analyses of SL binding and hydrolysis by Arabidopsis thaliana D14, that the level of uncleaved SL strongly correlates with the induction of the active signaling state. In addition, we show that an AtD14(D218A) catalytic mutant that lacks enzymatic activity is still able to complement the atd14 mutant phenotype in an SL-dependent manner. We conclude that the intact SL molecules trigger the D14 active signaling state, and we also describe that D14 deactivates bioactive SLs by the hydrolytic degradation after signal transmission. Together, these results reveal that D14 is a dual-functional receptor, responsible for both the perception and deactivation of bioactive SLs.
        
Title: Treatment Effects of Jinlingzi Powder and Its Extractive Components on Gastric Ulcer Induced by Acetic Acid in Rats Zhao X, Li J, Meng Y, Cao M, Wang J Ref: Evid Based Complement Alternat Med, 2019:7365841, 2019 : PubMed
Jinlingzi powder comprises Melia toosendan Sieb. et Zucc. and Corydalis yanhusuo (Y.H. Chou & Chun C.Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu and is usually applied in clinic as traditional Chinese medicine for pain. The present study aims to investigate the therapeutic actions of Jinlingzi powder and its extracted components and theirs treatment mechanism on the acetic acid induced-gastric ulcer in rats. The gastric ulcer model was induced by the administration of acetic acid in rats (84 male). Jinlingzi powder water decoction, its polysaccharide, and nonalkaloid and alkaloid components were used to investigate the therapeutic actions on the acetic acid induced-gastric ulcer by measuring the related pharmacy and pharmacodynamic factors, including ulcer index, ulcer area, ulcer healing rate, interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-alpha), neurotensin (NT), platelet activating factor (PAF), thromboxane B2 (TXB2), and vascular endothelial growth factor (VEGF) in rat serum, acetylcholinesterase (AChE) in brain tissue, prostaglandin E2 (PGE2), and basic fibroblast growth factor (bFGF) in gastric tissue. Among the various groups, Jinlingzi powder and the nonalkaloid components caused significant changes in IL-8, TNF-alpha, NT, PAF TXB2, and VEGF values in the serum. The AChE content in the rats' brain tissue was also reduced after using Jinlingzi powder and the nonalkaloid components. Additionally, Jinlingzi powder and the nonalkaloid components considerably affect the amount of PGE2 and bFGF in a rat's stomach tissue. Therefore, Jinlingzi powder and the nonalkaloid components can effectively inhibit neutral neutrophil activation, prevent capillaries thrombosis, and protect gastric mucosa. Thus, the nonalkaloid components of the Jinlingzi powder play a key role in the treatment of gastric ulcer.
        
Title: Effects of fasting on the activities and mRNA expression levels of lipoprotein lipase (LPL), hormone-sensitive lipase (HSL) and fatty acid synthetase (FAS) in spotted seabass Lateolabrax maculatus Huang H, Zhang Y, Cao M, Xue L, Shen W Ref: Fish Physiol Biochem, 44:387, 2018 : PubMed
To investigate the effects of fasting on lipid metabolism in spotted seabass muscle and liver tissues, we analyzed mRNA levels and enzyme activities of lipoprotein lipase (LPL), hormone-sensitive lipase (HSL) and fatty acid synthetase (FAS), and the relationship among fat content, mRNA level, and enzyme activity during fasting of 35 days. The results showed that expressions of all the three genes were ubiquitous. During the fasting experiment, the hepatosomatic index (HSI) and fat content of muscle and liver tissues significantly decreased before 5 days of fasting (P < 0.05). mRNA levels of LPL increased significantly after 5 days of fasting in liver and 7 days in muscle. Abundance of HSL transcripts increased significantly after 14 days of fasting in both muscle and liver. The activities of LPL and HSL presented a trend that increased firstly, decreased subsequently, and then raised again with the prolonged fasting experiment (P < 0.05). However, activities and mRNA levels of FAS decreased significantly after 1 day of fasting in both muscle and liver. Moreover, activities and mRNA levels of FAS showed a moderate correlation in muscle. These results suggested that FAS had a sooner response to fasting than LPL and HSL in both muscle and liver tissues. LPL and HSL played important roles in lipolysis mainly by increasing enzyme activities in the early stage of fasting and mRNA levels in the later stage of fasting in both muscle and liver. Our results also provided useful information on regulating muscle fat content by fasting.
        
Title: Identification and Characterization of Two Novel Esterases from a Metagenomic Library Gu X, Wang S, Wang SC, Zhao LX, Cao M, Feng Z Ref: Food Science and Technology Research, 21:649, 2015 : PubMed
Esterases are biocatalysts in food industry aimed for nutrition improvements, formation of flavor, and food fermentation. Two esterases EstGX1 and EstGX2 were identified based on function-based screening of a soil metagenomic cosmid library. Enzyme properties including optimum pH, optimal temperature, tolerance to organic solvents and metal ions were measured, respectively. The activity of EstGX2 could maintain about 40% after incubated at 99C for 55 min, and could be increased in presence of 15% ethanol. The unique properties of EstGX2, high thermostability and stability in the presence of several organic solvents, may make it a promising enzyme candidate in food industry.
Bactrian camels serve as an important means of transportation in the cold desert regions of China and Mongolia. Here we present a 2.01 Gb draft genome sequence from both a wild and a domestic bactrian camel. We estimate the camel genome to be 2.38 Gb, containing 20,821 protein-coding genes. Our phylogenomics analysis reveals that camels shared common ancestors with other even-toed ungulates about 55-60 million years ago. Rapidly evolving genes in the camel lineage are significantly enriched in metabolic pathways, and these changes may underlie the insulin resistance typically observed in these animals. We estimate the genome-wide heterozygosity rates in both wild and domestic camels to be 1.0 x 10(-3). However, genomic regions with significantly lower heterozygosity are found in the domestic camel, and olfactory receptors are enriched in these regions. Our comparative genomics analyses may also shed light on the genetic basis of the camel's remarkable salt tolerance and unusual immune system.
Bacillus amyloliquefaciens is one of most prevalent Gram-positive aerobic spore-forming bacteria with the ability to synthesize polysaccharides and polypeptides. Here, we report the complete genome sequence of B. amyloliquefaciens LL3, which was isolated from fermented food and presents the glutamic acid-independent production of poly-gamma-glutamic acid.
We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000-40,000. Only 2%-3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family.
        
Title: Identification of target promoters for the Bacillus subtilis extracytoplasmic function sigma factor, sigma W Huang X, Gaballa A, Cao M, Helmann JD Ref: Molecular Microbiology, 31:361, 1999 : PubMed
The Bacillus subtilis sigW gene encodes an extracytoplasmic function (ECF) sigma factor that is expressed in early stationary phase from a sigW-dependent autoregulatory promoter, PW. Using a consensus-based search procedure, we have identified 15 operons preceded by promoters similar in sequence to PW. At least 14 of these promoters are dependent on sigma W both in vivo and in vitro as judged by lacZ reporter fusions, run-off transcription assays and nucleotide resolution start site mapping. We conclude that sigma W controls a regulon of more than 30 genes, many of which encode membrane proteins of unknown function. The sigma W regulon includes a penicillin binding protein (PBP4*) and a co-transcribed amino acid racemase (RacX), homologues of signal peptide peptidase (YteI), flotillin (YuaG), ABC transporters (YknXYZ), non-haem bromoperoxidase (YdjP), epoxide hydrolase (YfhM) and three small peptides with structural similarities to bacteriocin precursor polypeptides. We suggest that sigma W activates a large stationary-phase regulon that functions in detoxification, production of anti-microbial compounds or both.