(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Saccharomycotina: NE > Saccharomycetes: NE > Saccharomycetales: NE > Saccharomycetaceae: NE > Saccharomyces: NE > Saccharomyces cerevisiae: NE
6_AlphaBeta_hydrolase : yeast-SCYNR064CSaccharomycescerevisiae SCYNR064C, yeast-ynl5Saccharomyces cerevisiae (Baker's yeast) YNL115C hypothetical 74.0 kda protein in mls1-rpc19 intergenic region, yeast-YOR084W Saccharomyces cerevisiae (Baker's yeast) Peroxisomal membrane protein LPX1 chromosome xv reading frame orf yor084w, yeast-ymc0Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). Uncharacterized protein YML020W. A85-EsteraseD-FGH : yeast-yjg8 Saccharomyces cerevisiae (Baker's yeast)) S-formylglutathione hydrolase. ABHD11-Acetyl_transferase : yeast-yg1lSaccharomyces cerevisiae (Baker's yeast) IMO32 hypothetical 38.5 kda protein in erv1-gls2 intergenic region, yeast-yg19Saccharomyces cerevisiae (Baker's yeast) EAT1 YGR015C hypothetical 37.9 kda protein in msb2-uga1 intergenic region. ABHD13-BEM46 : yeast-yn60Saccharomyces cerevisiae (Baker's yeast) hypothetical 32.3 kda protein in kre1-hxt14 intergenic region. abh_upf0017 : yeast-MCFS1Saccharomyces cerevisiae (Baker's yeast) Acyl-coenzymeA:ethanol O-acyltransferase 51.7 kda sec62-msy1 intergenic region ypl095c, yeast-MCFS2Saccharomyces cerevisiae (Baker's yeast) EHT1, MCFS2, YBR177C, YBR1239 alcohol acyl transferase (octanoyl-CoA:ethanol acyltransferase also thioesterase), yeast-ym60Saccharomyces cerevisiae (Baker's yeast) monoacylglycerol lipase YMR210W 51.4 kda protein YM8261.04 in rar1-scj1 intergenic region. Acidic_Lipase : yeast-tgl1Saccharomyces cerevisiae (Baker's yeast) triglyceride lipase-cholesterol esterase (EC 3.1.1.-) Tgl1p, yeast-YLL012WSaccharomyces cerevisiae (Baker's yeast) chromosome xii yll012w Yeh1p Steryl ester hydrolase, yeast-YLR020CSaccharomyces cerevisiae (Baker's yeast) chromosome xii ylr020c Yeh2p. AlphaBeta_hydrolase : yeast-LDH1Saccharomyces cerevisiae (Yeast) Lipid droplet hydrolase 1 chromosome II reading frame ORF YBR204c, yeast-YDL057WSaccharomyces cerevisiae (Baker's yeast) chromosome IV reading frame orf ydl057w. Arb2_domain : yeast-hda1 Saccharomyces cerevisiae (Baker's yeast); Saccharomyces cerevisiae x Saccharomyces kudriavzevii . Histone deacetylase HDA1 (only c-term Arb2 domain). Carboxypeptidase_S10 : yeast-cbpy1 Saccharomyces cerevisiae Carboxypeptidase Y, vacuolar PRC1 gene encoding preproprotein carboxypeptidase Y (CPY), yeast-kex01 Saccharomyces cerevisiae, yeast Pheromone-processing carboxypeptidase KEX1, yeast-yby9Saccharomyces cerevisiae chromosome II reading frame ORF YBR139w. CGI-58_ABHD5_ABHD4 : yeast-cld1Saccharomyces cerevisiae (Baker's yeast) YGR110W hypothetical 52.0 kda protein in clb6-shy1 intergenic region, yeast-ECM18Saccharomyces cerevisiae (Baker's yeast) (and strains YJM789; AWRI1631; Lalvin EC1118 / Prise de mousse; RM11-1a; JAY291) hypothetical 53.2 kda extracellular matrix protein 18, yeast-ict1Saccharomyces cerevisiae (Baker's yeast) chromosome XII reading frame orf ylr099c Increased copper tolerance protein 1. Dienelactone_hydrolase : yeast-AIM2Saccharomyces cerevisiae (Baker's yeast) yae9 hypothetical 27.1 kda protein in acs1-gcv3 