Basu A

References (7)

Title : Cloning, expression and characterization of PURase gene from Pseudomonas sp. AKS31 - Saha_2022_Arch.Microbiol_204_498
Author(s) : Saha M , Dutta SP , Mukherjee G , Basu A , Majumder D , Sil AK
Ref : Arch Microbiol , 204 :498 , 2022
Abstract : Polyurethane (PUR) is a soil and aquatic contaminant throughout the world. Towards bioremediation, in a previous study, a soil bacterium, Pseudomonas sp. AKS31, capable of efficiently degrading PUR was isolated. Polyurethanase (PURase) enzyme is capable of cleaving the ester bond of PUR and is considered as a key regulator of PUR biodegradation. Hence, for a high yield, easy purification, and further characterization, the aim of this study was to clone and overexpress the PURase gene of this isolate. The current study also investigated structural aspects of this enzyme through predictive bioinformatics analyses. In this context, the PURase gene of the isolate was cloned and expressed in E. coli using pET28(a)(+) vector. The obtained recombinant protein was found insoluble. Therefore, first, the protein was made soluble with urea and purified using nickel-NTA beads. The purified enzyme exhibited substantial activities when tested on the LA-PUR plate. Bioinformatics-based analysis of the protein revealed the presence of a lipase serine active site and indicated that this PURase belongs to the Family 1.3 lipase. Hence, the present study shows that active PURase can be produced in large quantities using a prokaryotic expression system and thus, provides an effective strategy for in-vitro PUR-degradation.
ESTHER : Saha_2022_Arch.Microbiol_204_498
PubMedSearch : Saha_2022_Arch.Microbiol_204_498
PubMedID: 35849211
Gene_locus related to this paper: psesp-PURase

Title : Engineered Humicola insolens cutinase for efficient cellulose acetate deacetylation - Shirke_2017_Biotechnol.J_12_
Author(s) : Shirke AN , Butterfoss GL , Saikia R , Basu A , De Maria L , Svendsen A , Gross RA
Ref : Biotechnol J , 12 : , 2017
Abstract : Cutinases comprise a family of esterases with broad hydrolytic activity for chain and pendant ester groups. This work aimed to identify and improve an efficient cutinase for cellulose acetate (CA) deacetylation. The development of a mild method for CA fiber surface deacetylation will result in improved surface hydrophilicity and reactivity while, when combined with cellulases, a route to the full recycling of CA to acetate and glucose. In this study, the comparative CA deacetylation activity of four homologous wild-type (wt) fungal cutinases from Aspergillus oryzae (AoC), Thiellavia terrestris (TtC), Fusarium solani (FsC), and Humicola insolens (HiC) was determined by analysis of CA deacetylation kinetics. wt-HiC had the highest catalytic efficiency ( approximately 32 [cm(2) L(-1) ](-1) h(-1) ). Comparison of wt-cutinase catalytic constants revealed that differences in catalytic efficiency are primarily due to corresponding variations in corresponding substrate binding constants. Docking studies with model tetrameric substrates also revealed structural origins for differential substrate binding amongst these cutinases. Comparative docking studies of HiC point mutations led to the identification of two important rationales for engineering cutinases for CA deacetylation: (i) create a tight but not too closed binding groove, (ii) allow for hydrogen bonding in the extended region around the active site. Rationally designed HiC with amino acid substitutions I36S, predicted to hydrogen bond to CA, combined with F70A, predicted to remove steric constraints, showed a two-fold improvement in catalytic efficiency. Continued cutinase optimization guided by a detailed understanding of structure-activity relationships, as demonstrated here, will be an important tool to developing practical cutinases for commercial green chemistry technologies.
