Sterck L

References (5)

Title : The genome of Eucalyptus grandis - Myburg_2014_Nature_510_356
Author(s) : Myburg AA , Grattapaglia D , Tuskan GA , Hellsten U , Hayes RD , Grimwood J , Jenkins J , Lindquist E , Tice H , Bauer D , Goodstein DM , Dubchak I , Poliakov A , Mizrachi E , Kullan AR , Hussey SG , Pinard D , van der Merwe K , Singh P , van Jaarsveld I , Silva-Junior OB , Togawa RC , Pappas MR , Faria DA , Sansaloni CP , Petroli CD , Yang X , Ranjan P , Tschaplinski TJ , Ye CY , Li T , Sterck L , Vanneste K , Murat F , Soler M , Clemente HS , Saidi N , Cassan-Wang H , Dunand C , Hefer CA , Bornberg-Bauer E , Kersting AR , Vining K , Amarasinghe V , Ranik M , Naithani S , Elser J , Boyd AE , Liston A , Spatafora JW , Dharmwardhana P , Raja R , Sullivan C , Romanel E , Alves-Ferreira M , Kulheim C , Foley W , Carocha V , Paiva J , Kudrna D , Brommonschenkel SH , Pasquali G , Byrne M , Rigault P , Tibbits J , Spokevicius A , Jones RC , Steane DA , Vaillancourt RE , Potts BM , Joubert F , Barry K , Pappas GJ , Strauss SH , Jaiswal P , Grima-Pettenati J , Salse J , Van de Peer Y , Rokhsar DS , Schmutz J
Ref : Nature , 510 :356 , 2014
Abstract : Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.
ESTHER : Myburg_2014_Nature_510_356
PubMedSearch : Myburg_2014_Nature_510_356
PubMedID: 24919147
Gene_locus related to this paper: eucgr-a0a059d0n8 , eucgr-a0a059cm68 , eucgr-a0a059d783 , eucgr-a0a059af93 , eucgr-a0a059awi0 , eucgr-a0a059awt4 , eucgr-a0a059ar83 , eucgr-a0a059ayw5 , eucgr-a0a059az75 , eucgr-a0a059azj1 , eucgr-a0a059azq5 , eucgr-a0a059bkm2 , eucgr-a0a059bl38 , eucgr-a0a059a7m2 , eucgr-a0a059a6p6 , eucgr-a0a059a6p1 , eucgr-a0a059a5e9 , eucgr-a0a059cpq4 , eucgr-a0a059b8v5

Title : The Medicago genome provides insight into the evolution of rhizobial symbioses - Young_2011_Nature_480_520
Author(s) : Young ND , Debelle F , Oldroyd GE , Geurts R , Cannon SB , Udvardi MK , Benedito VA , Mayer KF , Gouzy J , Schoof H , Van de Peer Y , Proost S , Cook DR , Meyers BC , Spannagl M , Cheung F , De Mita S , Krishnakumar V , Gundlach H , Zhou S , Mudge J , Bharti AK , Murray JD , Naoumkina MA , Rosen B , Silverstein KA , Tang H , Rombauts S , Zhao PX , Zhou P , Barbe V , Bardou P , Bechner M , Bellec A , Berger A , Berges H , Bidwell S , Bisseling T , Choisne N , Couloux A , Denny R , Deshpande S , Dai X , Doyle JJ , Dudez AM , Farmer AD , Fouteau S , Franken C , Gibelin C , Gish J , Goldstein S , Gonzalez AJ , Green PJ , Hallab A , Hartog M , Hua A , Humphray SJ , Jeong DH , Jing Y , Jocker A , Kenton SM , Kim DJ , Klee K , Lai H , Lang C , Lin S , Macmil SL , Magdelenat G , Matthews L , McCorrison J , Monaghan EL , Mun JH , Najar FZ , Nicholson C , Noirot C , O'Bleness M , Paule CR , Poulain J , Prion F , Qin B , Qu C , Retzel EF , Riddle C , Sallet E , Samain S , Samson N , Sanders I , Saurat O , Scarpelli C , Schiex T , Segurens B , Severin AJ , Sherrier DJ , Shi R , Sims S , Singer SR , Sinharoy S , Sterck L , Viollet A , Wang BB , Wang K , Wang M , Wang X , Warfsmann J , Weissenbach J , White DD , White JD , Wiley GB , Wincker P , Xing Y , Yang L , Yao Z , Ying F , Zhai J , Zhou L , Zuber A , Denarie J , Dixon RA , May GD , Schwartz DC , Rogers J , Quetier F , Town CD , Roe BA
Ref : Nature , 480 :520 , 2011
Abstract : Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing approximately 94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.