intergenic region, yeast-dlhhSaccharomyces cerevisiae (Baker's yeast) hydrolase) (dlh). DPP4N_Peptidase_S9 : yeast-dap1Saccharomyces cerevisiae (Baker's yeast) dipeptidyl aminopeptidase (STE13 or YCI1), yeast-dap2Saccharomyces cerevisiae (Baker's yeast) yhr028c gene for dipeptidyl aminopeptidase B (DPAP B). Duf_676 : yeast-ROG1Saccharomyces cerevisiae (Baker's yeast) Putative lipase ROG1 ygo4 78.1 kda protein in tip20-mrf1 intergenic region ygl144c, yeast-YDL109CSaccharomyces cerevisiae (Baker's yeast) chromosome IV reading frame orf ydl109c, yeast-YDR444WSaccharomyces cerevisiae (Baker's yeast) d9461.29p, yeast-yo059Saccharomyces cerevisiae (Baker's yeast) Putative lipase YOR059C LPL1 chromosome xv orf yor059c YOR29-10. Duf_726 : yeast-yfd4Saccharomyces cerevisiae (Baker's yeast) (strains YJM789; RM11-1a; AWRI1631) Uncharacterized membrane protein Mil1 YFL034W. FSH1 : yeast-FSH1 Saccharomyces cerevisiae (Baker's yeast); Saccharomyces arboricola; Saccharomyces eubayanus family of serine hydrolases 1 (EC 3.1.-.-) in aap1-smf2 intergenic region, yeast-FSH2Saccharomyces cerevisiae (Baker's yeast) hypothetical 24.5 kda protein in erg8-ubp8 intergenic region, yeast-FSH3Saccharomyces cerevisiae (Baker's yeast) hypothetical dihydrofolate reductase. Homoserine_transacetylase : yeast-met2Saccharomyces cerevisiae (Baker's yeast), Saccharomyces sp., Saccharomyces paradoxus, S. uvarum, S. bayanus, S. pastorianus, S carlsbergensis, S. bayanus x S. cerevisiae, Homoserine O-trans-acetylase. Kynurenine-formamidase : yeast-YDR428C Saccharomyces cerevisiae (Baker's yeast); Saccharomyces sp. Kynurenine formamidase KFA d9461.15p. LIDHydrolase : yeast-YPR147CSaccharomyces cerevisiae (Baker's yeast) YPR147cp lipid droplet associated enzyme triacylglycerol lipase and ester hydrolase. Lipase_3 : yeast-ATG15CDS from: Saccharomyces cerevisiae (and strain YJM789) lipase involved in lipid vesicles degradation YCR068W Cytoplasm to vacuole targeting protein 17 ATG15, yeast-yj77Saccharomyces cerevisiae chromosome X reading frame ORF YJR107w. LYsophospholipase_carboxylesterase : yeast-YLR118cSaccharomyces cerevisiae Ylr118c protein and gene in chromosome XII cosmid 9233. PC-sterol_acyltransferase : yeast-pdatSaccharomyces cerevisiae (Baker's yeast) phospholipid:diacylglycerol acyltransferase (EC 2.3.1.158) (pdat) LRO1, yeast-yj68Saccharomyces cerevisiae (Baker's yeast) (and strain AWRI1631) hypothetical 74.1 kda protein in acr1-yuh1 intergenic region. PGAP1 : yeast-BST1Saccharomyces cerevisiae (Baker's yeast), BST1, YFL025C, GPI inositol-deacylase, yeast-tgl2Saccharomyces cerevisiae (Baker's yeast) (and strains YJM789; JAY291; AWRI1631; Lalvin EC1118 / Prise de mousse; RM11-1a) lipase 2 (EC 3.1.1.3) (triacylglycerol lipase). PPase_methylesterase_euk : yeast-ppme1Saccharomyces cerevisiae (Baker's yeast) protein phosphatase methylesterase 1 (EC 3.1.1.-) (pme-1) (yms2). Steryl_acetyl_hydrolase : yeast-SAY1Saccharomyces cerevisiae (Baker's yeast) hypothetical 48.5da prot YG5J chromosome VII. T6SS-TLE1 : yeasv-e7ltm5Saccharomyces cerevisiae (strain VIN 13) (Baker's yeast). YEL023C-like protein
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Saccharomyces cerevisiae S288c: N, E.
