Guo N

References (8)

Title : Resistance to Beta-cypermethrin, Azadirachtin, and Matrine, and Biochemical Characterization of Field Populations of Oedaleus asiaticus (Bey-Bienko) in Inner Mongolia, Northern China - Gao_2022_J.Insect.Sci_22_
Author(s) : Gao S , Tan Y , Han H , Guo N , Gao H , Xu L , Lin K
Ref : J Insect Sci , 22 : , 2022
Abstract : Oedaleus asiaticus (Bey-Bienko) is an economically devastating locust species found in grassland and pastoral areas of the Inner Mongolia region of northern China. In this study, resistance to three frequently used insecticides (beta-cypermethrin, matrine, and azadirachtin) was investigated in six field populations of O. asiaticus using the leaf-dip bioassay method. The inhibitory effects of synergists and the activities of detoxification enzyme activities in the different populations were determined to explore potential biochemical resistance mechanisms. The results showed that the field populations SB (resistance ratio [RR]=7.85), ZB (RR=5.64), and DB (RR=6.75) had developed low levels of resistance to beta-cypermethrin compared with a susceptible control strain. Both the SB (RR=5.92) and XC (RR=6.38) populations had also developed low levels of resistance against matrine, with the other populations remaining susceptible to both beta-cypermethrin and matrine. All field populations were susceptible to azadirachtin. Synergism analysis showed that triphenyl phosphate (TPP) and diethyl-maleate (DEM) increased the toxicity of beta-cypermethrin significantly in the SB population, while the synergistic effects of TPP, piperonyl butoxide (PBO), and DEM on the toxicity of matrine were higher in SB (SR 3.86, 4.18, and 3.07, respectively) than in SS (SR 2.24, 2.86, and 2.29, respectively), but no synergistic effects of TPP, PBO, and DEM on azadirachtin were found. Biochemical assays showed that the activities of carboxylesterases (CarEs) and glutathione-S-transferases (GSTs) were significantly raised in all field populations of O. asiaticus, with a significant positive correlation observed between beta-cypermethrin resistance and CarE activity. The activities of cytochrome P450 monooxygenases (P450) and multi-function oxidases (MFO) were elevated in all six field populations, and P450 activity displayed strong positive correlations with the three insecticides. Our findings suggest that resistance to beta-cypermethrin in O. asiaticus may be mainly attributed to elevated CarE and GST activities, while P450 plays an important role in metabolizing matrine and azadirachtin. Our study provides insights that will help improve insecticide resistance management strategies.
ESTHER : Gao_2022_J.Insect.Sci_22_
PubMedSearch : Gao_2022_J.Insect.Sci_22_
PubMedID: 36374481

Title : HEV-LFS : A novel scoring model for patients with hepatitis E virus-related liver failure - Wu_2019_J.Viral.Hepat_26_1334
Author(s) : Wu J , Guo N , Zhang X , Xiong C , Liu J , Xu Y , Fan J , Yu J , Zhao X , Liu B , Wang W , Zhang J , Cao H , Li L
Ref : J Viral Hepat , 26 :1334 , 2019
Abstract : A noninvasive assessment method for acute or acute-on-chronic liver failure in patients with hepatitis E virus (HEV) infection is urgently needed. We aimed to develop a scoring model for diagnosing HEV patients who developed liver failure (HEV-LF) at different stages. A cross-sectional set of 350 HEV-LF patients were identified and enrolled, and the Guidelines for Diagnosis and Treatment of Liver Failure in China and the Asian Pacific Association for the Study of the Liver were adopted as references. HEV-LFS , a novel scoring model that incorporates data on cholinesterase (CHE), urea nitrogen (UREA), platelets and international normalized ratio was developed using a derived dataset. For diagnosing HEV-LF stages F1 to F3, the HEV-LFS scoring model (F1: 0.87; F2: 0.90; F3: 0.92) had a significantly higher AUROC than did the CLIF-C-ACLFs (F1: 0.65; F2: 0.56; F3: 0.51) and iMELD (F1: 0.70; F2: 0.57; F3: 0.51) scoring models, of which the HEV-LFS scoring model had the best sensitivity and specificity. In addition, the HEV-LFS scoring model was correlated with mortality, length of hospitalization and ICU stay. As the GDTLF score increased, the CHE level decreased and the UREA increased gradually. Encouragingly, a calibration curve showed good agreement between the derivation and validation sets. Notably, we also established a nomogram to facilitate the practical operability of the HEV-LFS scoring model in clinical settings. In conclusion, both CHE and UREA may be indicators for HEV-LF patients. The HEV-LFS scoring model is an efficient and accessible model for classifying HEV-LF at different stages.
ESTHER : Wu_2019_J.Viral.Hepat_26_1334
PubMedSearch : Wu_2019_J.Viral.Hepat_26_1334
PubMedID: 31294523