ESTHER : Shirke_2017_Biotechnol.J_12_
PubMedSearch : Shirke_2017_Biotechnol.J_12_
PubMedID: 28488758

Title : Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification - Xin_2016_Bioresour.Technol_202_214
Author(s) : Xin F , Basu A , Yang KL , He J
Ref : Bioresour Technol , 202 :214 , 2016
Abstract : In this study, a fermentation process for production of butanol and butyl-butyrate by using Clostridium sp. strain BOH3 is developed. This strain is able to produce butyric acid and butanol when it ferments 60 g/L xylose. Meanwhile, it also excreted indigenous lipases (induced by olive oil) which naturally convert butyric acid and butanol into 1.2 g/L of butyl-butyrate. When Bio-OSR was used as both an inducer for lipase and extractant for butyl-butyrate, the butyl-butyrate concentration can reach 6.3 g/L. To further increase the yield, additional lipases and butyric acid are added to the fermentation system. Moreover, kerosene was used as an extractant to remove butyl-butyrate in situ. When all strategies are combined, 22.4 g/L butyl-butyrate can be produced in a fed-batch reactor spiked with 70 g/L xylose and 7.9 g/L butyric acid, which is 4.5-fold of that in a similar system (5 g/L) with hexadecane as the extractant.
ESTHER : Xin_2016_Bioresour.Technol_202_214
PubMedSearch : Xin_2016_Bioresour.Technol_202_214
PubMedID: 26710347

Title : Exploring different virtual screening strategies for acetylcholinesterase inhibitors - Mishra_2013_Biomed.Res.Int_2013_236850
Author(s) : Mishra N , Basu A
Ref : Biomed Res Int , 2013 :236850 , 2013
Abstract : The virtual screening problems associated with acetylcholinesterase (AChE) inhibitors were explored using multiple shape, and structure-based modeling strategies. The employed strategies include molecular docking, similarity search, and pharmacophore modeling. A subset from directory of useful decoys (DUD) related to AChE inhibitors was considered, which consists of 105 known inhibitors and 3732 decoys. Statistical quality of the models was evaluated by enrichment factor (EF) metrics and receiver operating curve (ROC) analysis. The results revealed that electrostatic similarity search protocol using EON (ET_combo) outperformed all other protocols with outstanding enrichment of >95% in top 1% and 2% of the dataset with an AUC of 0.958. Satisfactory performance was also observed for shape-based similarity search protocol using ROCS and PHASE. In contrast, the molecular docking protocol performed poorly with enrichment factors <30% in all cases. The shape- and electrostatic-based similarity search protocol emerged as a plausible solution for virtual screening of AChE inhibitors.
ESTHER : Mishra_2013_Biomed.Res.Int_2013_236850
PubMedSearch : Mishra_2013_Biomed.Res.Int_2013_236850
PubMedID: 24294601

Title : The sequence of the human genome - Venter_2001_Science_291_1304
