(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Bacilli: NE > Bacillales: NE > Bacillaceae: NE > Bacillus: NE > Bacillus cereus group: NE > Bacillus cereus: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Bacillus cereus E33L: N, E.
Bacillus cereus W: N, E.
Bacillus cereus NVH0597-99: N, E.
Bacillus cereus 03BB108: N, E.
Bacillus cereus AH1134: N, E.
Bacillus cereus H3081.97: N, E.
Bacillus cereus m1293: N, E.
Bacillus cereus ATCC 10876: N, E.
Bacillus cereus 172560W: N, E.
Bacillus cereus MM3: N, E.
Bacillus cereus AH621: N, E.
Bacillus cereus R309803: N, E.
Bacillus cereus ATCC 4342: N, E.
Bacillus cereus m1550: N, E.
Bacillus cereus BDRD-ST196: N, E.
Bacillus cereus BDRD-Cer4: N, E.
Bacillus cereus 95/8201: N, E.
Bacillus cereus Rock1-3: N, E.
Bacillus cereus Rock1-15: N, E.
Bacillus cereus Rock3-28: N, E.
Bacillus cereus Rock3-29: N, E.
Bacillus cereus Rock3-44: N, E.
Bacillus cereus Rock3-42: N, E.
Bacillus cereus Rock4-2: N, E.
Bacillus cereus F65185: N, E.
Bacillus cereus AH603: N, E.
Bacillus cereus AH676: N, E.
Bacillus cereus AH1271: N, E.
Bacillus cereus AH1272: N, E.
Bacillus cereus AH1273: N, E.
Bacillus cereus G9241: N, E.
Bacillus cereus VD169: N, E.
Bacillus cereus HuA3-9: N, E.
Bacillus cereus BAG2X1-3: N, E.
Bacillus cereus ATCC 10987: N, E.
Bacillus cereus ATCC 14579: N, E.
Bacillus cereus BGSC 6E1: N, E.
Bacillus cereus B4264: N, E.
Bacillus cereus Q1: N, E.
Bacillus cereus BDRD-ST26: N, E.
Bacillus cereus AH187: N, E.
Bacillus cereus AH820: N, E.
Bacillus cereus 03BB102: N, E.
Bacillus cereus biovar anthracis str. CI: N, E.
Bacillus cereus G9842: N, E.
Bacillus cereus Rock4-18: N, E.
Bacillus cereus BDRD-ST24: N, E.
Bacillus cereus AND1407: N, E.
Bacillus cereus F837/76: N, E.
Bacillus cereus NC7401: N, E.
Bacillus cereus BAG4O-1: N, E.
Bacillus cereus HuB4-4: N, E.
Bacillus cereus VD022: N, E.
Bacillus cereus MC67: N, E.
Bacillus cereus BAG1X2-3: N, E.
Bacillus cereus BAG6X1-1: N, E.
Bacillus cereus BAG5X12-1: N, E.
Bacillus cereus BAG2X1-2: N, E.
Bacillus cereus BMG1.7: N, E.
Bacillus cereus IS075: N, E.
Bacillus cereus VD154: N, E.
Bacillus cereus VD184: N, E.
Bacillus cereus MSX-A1: N, E.
Bacillus cereus VD166: N, E.
Bacillus cereus VD196: N, E.
Bacillus cereus VD200: N, E.
Bacillus cereus TIAC219: N, E.
Bacillus cereus VD142: N, E.
Bacillus cereus SJ1: N, E.
Bacillus cereus BAG4X12-1: N, E.
Bacillus cereus VD045: N, E.
Bacillus cereus ISP3191: N, E.
Bacillus cereus HuA2-4: N, E.
Bacillus cereus VDM062: N, E.
Bacillus cereus VDM034: N, E.
Bacillus cereus MC118: N, E.
Bacillus cereus VD021: N, E.
Bacillus cereus BAG5X2-1: N, E.
Bacillus cereus BAG3X2-1: N, E.