Title : Characterization of FM2382 from Fulvimarina manganoxydans sp. Nov. 8047 with potential enzymatic decontamination of sulfur mustard - Zhao_2018_Protein.Expr.Purif_141_63
Author(s) : Zhao YZ , Guo X , Zhong JY , Guo N , Chen LC , Dong ZY
Ref : Protein Expr Purif , 141 :63 , 2018
Abstract : Sulfur mustard (SM) can be hydrolyzed by haloalkane dehalogenases such as DhaA, LinB and DmbA. However, the low resistance to the elevated temperatures limited the practical application of haloalkane dehalogenases. Here we reported a new thermotolerant dehalogenase FM2382 from Fulvimarina manganoxydans sp. nov. 8047. The specific activity of FM2382 to SM is 0.6 U/mg. FM2382 possessed high heat stability (45 degrees C) in slight alkali environment (pH 7.5) and retained approximately 50% activity after incubation at 70 degrees C for 40 min. The catalytic activity of FM2382 was activated by Co2+ and Mg2+, and inhibited by Zn2+, Cu2+ and Fe3+. Furthermore, site-specific mutagenesis proved that D34, K207 D232, D237 were amino acid residues related to the catalytic activity of SM. In conclusion, we found a thermostable haloacid dehalogenases (HAD) family dehalogenase showing SM-degradation activity, which may be useful for practical application in the future.
ESTHER : Zhao_2018_Protein.Expr.Purif_141_63
PubMedSearch : Zhao_2018_Protein.Expr.Purif_141_63
PubMedID: 28807839

Title : The dual DPP4 inhibitor and GPR119 agonist HBK001 regulates glycemic control and beta cell function ex and in vivo - Huan_2017_Sci.Rep_7_4351
Author(s) : Huan Y , Jiang Q , Li G , Bai G , Zhou T , Liu S , Li C , Liu Q , Sun S , Yang M , Guo N , Wang X , Wang S , Liu Y , Wang G , Huang H , Shen Z
Ref : Sci Rep , 7 :4351 , 2017
Abstract : Glucagon like peptide-1 (GLP-1) plays a vital role in glucose homeostasis and sustaining beta-cell function. Currently there are two major methods to enhance endogenous GLP-1 activity; inhibiting dipeptidyl peptidase-4 (DPP4) or activating G protein-coupled receptor 119 (GPR119). Here we describe and validate a novel dual-target compound, HBK001, which can both inhibit DPP4 and activate GPR119 ex and in vivo. We show that HBK001 can promote glucose-stimulated insulin secretion in mouse and human primary islets. A single administration of HBK001 in ICR mice can increase plasma incretins levels much more efficiently than linagliptin, a classic DPP4 inhibitor. Long-term treatment of HBK001 in KKAy mice can ameliorate hyperglycemia as well as improve glucose tolerance, while linagliptin fails to achieve such glucose-lowing effects despite inhibiting 95% of serum DPP4 activity. Moreover, HBK001 can increase first-phase insulin secretion in KKAy mice, suggesting a direct effect on islet beta-cells via GPR119 activation. Furthermore, HBK001 can improve islet morphology, increase beta-cell proliferation and up-regulate genes involved in improved beta-cell function. Thus, we have identified, designed and synthesized a novel dual-target compound, HBK001, which represents a promising therapeutic candidate for type 2 diabetes, especially for patients who are insensitive to current DPP4 inhibitors.
ESTHER : Huan_2017_Sci.Rep_7_4351
PubMedSearch : Huan_2017_Sci.Rep_7_4351
PubMedID: 28659588