ESTHER : Young_2011_Nature_480_520
PubMedSearch : Young_2011_Nature_480_520
PubMedID: 22089132
Gene_locus related to this paper: medtr-b7fki4 , medtr-b7fmi1 , medtr-g7itl1 , medtr-g7iu67 , medtr-g7izm0 , medtr-g7j641 , medtr-g7jtf8 , medtr-g7jtg2 , medtr-g7jtg4 , medtr-g7kem3 , medtr-g7kml3 , medtr-g7ksx5 , medtr-g7leb3 , medtr-q1s5d8 , medtr-q1s9m3 , medtr-q1t171 , medtr-g7k9e1 , medtr-g7k9e3 , medtr-g7k9e5 , medtr-g7k9e8 , medtr-g7k9e9 , medtr-g7lbp2 , medtr-g7lch3 , medtr-g7ib94 , medtr-g7ljk8 , medtr-g7i6w5 , medtr-g7kvg4 , medtr-g7iam1 , medtr-g7iam3 , medtr-g7l754 , medtr-g7jr41 , medtr-g7l4f5 , medtr-g7l755 , medtr-a0a072vyl4 , medtr-g7jwk8 , medtr-a0a072vhg0 , medtr-a0a072vrv9 , medtr-g7kmk5 , medtr-a0a072uuf6 , medtr-a0a072urp3 , medtr-g7zzc3 , medtr-g7ie19 , medtr-g7kst7 , medtr-a0a072u5k5 , medtr-a0a072v056 , medtr-scp1 , medtr-g7kyn0 , medtr-g7inw6 , medtr-g7j3q3

Title : The Ectocarpus genome and the independent evolution of multicellularity in brown algae - Cock_2010_Nature_465_617
Author(s) : Cock JM , Sterck L , Rouze P , Scornet D , Allen AE , Amoutzias G , Anthouard V , Artiguenave F , Aury JM , Badger JH , Beszteri B , Billiau K , Bonnet E , Bothwell JH , Bowler C , Boyen C , Brownlee C , Carrano CJ , Charrier B , Cho GY , Coelho SM , Collen J , Corre E , Da Silva C , Delage L , Delaroque N , Dittami SM , Doulbeau S , Elias M , Farnham G , Gachon CM , Gschloessl B , Heesch S , Jabbari K , Jubin C , Kawai H , Kimura K , Kloareg B , Kupper FC , Lang D , Le Bail A , LeBlanc C , Lerouge P , Lohr M , Lopez PJ , Martens C , Maumus F , Michel G , Miranda-Saavedra D , Morales J , Moreau H , Motomura T , Nagasato C , Napoli CA , Nelson DR , Nyvall-Collen P , Peters AF , Pommier C , Potin P , Poulain J , Quesneville H , Read B , Rensing SA , Ritter A , Rousvoal S , Samanta M , Samson G , Schroeder DC , Segurens B , Strittmatter M , Tonon T , Tregear JW , Valentin K , von Dassow P , Yamagishi T , Van de Peer Y , Wincker P
Ref : Nature , 465 :617 , 2010
Abstract : Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.