Bacillus cereus HuA4-10: N, E.
Bacillus cereus VDM053: N, E.
Bacillus cereus MSX-A12: N, E.
Bacillus cereus VD102: N, E.
Bacillus cereus IS845/00: N, E.
Bacillus cereus MSX-D12: N, E.
Bacillus cereus IS195: N, E.
Bacillus cereus HuB13-1: N, E.
Bacillus cereus ISP2954: N, E.
Bacillus cereus VD133: N, E.
Bacillus cereus VD156: N, E.
Bacillus cereus VD014: N, E.
Bacillus cereus VD115: N, E.
Bacillus cereus str. Schrouff: N, E.
Bacillus cereus K-5975c: N, E.
Bacillus cereus BAG2O-3: N, E.
Bacillus cereus B5-2: N, E.
Bacillus cereus BAG3O-1: N, E.
Bacillus cereus BAG1X1-2: N, E.
Bacillus cereus HuB1-1: N, E.
Bacillus cereus BAG1O-3: N, E.
Bacillus cereus BAG3O-2: N, E.
Bacillus cereus BAG1X1-1: N, E.
Bacillus cereus BAG1X2-1: N, E.
Bacillus cereus HD73: N, E.
Bacillus cereus BAG3X2-2: N, E.
Bacillus cereus BAG1O-1: N, E.
Bacillus cereus BAG1X2-2: N, E.
Bacillus cereus VD140: N, E.
Bacillus cereus FRI-35: N, E.
Bacillus cereus BAG2O-1: N, E.
Bacillus cereus BAG1X1-3: N, E.
Bacillus cereus HuB4-10: N, E.
Bacillus cereus HuB2-9: N, E.
Bacillus cereus BAG6O-1: N, E.
Bacillus cereus VD214: N, E.
Bacillus cereus BAG4X2-1: N, E.
Bacillus cereus BAG1O-2: N, E.
Bacillus cereus VD148: N, E.
Bacillus cereus BAG5O-1: N, E.
Bacillus cereus HuB5-5: N, E.
Bacillus cereus VD131: N, E.
Bacillus cereus HuA2-3: N, E.
Bacillus cereus BAG2O-2: N, E.
Bacillus cereus VD136: N, E.
Bacillus cereus VDM021: N, E.
Bacillus cereus VDM006: N, E.
Bacillus cereus HuA2-9: N, E.
Bacillus cereus VD118: N, E.
Bacillus cereus VD048: N, E.
Bacillus cereus BtB2-4: N, E.
Bacillus cereus VDM022: N, E.
Bacillus cereus VDM019: N, E.
Bacillus cereus CER074: N, E.
Bacillus cereus VD107: N, E.
Bacillus cereus CER057: N, E.
Bacillus cereus HuA2-1: N, E.
Bacillus cereus VD146: N, E.
Bacillus cereus BAG2X1-1: N, E.
Bacillus cereus BAG5X1-1: N, E.
Bacillus cereus BAG6O-2: N, E.
Bacillus cereus VD078: N, E.
Bacillus cereus BAG6X1-2: N, E.
Bacillus thuringiensis serovar israelensis ATCC 35646: N, E.
Bacillus weihenstephanensis KBAB4: N, E.
Bacillus thuringiensis serovar konkukian: N, E.
Bacillus thuringiensis subsp. konkukian: N, E.
Bacillus thuringiensis serovar konkukian str. 97-27: N, E.
Bacillus anthracis str. Ames: N, E.
Bacillus thuringiensis str. Al Hakam: N, E.
Bacillus thuringiensis: N, E.
Bacillus thuringiensis serovar berliner ATCC 10792: N, E.
Bacillus thuringiensis serovar kurstaki str. T03a001: N, E.
Bacillus thuringiensis serovar sotto str. T04001: N, E.
Bacillus thuringiensis serovar tochigiensis BGSC 4Y1: N, E.
Bacillus thuringiensis Bt407: N, E.