Title : Genome-wide identification of pathogenicity, conidiation and colony sectorization genes in Metarhizium robertsii - Zeng_2017_Environ.Microbiol_19_3896
Author(s) : Zeng G , Chen X , Zhang X , Zhang Q , Xu C , Mi W , Guo N , Zhao H , You Y , Dryburgh FJ , Bidochka MJ , St Leger RJ , Zhang L , Fang W
Ref : Environ Microbiol , 19 :3896 , 2017
Abstract : Metarhizium robertsii occupies a wide array of ecological niches and has diverse lifestyle options (saprophyte, insect pathogen and plant symbiont), that renders it an unusually effective model for studying genetic mechanisms for fungal adaptation. Here over 20,000 M. robertsii T-DNA mutants were screened in order to elucidate genetic mechanism by which M. robertsii replicates and persists in diverse niches. About 287 conidiation, colony sectorization or pathogenicity loci, many of which have not been reported in other fungi were identified. By analysing a series of conidial pigmentation mutants, a new fungal pigmentation gene cluster, which contains Mr-Pks1, Mr-EthD and Mlac1 was identified. A conserved conidiation regulatory pathway containing Mr-BrlA, Mr-AbaA and Mr-WetA regulates expression of these pigmentation genes. During conidiation Mr-BlrA up-regulates Mr-AbaA, which in turn controls Mr-WetA. It was found that Hog1-MAPK regulates fungal conidiation by controlling the conidiation regulatory pathway, and that all three pigmentation genes exercise feedback regulation of conidiation. This work provided the foundation for deeper understanding of the genetic processes behind M. robertsii adaptive phenotypes, and advances our insights into conidiation and pigmentation in this fungus.
ESTHER : Zeng_2017_Environ.Microbiol_19_3896
PubMedSearch : Zeng_2017_Environ.Microbiol_19_3896
PubMedID: 28447400
Gene_locus related to this paper: metaf-pks1

Title : PEGylation with the thiosuccinimido butylamine linker significantly increases the stability of haloalkane dehalogenase DhaA - Zhao_2017_J.Biotechnol_254_25
Author(s) : Zhao YZ , Yu WL , Zheng H , Guo X , Guo N , Hu T , Zhong JY
Ref : J Biotechnol , 254 :25 , 2017
Abstract : Haloalkane dehalogenase (HLD) can catalyze the hydrolytic dehalogenation of halogenated compounds. However, HLD suffers from the poor stability to resist the environmental stress. PEGylation is an effective approach to enhance the stability of enzymes. The linker is an important stabilization factor of PEGylation. Thus, the linkers of the PEGylated HLD were optimized to improve the stability of HLD in the present study. The PEGylated haloalkane dehalogenase DhaAs with methylamine (Ml), carbamate (Cm) and thiosuccinimido butylamine (Tb) linkers were prepared, respectively. The effects of the Ml, Cm and Tb linkers on the stability of the PEGylated DhaAs were investigated under different environmental stresses. Among the three linkers, the Tb linker showed the highest efficacy to improve the stability of the PEGylated DhaA. The Tb linker significantly increased the thermal stability of the PEGylated DhaA by slowing its structural unfolding, and the pH stability of the PEGylated DhaA by slowing the protonation process. In addition, the PEGylated DhaA with the Tb linker showed the maximum resistance to high ionic strength (1M NaCl) and organic solvent (40% DMSO). PEGylation with the Tb linker is of general interest to effectively improve the stability of proteins, particularly the protein with poor stability.
ESTHER : Zhao_2017_J.Biotechnol_254_25
PubMedSearch : Zhao_2017_J.Biotechnol_254_25
PubMedID: 28587829

Title : Importing, caring, breeding, genotyping, and phenotyping a genetic mouse in a chinese university - Kuo_2014_J.Mol.Neurosci_53_487
Author(s) : Kuo ST , Wu QH , Liu B , Xie ZL , Wu X , Shang SJ , Zhang XY , Kang XJ , Liu LN , Zhu FP , Wang YS , Hu MQ , Xu HD , Zhou L , Chai ZY , Zhang QF , Liu W , Teng SS , Wang CH , Guo N , Dou HQ , Zuo PL , Zheng LH , Zhang CX , Zhu DS , Wang L , Wang SR , Zhou Z
Ref : Journal of Molecular Neuroscience , 53 :487 , 2014
Abstract : The genetic manipulation of the laboratory mouse has been well developed and generated more and more mouse lines for biomedical research. To advance our science exploration, it is necessary to share genetically modified mouse lines with collaborators between institutions, even in different countries. The transfer process is complicated. Significant paperwork and coordination are required, concerning animal welfare, intellectual property rights, colony health status, and biohazard. Here, we provide a practical example of importing a transgenic mice line, Dynamin 1 knockout mice, from Yale University in the USA to Perking University in China for studying cell secretion. This example including the length of time that required for paper work, mice quarantine at the receiving institution, and expansion of the mouse line for experiments. The procedure described in this paper for delivery live transgenic mice from USA to China may serve a simple reference for transferring mouse lines between other countries too.
ESTHER : Kuo_2014_J.Mol.Neurosci_53_487
PubMedSearch : Kuo_2014_J.Mol.Neurosci_53_487
PubMedID: 24385195