Saccharomyces cerevisiae YJM789: N, E.
Saccharomyces cerevisiae RM11-1a: N, E.
Saccharomyces cerevisiae AWRI1631: N, E.
Saccharomyces cerevisiae JAY291: N, E.
Saccharomyces cerevisiae EC1118: N, E.
Saccharomyces cerevisiae AWRI796: N, E.
Saccharomyces cerevisiae Lalvin QA23: N, E.
Saccharomyces cerevisiae Vin13: N, E.
Saccharomyces cerevisiae FostersO: N, E.
Saccharomyces cerevisiae FostersB: N, E.
Saccharomyces cerevisiae VL3: N, E.
Saccharomyces cerevisiae Kyokai no. 7: N, E.
Saccharomyces cerevisiae P301: N, E.
Saccharomyces cerevisiae R103: N, E.
Saccharomyces cerevisiae CEN.PK113-7D: N, E.
Saccharomyces cerevisiae R008: N, E.
Saccharomyces cerevisiae P283: N, E.
Saccharomyces cerevisiae YJM993: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MAPYPYKVQTTVPELQYENFDGAKFGYMFWPVQNGTNEVRGRVLLIHGFG EYTKIQFRLMDHLSLNGYESFTFDQRGAGVTSPGRSKGVTDEYHVFNDLE HFVEKNLSECKAKGIPLFMWGHSMGGGICLNYACQGKHKNEISGYIGSGP LIILHPHTMYNKPTQIIAPLLAKFLPRVRIDTGLDLKGITSDKAYRAFLG SDPMSVPLYGSFRQIHDFMQRGAKLYKNENNYIQKNFAKDKPVVIMHGQD DTINDPKGSEKFIQDCPSADKELKLYPGARHSIFSLETDEVFNTVFNDMK QWLDKHTTTEAKP
Monoacylglycerols (MAGs) are short-lived intermediates of glycerolipid metabolism. Specific molecular species, such as 2-arachidonoylglycerol, which is a potent activator of cannabinoid receptors, may also function as lipid signaling molecules. In mammals, enzymes hydrolyzing MAG to glycerol and fatty acids, resembling the final step in lipolysis, or esterifying MAG to diacylglycerol, are well known; however, despite the high level of conservation of lipolysis, the corresponding activities in yeast have not been characterized yet. Here we provide evidence that the protein Yju3p functions as a potent MAG hydrolase in yeast. Cellular MAG hydrolase activity was decreased by more than 90% in extracts of Yju3p-deficient cells, indicating that Yju3p accounts for the vast majority of this activity in yeast. Loss of this activity was restored by heterologous expression of murine monoglyceride lipase (MGL). Since yju3Delta mutants accumulated MAG in vivo only at very low concentrations, we considered the possibility that MAGs are re-esterified into DAG by acyltransferases. Indeed, cellular MAG levels were further increased in mutant cells lacking Yju3p and Dga1p or Lro1p acyltransferase activities. In conclusion, our studies suggest that catabolic and anabolic reactions affect cellular MAG levels. Yju3p is the functional orthologue of mammalian MGL and is required for efficient degradation of MAG in yeast.