Author(s) : Venter JC , Adams MD , Myers EW , Li PW , Mural RJ , Sutton GG , Smith HO , Yandell M , Evans CA , Holt RA , Gocayne JD , Amanatides P , Ballew RM , Huson DH , Wortman JR , Zhang Q , Kodira CD , Zheng XH , Chen L , Skupski M , Subramanian G , Thomas PD , Zhang J , Gabor Miklos GL , Nelson C , Broder S , Clark AG , Nadeau J , McKusick VA , Zinder N , Levine AJ , Roberts RJ , Simon M , Slayman C , Hunkapiller M , Bolanos R , Delcher A , Dew I , Fasulo D , Flanigan M , Florea L , Halpern A , Hannenhalli S , Kravitz S , Levy S , Mobarry C , Reinert K , Remington K , Abu-Threideh J , Beasley E , Biddick K , Bonazzi V , Brandon R , Cargill M , Chandramouliswaran I , Charlab R , Chaturvedi K , Deng Z , Di Francesco V , Dunn P , Eilbeck K , Evangelista C , Gabrielian AE , Gan W , Ge W , Gong F , Gu Z , Guan P , Heiman TJ , Higgins ME , Ji RR , Ke Z , Ketchum KA , Lai Z , Lei Y , Li Z , Li J , Liang Y , Lin X , Lu F , Merkulov GV , Milshina N , Moore HM , Naik AK , Narayan VA , Neelam B , Nusskern D , Rusch DB , Salzberg S , Shao W , Shue B , Sun J , Wang Z , Wang A , Wang X , Wang J , Wei M , Wides R , Xiao C , Yan C , Yao A , Ye J , Zhan M , Zhang W , Zhang H , Zhao Q , Zheng L , Zhong F , Zhong W , Zhu S , Zhao S , Gilbert D , Baumhueter S , Spier G , Carter C , Cravchik A , Woodage T , Ali F , An H , Awe A , Baldwin D , Baden H , Barnstead M , Barrow I , Beeson K , Busam D , Carver A , Center A , Cheng ML , Curry L , Danaher S , Davenport L , Desilets R , Dietz S , Dodson K , Doup L , Ferriera S , Garg N , Gluecksmann A , Hart B , Haynes J , Haynes C , Heiner C , Hladun S , Hostin D , Houck J , Howland T , Ibegwam C , Johnson J , Kalush F , Kline L , Koduru S , Love A , Mann F , May D , McCawley S , McIntosh T , McMullen I , Moy M , Moy L , Murphy B , Nelson K , Pfannkoch C , Pratts E , Puri V , Qureshi H , Reardon M , Rodriguez R , Rogers YH , Romblad D , Ruhfel B , Scott R , Sitter C , Smallwood M , Stewart E , Strong R , Suh E , Thomas R , Tint NN , Tse S , Vech C , Wang G , Wetter J , Williams S , Williams M , Windsor S , Winn-Deen E , Wolfe K , Zaveri J , Zaveri K , Abril JF , Guigo R , Campbell MJ , Sjolander KV , Karlak B , Kejariwal A , Mi H , Lazareva B , Hatton T , Narechania A , Diemer K , Muruganujan A , Guo N , Sato S , Bafna V , Istrail S , Lippert R , Schwartz R , Walenz B , Yooseph S , Allen D , Basu A , Baxendale J , Blick L , Caminha M , Carnes-Stine J , Caulk P , Chiang YH , Coyne M , Dahlke C , Mays A , Dombroski M , Donnelly M , Ely D , Esparham S , Fosler C , Gire H , Glanowski S , Glasser K , Glodek A , Gorokhov M , Graham K , Gropman B , Harris M , Heil J , Henderson S , Hoover J , Jennings D , Jordan C , Jordan J , Kasha J , Kagan L , Kraft C , Levitsky A , Lewis M , Liu X , Lopez J , Ma D , Majoros W , McDaniel J , Murphy S , Newman M , Nguyen T , Nguyen N , Nodell M , Pan S , Peck J , Peterson M , Rowe W , Sanders R , Scott J , Simpson M , Smith T , Sprague A , Stockwell T , Turner R , Venter E , Wang M , Wen M , Wu D , Wu M , Xia A , Zandieh A , Zhu X
Ref : Science , 291 :1304 , 2001