Bacillus thuringiensis serovar pakistani str. T13001: N, E.
Bacillus thuringiensis serovar monterrey BGSC 4AJ1: N, E.
Bacillus thuringiensis serovar andalousiensis BGSC 4AW1: N, E.
Bacillus thuringiensis serovar pondicheriensis BGSC 4BA1: N, E.
Bacillus thuringiensis serovar huazhongensis BGSC 4BD1: N, E.
Bacillus thuringiensis serovar pulsiensis BGSC 4CC1: N, E.
Bacillus thuringiensis IBL 200: N, E.
Bacillus thuringiensis IBL 4222: N, E.
Bacillus thuringiensis serovar guiyangiensis: N, E.
Bacillus thuringiensis serovar navarrensis: N, E.
Bacillus thuringiensis serovar graciosensis: N, E.
Bacillus thuringiensis serovar vazensis: N, E.
Bacillus thuringiensis serovar medellin: N, E.
Bacillus thuringiensis serovar yunnanensis: N, E.
Bacillus thuringiensis serovar finitimus YBT-020: N, E.
Bacillus thuringiensis serovar thuringiensis str. T01001: N, E.
Bacillus thuringiensis BMB171: N, E.
Bacillus thuringiensis serovar chinensis CT-43: N, E.
Bacillus thuringiensis HD-789: N, E.
Bacillus thuringiensis HD-771: N, E.
Bacillus thuringiensis serovar kurstaki: N, E.
Bacillus thuringiensis serovar berliner: N, E.
Bacillus thuringiensis serovar sotto: N, E.
Bacillus thuringiensis serovar aizawai: N, E.
Bacillus thuringiensis serovar indiana: N, E.
Bacillus thuringiensis YBT-1518: N, E.
Bacillus thuringiensis serovar tolworthi: N, E.
Bacillus thuringiensis HD1002: N, E.
Bacillus thuringiensis serovar morrisoni: N, E.
Bacillus thuringiensis serovar israelensis: N, E.
Bacillus thuringiensis MC28: N, E.
Bacillus thuringiensis DB27: N, E.
Bacillus thuringiensis serovar coreanensis: N, E.
Bacillus thuringiensis serovar galleriae: N, E.
Bacillus thuringiensis Bt18247: N, E.
Bacillus thuringiensis Sbt003: N, E.
Bacillus thuringiensis serovar thuringiensis str. IS5056: N, E.
Bacillus thuringiensis serovar kurstaki str. HD-1: N, E.
Bacillus thuringiensis T01-328: N, E.
Bacillus thuringiensis serovar finitimus: N, E.
Bacillus thuringiensis serovar ostriniae: N, E.
Bacillus thuringiensis serovar sinensis: N, E.
Bacillus thuringiensis serovar cameroun: N, E.
Bacillus thuringiensis serovar pingluonsis: N, E.
Bacillus thuringiensis serovar malayensis: N, E.
Bacillus thuringiensis LM1212: N, E.
Bacillus thuringiensis serovar argentinensis: N, E.
Bacillus thuringiensis serovar londrina: N, E.
Bacillus thuringiensis serovar subtoxicus: N, E.
Bacillus thuringiensis serovar toumanoffi: N, E.
Bacillus thuringiensis serovar pirenaica: N, E.
Bacillus thuringiensis serovar jegathesan: N, E.
Bacillus thuringiensis serovar yosoo: N, E.
Bacillus thuringiensis serovar kim: N, E.
Bacillus thuringiensis serovar higo: N, E.
Bacillus thuringiensis serovar kyushuensis: N, E.
Bacillus thuringiensis serovar novosibirsk: N, E.
Bacillus thuringiensis serovar zhaodongensis: N, E.
Bacillus thuringiensis serovar thailandensis: N, E.
Bacillus thuringiensis serovar canadensis: N, E.
Bacillus thuringiensis serovar darmstadiensis: N, E.
Bacillus thuringiensis serovar iberica: N, E.
Bacillus thuringiensis serovar mexicanensis: N, E.