        
Title: DNA sequence analysis of a 17 kb fragment of yeast chromosome XI physically localizes the MRB1 gene and reveals eight new open reading frames, including a homologue of the KIN1/KIN2 and SNF1 protein kinases Pallier C, Valens M, Puzos V, Fukuhara H, Cheret G, Sor F, Bolotin-Fukuhara M Ref: Yeast, 9:1149, 1993 : PubMed
We report in this paper the sequence of a part of chromosome XI of Saccharomyces cerevisiae. This 17 kbp nucleotide sequence represents the right half of cosmid pUKG151 and contains nine open reading frames, YKL453, 450, 449, 448, 445, 443, 442, 441 and the 5' part of YKL440. YKL440 was previously identified as the MBR1 gene and plays a role in mitochondrial biogenesis. YKL443 is a homologue of the yeast serine-rich protein (SRP1), while YKL453 presents strong homologies with the KIN1/KIN2/SNF1 kinase family. It must be pointed out that the size of this gene is well above average for yeast.
        
Title: Sequence of the novel essential gene YJU2 and two flanking reading frames located within a 3.2 kb EcoRI fragment from chromosome X of Saccharomyces cerevisiae Forrova H, Kolarov J, Ghislain M, Goffeau A Ref: Yeast, 8:419, 1992 : PubMed
Monoacylglycerol lipases (MGL) are a subclass of lipases that predominantly hydrolyze monoacylglycerol (MG) into glycerol and fatty acid. MGLs are ubiquitous enzymes across species and play a role in lipid metabolism, affecting energy homeostasis and signaling processes. Structurally, MGLs belong to the alpha/beta hydrolase fold family with a cap covering the substrate binding pocket. Analysis of the known 3D structures of human, yeast and bacterial MGLs revealed striking similarity of the cap architecture. Since MGLs from different organisms share very low sequence similarity, it is difficult to identify MGLs based on the amino acid sequence alone. Here, we investigated whether the cap architecture could be a characteristic feature of this subclass of lipases with activity towards MG and whether it is possible to identify MGLs based on the cap shape. Through database searches, we identified the structures of five different candidate alpha/beta hydrolase fold proteins with unknown or reported esterase activity. These proteins exhibit cap architecture similarities to known human, yeast and bacterial MGL structures. Out of these candidates we confirmed MGL activity for the protein LipS, which displayed the highest structural similarity to known MGLs. Two further enzymes, Avi_0199 and VC1974, displayed low level MGL activities. These findings corroborate our hypothesis that this conserved cap architecture can be used as criterion to identify lipases with activity towards MGs.
Monoglyceride lipases (MGLs) are a group of alpha/beta-hydrolases that catalyze the hydrolysis of monoglycerides (MGs) into free fatty acids and glycerol. This reaction serves different physiological functions, namely in the last step of phospholipid and triglyceride degradation, in mammalian endocannabinoid and arachidonic acid metabolism, and in detoxification processes in microbes. Previous crystal structures of MGLs from humans and bacteria revealed conformational plasticity in the cap region of this protein and gave insight into substrate binding. In this study, we present the structure of a MGL from Saccharomyces cerevisiae called Yju3p in its free form and in complex with a covalently bound substrate analog mimicking the tetrahedral intermediate of MG hydrolysis. These structures reveal a high conservation of the overall shape of the MGL cap region and also provide evidence for conformational changes in the cap of Yju3p. The complex structure reveals that, despite the high structural similarity, Yju3p seems to have an additional opening to the substrate binding pocket at a different position compared to human and bacterial MGL. Substrate specificities towards MGs with saturated and unsaturated alkyl chains of different lengths were tested and revealed highest activity towards MG containing a C18:1 fatty acid.
        
Title: Purification, crystallization and preliminary X-ray diffraction analysis of a soluble variant of the monoglyceride lipase Yju3p from the yeast Saccharomyces cerevisiae Rengachari S, Aschauer P, Sturm C, Oberer M Ref: Acta Crystallographica F Struct Biol Commun, 71:243, 2015 : PubMed
The protein Yju3p is the orthologue of monoglyceride lipases in the yeast Saccharomyces cerevisiae. A soluble variant of this lipase termed s-Yju3p (38.3 kDa) was generated and purified to homogeneity by affinity and size-exclusion chromatography. s-Yju3p was crystallized in a vapour-diffusion setup at 293 K and a complete data set was collected to 2.4 A resolution. The crystal form was orthorhombic (space group P212121), with unit-cell parameters a = 77.2, b = 108.6, c = 167.7 A. The asymmetric unit contained four molecules with a solvent content of 46.4%.