Abstract : A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
ESTHER : Venter_2001_Science_291_1304
PubMedSearch : Venter_2001_Science_291_1304
PubMedID: 11181995
Gene_locus related to this paper: human-AADAC , human-ABHD1 , human-ABHD10 , human-ABHD11 , human-ACHE , human-BCHE , human-LDAH , human-ABHD18 , human-CMBL , human-ABHD17A , human-KANSL3 , human-LIPA , human-LYPLAL1 , human-NDRG2 , human-NLGN3 , human-NLGN4X , human-NLGN4Y , human-PAFAH2 , human-PREPL , human-RBBP9 , human-SPG21

Title : The genome sequence of Drosophila melanogaster - Adams_2000_Science_287_2185
Author(s) : Adams MD , Celniker SE , Holt RA , Evans CA , Gocayne JD , Amanatides PG , Scherer SE , Li PW , Hoskins RA , Galle RF , George RA , Lewis SE , Richards S , Ashburner M , Henderson SN , Sutton GG , Wortman JR , Yandell MD , Zhang Q , Chen LX , Brandon RC , Rogers YH , Blazej RG , Champe M , Pfeiffer BD , Wan KH , Doyle C , Baxter EG , Helt G , Nelson CR , Gabor GL , Abril JF , Agbayani A , An HJ , Andrews-Pfannkoch C , Baldwin D , Ballew RM , Basu A , Baxendale J , Bayraktaroglu L , Beasley EM , Beeson KY , Benos PV , Berman BP , Bhandari D , Bolshakov S , Borkova D , Botchan MR , Bouck J , Brokstein P , Brottier P , Burtis KC , Busam DA , Butler H , Cadieu E , Center A , Chandra I , Cherry JM , Cawley S , Dahlke C , Davenport LB , Davies P , de Pablos B , Delcher A , Deng Z , Mays AD , Dew I , Dietz SM , Dodson K , Doup LE , Downes M , Dugan-Rocha S , Dunkov BC , Dunn P , Durbin KJ , Evangelista CC , Ferraz C , Ferriera S , Fleischmann W , Fosler C , Gabrielian AE , Garg NS , Gelbart WM , Glasser K , Glodek A , Gong F , Gorrell JH , Gu Z , Guan P , Harris M , Harris NL , Harvey D , Heiman TJ , Hernandez JR , Houck J , Hostin D , Houston KA , Howland TJ , Wei MH , Ibegwam C , Jalali M , Kalush F , Karpen GH , Ke Z , Kennison JA , Ketchum KA , Kimmel BE , Kodira CD , Kraft C , Kravitz S , Kulp D , Lai Z , Lasko P , Lei Y , Levitsky AA , Li J , Li Z , Liang Y , Lin X , Liu X , Mattei B , McIntosh TC , McLeod MP , McPherson D , Merkulov G , Milshina NV , Mobarry C , Morris J , Moshrefi A , Mount SM , Moy M , Murphy B , Murphy L , Muzny DM , Nelson DL , Nelson DR , Nelson KA , Nixon K , Nusskern DR , Pacleb JM , Palazzolo M , Pittman GS , Pan S , Pollard J , Puri V , Reese MG , Reinert K , Remington K , Saunders RD , Scheeler F , Shen H , Shue BC , Siden-Kiamos I , Simpson M , Skupski MP , Smith T , Spier E , Spradling AC , Stapleton M , Strong R , Sun E , Svirskas R , Tector C , Turner R , Venter E , Wang AH , Wang X , Wang ZY , Wassarman DA , Weinstock GM , Weissenbach J , Williams SM , WoodageT , Worley KC , Wu D , Yang S , Yao QA , Ye J , Yeh RF , Zaveri JS , Zhan M , Zhang G , Zhao Q , Zheng L , Zheng XH , Zhong FN , Zhong W , Zhou X , Zhu S , Zhu X , Smith HO , Gibbs RA , Myers EW , Rubin GM , Venter JC
Ref : Science , 287 :2185 , 2000
Abstract : The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.