Bacillus thuringiensis serovar poloniensis: N, E.
Bacillus sp. 7_6_55CFAA_CT2: N, E.
Bacillus sp. JH7: N, E.
Bacillus sp. Root11: N, E.
Bacillus sp. Root131: N, E.
Bacillus bombysepticus str. Wang: N, E.
Bacillus sp. G3(2015): N, E.
Streptococcus pneumoniae R6: N, E.
Streptococcus pneumoniae: N, E.
Streptococcus pneumoniae SP3-BS71: N, E.
Streptococcus pneumoniae SP19-BS75: N, E.
Streptococcus pneumoniae SP14-BS69: N, E.
Streptococcus pneumoniae Taiwan19F-14: N, E.
Streptococcus pneumoniae MLV-016: N, E.
Streptococcus pneumoniae SP195: N, E.
Streptococcus pneumoniae SP11-BS70: N, E.
Streptococcus pneumoniae SP18-BS74: N, E.
Streptococcus pneumoniae D39: N, E.
Streptococcus pneumoniae CDC0288-04: N, E.
Streptococcus pneumoniae SP9-BS68: N, E.
Streptococcus pneumoniae CDC1873-00: N, E.
Streptococcus pneumoniae G54: N, E.
Streptococcus pneumoniae 70585: N, E.
Streptococcus pneumoniae CGSP14: N, E.
Streptococcus pneumoniae CDC3059-06: N, E.
Streptococcus pneumoniae ATCC 700669: N, E.
Streptococcus pneumoniae CDC1087-00: N, E.
Streptococcus pneumoniae P1031: N, E.
Streptococcus pneumoniae JJA: N, E.
Streptococcus pneumoniae SP6-BS73: N, E.
Streptococcus pneumoniae SP23-BS72: N, E.
Streptococcus pneumoniae Hungary19A-6: N, E.
Streptococcus pneumoniae INV104: N, E.
Streptococcus pneumoniae BS397: N, E.
Streptococcus pneumoniae INV200: N, E.
Streptococcus pneumoniae AP200: N, E.
Streptococcus pneumoniae GA04375: N, E.
Streptococcus pneumoniae SP14-BS292: N, E.
Streptococcus pneumoniae BS458: N, E.
Streptococcus pneumoniae BS455: N, E.
Streptococcus pneumoniae OXC141: N, E.
Streptococcus pneumoniae TCH8431/19A: N, E.
Streptococcus pneumoniae BS457: N, E.
Streptococcus pneumoniae SP-BS293: N, E.
Streptococcus pneumoniae TIGR4: N, E.
Streptococcus pneumoniae 670-6B: N, E.
Streptococcus pneumoniae GA47502: N, E.
Streptococcus pneumoniae GA44500: N, E.
Streptococcus pneumoniae 2070335: N, E.
Streptococcus pneumoniae PCS8203: N, E.
Streptococcus pneumoniae PCS8106: N, E.
Bacillus sp. RZ2MS9: N, E.