Monoacylglycerols (MAGs) are short-lived intermediates of glycerolipid metabolism. Specific molecular species, such as 2-arachidonoylglycerol, which is a potent activator of cannabinoid receptors, may also function as lipid signaling molecules. In mammals, enzymes hydrolyzing MAG to glycerol and fatty acids, resembling the final step in lipolysis, or esterifying MAG to diacylglycerol, are well known; however, despite the high level of conservation of lipolysis, the corresponding activities in yeast have not been characterized yet. Here we provide evidence that the protein Yju3p functions as a potent MAG hydrolase in yeast. Cellular MAG hydrolase activity was decreased by more than 90% in extracts of Yju3p-deficient cells, indicating that Yju3p accounts for the vast majority of this activity in yeast. Loss of this activity was restored by heterologous expression of murine monoglyceride lipase (MGL). Since yju3Delta mutants accumulated MAG in vivo only at very low concentrations, we considered the possibility that MAGs are re-esterified into DAG by acyltransferases. Indeed, cellular MAG levels were further increased in mutant cells lacking Yju3p and Dga1p or Lro1p acyltransferase activities. In conclusion, our studies suggest that catabolic and anabolic reactions affect cellular MAG levels. Yju3p is the functional orthologue of mammalian MGL and is required for efficient degradation of MAG in yeast.
Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (approximately 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.
Saccharomyces cerevisiae has been used for millennia in winemaking, but little is known about the selective forces acting on the wine yeast genome. We sequenced the complete genome of the diploid commercial wine yeast EC1118, resulting in an assembly of 31 scaffolds covering 97% of the S288c reference genome. The wine yeast differed strikingly from the other S. cerevisiae isolates in possessing 3 unique large regions, 2 of which were subtelomeric, the other being inserted within an EC1118 chromosome. These regions encompass 34 genes involved in key wine fermentation functions. Phylogeny and synteny analyses showed that 1 of these regions originated from a species closely related to the Saccharomyces genus, whereas the 2 other regions were of non-Saccharomyces origin. We identified Zygosaccharomyces bailii, a major contaminant of wine fermentations, as the donor species for 1 of these 2 regions. Although natural hybridization between Saccharomyces strains has been described, this report provides evidence that gene transfer may occur between Saccharomyces and non-Saccharomyces species. We show that the regions identified are frequent and differentially distributed among S. cerevisiae clades, being found almost exclusively in wine strains, suggesting acquisition through recent transfer events. Overall, these data show that the wine yeast genome is subject to constant remodeling through the contribution of exogenous genes. Our results suggest that these processes are favored by ecologic proximity and are involved in the molecular adaptation of wine yeasts to conditions of high sugar, low nitrogen, and high ethanol concentrations.
Many industrial strains of Saccharomyces cerevisiae have been selected primarily for their ability to convert sugars into ethanol efficiently despite exposure to a variety of stresses. To begin investigation of the genetic basis of phenotypic variation in industrial strains of S. cerevisiae, we have sequenced the genome of a wine yeast, AWRI1631, and have compared this sequence with both the laboratory strain S288c and the human pathogenic isolate YJM789. AWRI1631 was found to be substantially different from S288c and YJM789, especially at the level of single-nucleotide polymorphisms, which were present, on average, every 150 bp between all three strains. In addition, there were major differences in the arrangement and number of Ty elements between the strains, as well as several regions of DNA that were specific to AWRI1631 and that were predicted to encode proteins that are unique to this industrial strain.