ESTHER : Adams_2000_Science_287_2185
PubMedSearch : Adams_2000_Science_287_2185
PubMedID: 10731132
Gene_locus related to this paper: drome-1vite , drome-2vite , drome-3vite , drome-a1z6g9 , drome-abhd2 , drome-ACHE , drome-b6idz4 , drome-BEM46 , drome-CG5707 , drome-CG5704 , drome-CG1309 , drome-CG1882 , drome-CG1986 , drome-CG2059 , drome-CG2493 , drome-CG2528 , drome-CG2772 , drome-CG3160 , drome-CG3344 , drome-CG3523 , drome-CG3524 , drome-CG3734 , drome-CG3739 , drome-CG3744 , drome-CG3841 , drome-CG4267 , drome-CG4382 , drome-CG4390 , drome-CG4572 , drome-CG4582 , drome-CG4851 , drome-CG4979 , drome-CG5068 , drome-CG5162 , drome-CG5355 , drome-CG5377 , drome-CG5397 , drome-CG5412 , drome-CG5665 , drome-CG5932 , drome-CG5966 , drome-CG6018 , drome-CG6113 , drome-CG6271 , drome-CG6283 , drome-CG6295 , drome-CG6296 , drome-CG6414 , drome-CG6431 , drome-CG6472 , drome-CG6567 , drome-CG6675 , drome-CG6753 , drome-CG6847 , drome-CG7329 , drome-CG7367 , drome-CG7529 , drome-CG7632 , drome-CG8058 , drome-CG8093 , drome-CG8233 , drome-CG8424 , drome-CG8425 , drome-CG9059 , drome-CG9186 , drome-CG9287 , drome-CG9289 , drome-CG9542 , drome-CG9858 , drome-CG9953 , drome-CG9966 , drome-CG10116 , drome-CG10163 , drome-CG10175 , drome-CG10339 , drome-CG10357 , drome-CG10982 , drome-CG11034 , drome-CG11055 , drome-CG11309 , drome-CG11319 , drome-CG11406 , drome-CG11598 , drome-CG11600 , drome-CG11608 , drome-CG11626 , drome-CG11935 , drome-CG12108 , drome-CG12869 , drome-CG13282 , drome-CG13562 , drome-CG13772 , drome-CG14034 , drome-nlg3 , drome-CG14717 , drome-CG15101 , drome-CG15102 , drome-CG15106 , drome-CG15111 , drome-CG15820 , drome-CG15821 , drome-CG15879 , drome-CG17097 , drome-CG17099 , drome-CG17101 , drome-CG17191 , drome-CG17192 , drome-CG17292 , drome-CG18258 , drome-CG18284 , drome-CG18301 , drome-CG18302 , drome-CG18493 , drome-CG18530 , drome-CG18641 , drome-CG18815 , drome-CG31089 , drome-CG31091 , drome-CG32333 , drome-CG32483 , drome-CG33174 , drome-dnlg1 , drome-este4 , drome-este6 , drome-GH02384 , drome-GH02439 , drome-glita , drome-KRAKEN , drome-lip1 , drome-LIP2 , drome-lip3 , drome-MESK2 , drome-nrtac , drome-OME , drome-q7k274 , drome-Q9VJN0 , drome-Q8IP31 , drome-q9vux3

Title : Clinico-biochemical use of serum acetylcholine esterase following treatment with synthetic pyrethroids, cypermethrin and fenvalerate, in cattle and buffalo experimentally infested with Boophilus microplus - Ansari_1990_Indian.J.Exp.Biol_28_241
Author(s) : Ansari MZ , Kumar A , Prasad RL , Basu A , Sahai BN , Sinha AP
Ref : Indian J Exp Biol , 28 :241 , 1990
Abstract : Following treatment, cypermethrin and fenvalerate, were found to have inhibitory effect on serum acetylcholine esterase (AchE) activity of cattle and buffalo experimentally infested with B. microplus. The pattern of AchE activity in infested-pyrethroid-treated group was found to be significantly different from either healthy or tick-infested control. There was transient increase in the enzyme activity initially, followed by gradual decline and subsequent increase leading to normal level within 7 days of pyrethroid treatment. The enzyme activity was found to be low in buffalo than in cattle and the values remained below normal level up to day 7 in tick-infested group. The reversion of AchE activity to normal level in pyrethroid-treated group indicated that these compounds are prompt and safe ixodicides with least residual effect. The present investigation concludes that estimation of serum AchE might help in the clinico-biochemical diagnosis of tick toxin and pyrethroid toxicity in cattle and buffalo treated with these pyrethroids against tick infestation.
ESTHER : Ansari_1990_Indian.J.Exp.Biol_28_241
PubMedSearch : Ansari_1990_Indian.J.Exp.Biol_28_241
PubMedID: 2365420