Bacillus weihenstephanensis FSL R5-860: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MQIVKKEKFVLKGFTFENGREIPVQMGYETYGTLNRERSNVILVCHYFSA TSHAAGKYTVHDEESGWWDGLIGPGKAIDTNKYFVICTDNLCNVQVRNPY VITTGPKSINPETGEEYAMDFPVFTFLDVARMQYELIKGMGISRLHAVIG PSVGGMIAQQWAVHYPHMVERMIGVITNPQNPIITSVNVAQNAIEAIQLD PSWKGGKYGEEQPIKGLHLANRMMFMNAFDEHFYEMAFPRNSIEIEPYEK FSTLTSFEKEINKATYRSIELVDANSWMYTAKAVLLHDIAHGFSSLEESL SNIEANVLMIPCKQDLLQPSRYNYKMVDILQKQGKYAEVYEIESINGHMA GAFDIHLFEKKVYEFLNRKVSSFV
Bacillus anthracis is the etiologic agent of anthrax, an acute fatal disease among mammals. It was thought to differ from Bacillus cereus, an opportunistic pathogen and cause of food poisoning, by the presence of plasmids pXO1 and pXO2, which encode the lethal toxin complex and the poly-gamma-d-glutamic acid capsule, respectively. This work describes a non-B. anthracis isolate that possesses the anthrax toxin genes and is capable of causing a severe inhalation anthrax-like illness. Although initial phenotypic and 16S rRNA analysis identified this isolate as B. cereus, the rapid generation and analysis of a high-coverage draft genome sequence revealed the presence of a circular plasmid, named pBCXO1, with 99.6% similarity with the B. anthracis toxin-encoding plasmid, pXO1. Although homologues of the pXO2 encoded capsule genes were not found, a polysaccharide capsule cluster is encoded on a second, previously unidentified plasmid, pBC218. A/J mice challenged with B. cereus G9241 confirmed the virulence of this strain. These findings represent an example of how genomics could rapidly assist public health experts responding not only to clearly identified select agents but also to novel agents with similar pathogenic potentials. In this study, we combined a public health approach with genome analysis to provide insight into the correlation of phenotypic characteristics and their genetic basis.
Title: Role of the gerI operon of Bacillus cereus 569 in the response of spores to germinants Clements MO, Moir A Ref: Journal of Bacteriology, 180:6729, 1998 : PubMed
Bacillus cereus 569 (ATCC 10876) germinates in response to inosine or to L-alanine, but the most rapid germination response is elicited by a combination of these germinants. Mutants defective in their germination response to either inosine or to L-alanine were isolated after Tn917-LTV1 mutagenesis and enrichment procedures; one class of mutant could not germinate in response to inosine as a sole germinant but still germinated in response to L-alanine, although at a reduced rate; another mutant germinated normally in response to inosine but was slowed in its germination response to L-alanine. These mutants demonstrated that at least two signal response pathways are involved in the triggering of germination. Stimulation of germination in L-alanine by limiting concentrations of inosine and stimulation of germination in inosine by low concentrations of L-alanine were still detectable in these mutants, suggesting that such stimulation is not dependent on complete functionality of both these germination loci. Two transposon insertions that affected inosine germination were found to be located 2.2 kb apart on the chromosome. This region was cloned and sequenced, revealing an operon of three open reading frames homologous to those in the gerA and related operons of Bacillus subtilis. The individual genes of this gerI operon have been named gerIA, gerIB, and gerIC. The GerIA protein is predicted to possess an unusually long, charged, N-terminal domain containing nine tandem copies of a 13-amino-acid glutamine- and serine-rich sequence.
The key genes required for Bacillus anthracis to cause anthrax have been acquired recently by horizontal gene transfer. To understand the genetic background for the evolution of B. anthracis virulence, we obtained high-redundancy genome sequences of 45 strains of the Bacillus cereus sensu lato (s.l.) species that were chosen for their genetic diversity within the species based on the existing multilocus sequence typing scheme. From the resulting data, we called more than 324,000 new genes representing more than 12,333 new gene families for this group. The core genome size for the B. cereus s.l. group was approximately 1750 genes, with another 2150 genes found in almost every genome constituting the extended core. There was a paucity of genes specific and conserved in any clade. We found no evidence of recent large-scale gene loss in B. anthracis or for unusual accumulation of nonsynonymous DNA substitutions in the chromosome; however, several B. cereus genomes isolated from soil and not previously associated with human disease were degraded to various degrees. Although B. anthracis has undergone an ecological shift within the species, its chromosome does not appear to be exceptional on a macroscopic scale compared with close relatives.
Bacillus thuringiensis is an insect pathogen that is widely used as a biopesticide (E. Schnepf, N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean, Microbiol. Mol. Biol. Rev. 62:775-806, 1998). Here we report the finished, annotated genome sequence of B. thuringiensis Al Hakam, which was collected in Iraq by the United Nations Special Commission (L. Radnedge, P. Agron, K. Hill, P. Jackson, L. Ticknor, P. Keim, and G. Andersen, Appl. Environ. Microbiol. 69:2755-2764, 2003).