ESTHER : Cock_2010_Nature_465_617
PubMedSearch : Cock_2010_Nature_465_617
PubMedID: 20520714
Gene_locus related to this paper: ectsi-d7fm61 , ectsi-d7fs16 , ectsi-d7fsv3 , ectsi-d7fte8 , ectsi-d7fux6 , ectsi-d7fvr0 , ectsi-d7fvu4 , ectsi-d7fwk0 , ectsi-d7fyh7 , ectsi-d7g0w7 , ectsi-d7g6g5 , ectsi-d7g484 , ectsi-d7g686 , ectsi-d8lca9 , ectsi-d8lfv2 , ectsi-d8lqg6 , ectsi-d8ltj9 , ectsi-d7fjz2 , ectsi-d7g376

Title : A high quality draft consensus sequence of the genome of a heterozygous grapevine variety - Velasco_2007_PLoS.One_2_e1326
Author(s) : Velasco R , Zharkikh A , Troggio M , Cartwright DA , Cestaro A , Pruss D , Pindo M , FitzGerald LM , Vezzulli S , Reid J , Malacarne G , Iliev D , Coppola G , Wardell B , Micheletti D , Macalma T , Facci M , Mitchell JT , Perazzolli M , Eldredge G , Gatto P , Oyzerski R , Moretto M , Gutin N , Stefanini M , Chen Y , Segala C , Davenport C , Dematte L , Mraz A , Battilana J , Stormo K , Costa F , Tao Q , Si-Ammour A , Harkins T , Lackey A , Perbost C , Taillon B , Stella A , Solovyev V , Fawcett JA , Sterck L , Vandepoele K , Grando SM , Toppo S , Moser C , Lanchbury J , Bogden R , Skolnick M , Sgaramella V , Bhatnagar SK , Fontana P , Gutin A , Van de Peer Y , Salamini F , Viola R
Ref : PLoS ONE , 2 :e1326 , 2007
Abstract : BACKGROUND: Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented. PRINCIPAL FINDINGS: We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before). CONCLUSIONS: Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape.
ESTHER : Velasco_2007_PLoS.One_2_e1326
PubMedSearch : Velasco_2007_PLoS.One_2_e1326
PubMedID: 18094749
Gene_locus related to this paper: vitvi-a5ajc4 , vitvi-a5ama3 , vitvi-a5ane2 , vitvi-a5ayn8 , vitvi-a5b3m9 , vitvi-a5b5p5 , vitvi-a5b6n6 , vitvi-a5b6r9 , vitvi-a5b7c0 , vitvi-a5b7e5 , vitvi-a5b8k1 , vitvi-a5b8l9 , vitvi-a5b8q6 , vitvi-a5bft8 , vitvi-a5bji4 , vitvi-a5bkl0 , vitvi-a5blq0 , vitvi-a5bm71 , vitvi-a5bub9 , vitvi-a5c1g2 , vitvi-a5c6e7 , vitvi-a5c8m8 , vitvi-a5c8p7 , vitvi-a5c9w6 , vitvi-a7pnb4 , vitvi-d7t940 , vitvi-d7tpk8 , vitvi-f6hhx5 , vitvi-f6hqf1 , vitvi-d7tum4 , vitvi-d7stm8 , vitvi-a5bej7 , vitvi-e0cv10 , vitvi-f6gtp7 , vitvi-a5bej5

Title : The genome of black cottonwood, Populus trichocarpa (Torr. &\; Gray) - Tuskan_2006_Science_313_1596
Author(s) : Tuskan GA , Difazio S , Jansson S , Bohlmann J , Grigoriev I , Hellsten U , Putnam N , Ralph S , Rombauts S , Salamov A , Schein J , Sterck L , Aerts A , Bhalerao RR , Bhalerao RP , Blaudez D , Boerjan W , Brun A , Brunner A , Busov V , Campbell M , Carlson J , Chalot M , Chapman J , Chen GL , Cooper D , Coutinho PM , Couturier J , Covert S , Cronk Q , Cunningham R , Davis J , Degroeve S , Dejardin A , dePamphilis C , Detter J , Dirks B , Dubchak I , Duplessis S , Ehlting J , Ellis B , Gendler K , Goodstein D , Gribskov M , Grimwood J , Groover A , Gunter L , Hamberger B , Heinze B , Helariutta Y , Henrissat B , Holligan D , Holt R , Huang W , Islam-Faridi N , Jones S , Jones-Rhoades M , Jorgensen R , Joshi C , Kangasjarvi J , Karlsson J , Kelleher C , Kirkpatrick R , Kirst M , Kohler A , Kalluri U , Larimer F , Leebens-Mack J , Leple JC , Locascio P , Lou Y , Lucas S , Martin F , Montanini B , Napoli C , Nelson DR , Nelson C , Nieminen K , Nilsson O , Pereda V , Peter G , Philippe R , Pilate G , Poliakov A , Razumovskaya J , Richardson P , Rinaldi C , Ritland K , Rouze P , Ryaboy D , Schmutz J , Schrader J , Segerman B , Shin H , Siddiqui A , Sterky F , Terry A , Tsai CJ , Uberbacher E , Unneberg P , Vahala J , Wall K , Wessler S , Yang G , Yin T , Douglas C , Marra M , Sandberg G , Van de Peer Y , Rokhsar D
Ref : Science , 313 :1596 , 2006
Abstract : We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.