Title : The sequence of the human genome - Venter_2001_Science_291_1304
Author(s) : Venter JC , Adams MD , Myers EW , Li PW , Mural RJ , Sutton GG , Smith HO , Yandell M , Evans CA , Holt RA , Gocayne JD , Amanatides P , Ballew RM , Huson DH , Wortman JR , Zhang Q , Kodira CD , Zheng XH , Chen L , Skupski M , Subramanian G , Thomas PD , Zhang J , Gabor Miklos GL , Nelson C , Broder S , Clark AG , Nadeau J , McKusick VA , Zinder N , Levine AJ , Roberts RJ , Simon M , Slayman C , Hunkapiller M , Bolanos R , Delcher A , Dew I , Fasulo D , Flanigan M , Florea L , Halpern A , Hannenhalli S , Kravitz S , Levy S , Mobarry C , Reinert K , Remington K , Abu-Threideh J , Beasley E , Biddick K , Bonazzi V , Brandon R , Cargill M , Chandramouliswaran I , Charlab R , Chaturvedi K , Deng Z , Di Francesco V , Dunn P , Eilbeck K , Evangelista C , Gabrielian AE , Gan W , Ge W , Gong F , Gu Z , Guan P , Heiman TJ , Higgins ME , Ji RR , Ke Z , Ketchum KA , Lai Z , Lei Y , Li Z , Li J , Liang Y , Lin X , Lu F , Merkulov GV , Milshina N , Moore HM , Naik AK , Narayan VA , Neelam B , Nusskern D , Rusch DB , Salzberg S , Shao W , Shue B , Sun J , Wang Z , Wang A , Wang X , Wang J , Wei M , Wides R , Xiao C , Yan C , Yao A , Ye J , Zhan M , Zhang W , Zhang H , Zhao Q , Zheng L , Zhong F , Zhong W , Zhu S , Zhao S , Gilbert D , Baumhueter S , Spier G , Carter C , Cravchik A , Woodage T , Ali F , An H , Awe A , Baldwin D , Baden H , Barnstead M , Barrow I , Beeson K , Busam D , Carver A , Center A , Cheng ML , Curry L , Danaher S , Davenport L , Desilets R , Dietz S , Dodson K , Doup L , Ferriera S , Garg N , Gluecksmann A , Hart B , Haynes J , Haynes C , Heiner C , Hladun S , Hostin D , Houck J , Howland T , Ibegwam C , Johnson J , Kalush F , Kline L , Koduru S , Love A , Mann F , May D , McCawley S , McIntosh T , McMullen I , Moy M , Moy L , Murphy B , Nelson K , Pfannkoch C , Pratts E , Puri V , Qureshi H , Reardon M , Rodriguez R , Rogers YH , Romblad D , Ruhfel B , Scott R , Sitter C , Smallwood M , Stewart E , Strong R , Suh E , Thomas R , Tint NN , Tse S , Vech C , Wang G , Wetter J , Williams S , Williams M , Windsor S , Winn-Deen E , Wolfe K , Zaveri J , Zaveri K , Abril JF , Guigo R , Campbell MJ , Sjolander KV , Karlak B , Kejariwal A , Mi H , Lazareva B , Hatton T , Narechania A , Diemer K , Muruganujan A , Guo N , Sato S , Bafna V , Istrail S , Lippert R , Schwartz R , Walenz B , Yooseph S , Allen D , Basu A , Baxendale J , Blick L , Caminha M , Carnes-Stine J , Caulk P , Chiang YH , Coyne M , Dahlke C , Mays A , Dombroski M , Donnelly M , Ely D , Esparham S , Fosler C , Gire H , Glanowski S , Glasser K , Glodek A , Gorokhov M , Graham K , Gropman B , Harris M , Heil J , Henderson S , Hoover J , Jennings D , Jordan C , Jordan J , Kasha J , Kagan L , Kraft C , Levitsky A , Lewis M , Liu X , Lopez J , Ma D , Majoros W , McDaniel J , Murphy S , Newman M , Nguyen T , Nguyen N , Nodell M , Pan S , Peck J , Peterson M , Rowe W , Sanders R , Scott J , Simpson M , Smith T , Sprague A , Stockwell T , Turner R , Venter E , Wang M , Wen M , Wu D , Wu M , Xia A , Zandieh A , Zhu X
Ref : Science , 291 :1304 , 2001
Abstract : A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
ESTHER : Venter_2001_Science_291_1304
PubMedSearch : Venter_2001_Science_291_1304
PubMedID: 11181995
Gene_locus related to this paper: human-AADAC , human-ABHD1 , human-ABHD10 , human-ABHD11 , human-ACHE , human-BCHE , human-LDAH , human-ABHD18 , human-CMBL , human-ABHD17A , human-KANSL3 , human-LIPA , human-LYPLAL1 , human-NDRG2 , human-NLGN3 , human-NLGN4X , human-NLGN4Y , human-PAFAH2 , human-PREPL , human-RBBP9 , human-SPG21