We sequenced the genome of Saccharomyces cerevisiae strain YJM789, which was derived from a yeast isolated from the lung of an AIDS patient with pneumonia. The strain is used for studies of fungal infections and quantitative genetics because of its extensive phenotypic differences to the laboratory reference strain, including growth at high temperature and deadly virulence in mouse models. Here we show that the approximately 12-Mb genome of YJM789 contains approximately 60,000 SNPs and approximately 6,000 indels with respect to the reference S288c genome, leading to protein polymorphisms with a few known cases of phenotypic changes. Several ORFs are found to be unique to YJM789, some of which might have been acquired through horizontal transfer. Localized regions of high polymorphism density are scattered over the genome, in some cases spanning multiple ORFs and in others concentrated within single genes. The sequence of YJM789 contains clues to pathogenicity and spurs the development of more powerful approaches to dissecting the genetic basis of complex hereditary traits.
Mitochondria consist of four compartments-outer membrane, intermembrane space, inner membrane, and matrix--with crucial but distinct functions for numerous cellular processes. A comprehensive characterization of the proteome of an individual mitochondrial compartment has not been reported so far. We used a eukaryotic model organism, the yeast Saccharomyces cerevisiae, to determine the proteome of highly purified mitochondrial outer membranes. We obtained a coverage of approximately 85% based on the known outer membrane proteins. The proteome represents a rich source for the analysis of new functions of the outer membrane, including the yeast homologue (Hfd1/Ymr110c) of the human protein causing Sjogren-Larsson syndrome. Surprisingly, a subclass of proteins known to reside in internal mitochondrial compartments were found in the outer membrane proteome. These seemingly mislocalized proteins included most top scorers of a recent genome-wide analysis for mRNAs that were targeted to mitochondria and coded for proteins of prokaryotic origin. Together with the enrichment of the precursor form of a matrix protein in the outer membrane, we conclude that the mitochondrial outer membrane not only contains resident proteins but also accumulates a conserved subclass of preproteins destined for internal mitochondrial compartments.
An analysis of the structurally and catalytically diverse serine hydrolase protein family in the Saccharomyces cerevisiae proteome was undertaken using two independent but complementary, large-scale approaches. The first approach is based on computational analysis of serine hydrolase active site structures; the second utilizes the chemical reactivity of the serine hydrolase active site in complex mixtures. These proteomics approaches share the ability to fractionate the complex proteome into functional subsets. Each method identified a significant number of sequences, but 15 proteins were identified by both methods. Eight of these were unannotated in the Saccharomyces Genome Database at the time of this study and are thus novel serine hydrolase identifications. Three of the previously uncharacterized proteins are members of a eukaryotic serine hydrolase family, designated as Fsh (family of serine hydrolase), identified here for the first time. OVCA2, a potential human tumor suppressor, and DYR-SCHPO, a dihydrofolate reductase from Schizosaccharomyces pombe, are members of this family. Comparing the combined results to results of other proteomic methods showed that only four of the 15 proteins were identified in a recent large-scale, "shotgun" proteomic analysis and eight were identified using a related, but similar, approach (neither identifies function). Only 10 of the 15 were annotated using alternate motif-based computational tools. The results demonstrate the precision derived from combining complementary, function-based approaches to extract biological information from complex proteomes. The chemical proteomics technology indicates that a functional protein is being expressed in the cell, while the computational proteomics technology adds details about the specific type of function and residue that is likely being labeled. The combination of synergistic methods facilitates analysis, enriches true positive results, and increases confidence in novel identifications. This work also highlights the risks inherent in annotation transfer and the use of scoring functions for determination of correct annotations.
The availability of complete genomic sequences and technologies that allow comprehensive analysis of global expression profiles of messenger RNA have greatly expanded our ability to monitor the internal state of a cell. Yet biological systems ultimately need to be explained in terms of the activity, regulation and modification of proteins--and the ubiquitous occurrence of post-transcriptional regulation makes mRNA an imperfect proxy for such information. To facilitate global protein analyses, we have created a Saccharomyces cerevisiae fusion library where each open reading frame is tagged with a high-affinity epitope and expressed from its natural chromosomal location. Through immunodetection of the common tag, we obtain a census of proteins expressed during log-phase growth and measurements of their absolute levels. We find that about 80% of the proteome is expressed during normal growth conditions, and, using additional sequence information, we systematically identify misannotated genes. The abundance of proteins ranges from fewer than 50 to more than 10(6) molecules per cell. Many of these molecules, including essential proteins and most transcription factors, are present at levels that are not readily detectable by other proteomic techniques nor predictable by mRNA levels or codon bias measurements.