ESTHER : Tuskan_2006_Science_313_1596
PubMedSearch : Tuskan_2006_Science_313_1596
PubMedID: 16973872
Gene_locus related to this paper: burvg-a4jw31 , delas-a9c1v9 , poptr-a9pfp5 , poptr-a9ph43 , poptr-a9ph71 , poptr-a9pha7 , poptr-b9giq0 , poptr-b9gjs0 , poptr-b9gl72 , poptr-b9gmx8 , poptr-b9gnp9 , poptr-b9gny4 , poptr-b9grg2 , poptr-b9gsc2 , poptr-b9gvp3 , poptr-b9gvs3 , poptr-b9gwn9 , poptr-b9gy32 , poptr-b9gyq1 , poptr-b9gys8 , poptr-b9h0h0 , poptr-b9h4j2 , poptr-b9h6c2 , poptr-b9h6c5 , poptr-b9h6l8 , poptr-b9h8c9 , poptr-b9h301 , poptr-b9h579 , poptr-b9hbl2 , poptr-b9hbw5 , poptr-b9hcn9 , poptr-b9hee0 , poptr-b9hee2 , poptr-b9hee5 , poptr-b9hee6 , poptr-b9hef3 , poptr-b9hfa7 , poptr-b9hfd3 , poptr-b9hfi6 , poptr-b9hft8 , poptr-b9hg83 , poptr-b9hif5 , poptr-b9hll5 , poptr-b9hmd0 , poptr-b9hnv3 , poptr-b9hqr6 , poptr-b9hqr7 , poptr-b9hrv7 , poptr-b9hs66 , poptr-b9huf0 , poptr-b9hur3 , poptr-b9hux1 , poptr-b9hwp2 , poptr-b9hxr7 , poptr-b9hyk8 , poptr-b9hyx2 , poptr-b9i2q8 , poptr-b9i5b8 , poptr-b9i5j8 , poptr-b9i5j9 , poptr-b9i5k0 , poptr-b9i6b6 , poptr-b9i7b7 , poptr-b9i9p8 , poptr-b9i484 , poptr-b9i994 , poptr-b9ial3 , poptr-b9ial4 , poptr-b9ib28 , poptr-b9ibr8 , poptr-b9id97 , poptr-b9idr4 , poptr-b9iid9 , poptr-b9iip0 , poptr-b9ik80 , poptr-b9ik90 , poptr-b9il63 , poptr-b9ink7 , poptr-b9iqa0 , poptr-b9iqd5 , poptr-b9mwf1 , poptr-b9mwi8 , poptr-b9n0c6 , poptr-b9n0n1 , poptr-b9n0n4 , poptr-b9n0z5 , poptr-b9n1t8 , poptr-b9n1z3 , poptr-b9n3m7 , poptr-b9n233 , poptr-b9n236 , poptr-b9n395 , poptr-b9nd33 , poptr-b9nd34 , poptr-b9ndi6 , poptr-b9ndj5 , poptr-b9p9i8 , poptr-a9pfa7 , poptr-b9hdp2 , poptr-b9inj0 , poptr-b9n5g7 , poptr-b9i8q4 , poptr-u5g0r4 , poptr-u5gf59 , poptr-u7e1l9 , poptr-b9hj61 , poptr-b9hwd0 , poptr-u5fz17 , poptr-a0a2k2brq1 , poptr-a0a2k2b9i6 , poptr-a0a2k1x9y8 , poptr-a9pch4 , poptr-a0a2k1wwt1 , poptr-a0a2k1wv10 , poptr-a0a2k2a850 , poptr-a0a2k2asj6 , poptr-a0a2k1x6k1 , poptr-u5fv96 , poptr-a0a2k2blg2 , poptr-a0a2k1xpi3 , poptr-a0a2k1xpj0 , poptr-a0a2k2b331 , poptr-a0a2k2byl7 , poptr-b9iek5 , poptr-a9pfg4 , poptr-a0a2k1xzs5 , poptr-b9gga9 , poptr-b9guw6 , poptr-b9hff2