Bacillus anthracis is the etiologic agent of anthrax, an acute fatal disease among mammals. It was thought to differ from Bacillus cereus, an opportunistic pathogen and cause of food poisoning, by the presence of plasmids pXO1 and pXO2, which encode the lethal toxin complex and the poly-gamma-d-glutamic acid capsule, respectively. This work describes a non-B. anthracis isolate that possesses the anthrax toxin genes and is capable of causing a severe inhalation anthrax-like illness. Although initial phenotypic and 16S rRNA analysis identified this isolate as B. cereus, the rapid generation and analysis of a high-coverage draft genome sequence revealed the presence of a circular plasmid, named pBCXO1, with 99.6% similarity with the B. anthracis toxin-encoding plasmid, pXO1. Although homologues of the pXO2 encoded capsule genes were not found, a polysaccharide capsule cluster is encoded on a second, previously unidentified plasmid, pBC218. A/J mice challenged with B. cereus G9241 confirmed the virulence of this strain. These findings represent an example of how genomics could rapidly assist public health experts responding not only to clearly identified select agents but also to novel agents with similar pathogenic potentials. In this study, we combined a public health approach with genome analysis to provide insight into the correlation of phenotypic characteristics and their genetic basis.
We sequenced the complete genome of Bacillus cereus ATCC 10987, a non-lethal dairy isolate in the same genetic subgroup as Bacillus anthracis. Comparison of the chromosomes demonstrated that B.cereus ATCC 10987 was more similar to B.anthracis Ames than B.cereus ATCC 14579, while containing a number of unique metabolic capabilities such as urease and xylose utilization and lacking the ability to utilize nitrate and nitrite. Additionally, genetic mechanisms for variation of capsule carbohydrate and flagella surface structures were identified. Bacillus cereus ATCC 10987 contains a single large plasmid (pBc10987), of approximately 208 kb, that is similar in gene content and organization to B.anthracis pXO1 but is lacking the pathogenicity-associated island containing the anthrax lethal and edema toxin complex genes. The chromosomal similarity of B.cereus ATCC 10987 to B.anthracis Ames, as well as the fact that it contains a large pXO1-like plasmid, may make it a possible model for studying B.anthracis plasmid biology and regulatory cross-talk.
Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity--including haemolysins, phospholipases and iron acquisition functions--and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.
        
Title: Role of the gerI operon of Bacillus cereus 569 in the response of spores to germinants Clements MO, Moir A Ref: Journal of Bacteriology, 180:6729, 1998 : PubMed
Bacillus cereus 569 (ATCC 10876) germinates in response to inosine or to L-alanine, but the most rapid germination response is elicited by a combination of these germinants. Mutants defective in their germination response to either inosine or to L-alanine were isolated after Tn917-LTV1 mutagenesis and enrichment procedures; one class of mutant could not germinate in response to inosine as a sole germinant but still germinated in response to L-alanine, although at a reduced rate; another mutant germinated normally in response to inosine but was slowed in its germination response to L-alanine. These mutants demonstrated that at least two signal response pathways are involved in the triggering of germination. Stimulation of germination in L-alanine by limiting concentrations of inosine and stimulation of germination in inosine by low concentrations of L-alanine were still detectable in these mutants, suggesting that such stimulation is not dependent on complete functionality of both these germination loci. Two transposon insertions that affected inosine germination were found to be located 2.2 kb apart on the chromosome. This region was cloned and sequenced, revealing an operon of three open reading frames homologous to those in the gerA and related operons of Bacillus subtilis. The individual genes of this gerI operon have been named gerIA, gerIB, and gerIC. The GerIA protein is predicted to possess an unusually long, charged, N-terminal domain containing nine tandem copies of a 13-amino-acid glutamine- and serine-rich sequence.