A fundamental goal of cell biology is to define the functions of proteins in the context of compartments that organize them in the cellular environment. Here we describe the construction and analysis of a collection of yeast strains expressing full-length, chromosomally tagged green fluorescent protein fusion proteins. We classify these proteins, representing 75% of the yeast proteome, into 22 distinct subcellular localization categories, and provide localization information for 70% of previously unlocalized proteins. Analysis of this high-resolution, high-coverage localization data set in the context of transcriptional, genetic, and protein-protein interaction data helps reveal the logic of transcriptional co-regulation, and provides a comprehensive view of interactions within and between organelles in eukaryotic cells.
Protein localization data are a valuable information resource helpful in elucidating eukaryotic protein function. Here, we report the first proteome-scale analysis of protein localization within any eukaryote. Using directed topoisomerase I-mediated cloning strategies and genome-wide transposon mutagenesis, we have epitope-tagged 60% of the Saccharomyces cerevisiae proteome. By high-throughput immunolocalization of tagged gene products, we have determined the subcellular localization of 2744 yeast proteins. Extrapolating these data through a computational algorithm employing Bayesian formalism, we define the yeast localizome (the subcellular distribution of all 6100 yeast proteins). We estimate the yeast proteome to encompass approximately 5100 soluble proteins and >1000 transmembrane proteins. Our results indicate that 47% of yeast proteins are cytoplasmic, 13% mitochondrial, 13% exocytic (including proteins of the endoplasmic reticulum and secretory vesicles), and 27% nuclear/nucleolar. A subset of nuclear proteins was further analyzed by immunolocalization using surface-spread preparations of meiotic chromosomes. Of these proteins, 38% were found associated with chromosomal DNA. As determined from phenotypic analyses of nuclear proteins, 34% are essential for spore viability--a percentage nearly twice as great as that observed for the proteome as a whole. In total, this study presents experimentally derived localization data for 955 proteins of previously unknown function: nearly half of all functionally uncharacterized proteins in yeast. To facilitate access to these data, we provide a searchable database featuring 2900 fluorescent micrographs at http:\/\/ygac.med.yale.edu.
Lipid particles of the yeast Saccharomyces cerevisiae were isolated at high purity, and their proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Major lipid particle proteins were identified by mass spectrometric analysis, and the corresponding open reading frames (ORFs) were deduced. In silicio analysis revealed that all lipid particle proteins contain several hydrophobic domains but none or only few (hypothetical) transmembrane spanning regions. All lipid particle proteins identified by function so far, such as Erg1p, Erg6p, and Erg7p (ergosterol biosynthesis) and Faa1p, Faa4p, and Fat1p (fatty acid metabolism), are involved in lipid metabolism. Based on sequence homology, another group of three lipid particle proteins may be involved in lipid degradation. To examine whether lipid particle proteins of unknown function are also involved in lipid synthesis, mutants with deletions of the respective ORFs were constructed and subjected to systematic lipid analysis. Deletion of YDL193w resulted in a lethal phenotype which could not be suppressed by supplementation with ergosterol or fatty acids. Other deletion mutants were viable under standard conditions. Strains with YBR177c, YMR313c, and YKL140w deleted exhibited phospholipid and/or neutral lipid patterns that were different from the wild-type strain and thus may be further candidate ORFs involved in yeast lipid metabolism.
The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome XI has been determined. In addition to a compact arrangement of potential protein coding sequences, the 666,448-base-pair sequence has revealed general chromosome patterns; in particular, alternating regional variations in average base composition correlate with variations in local gene density along the chromosome. Significant discrepancies with the previously published genetic map demonstrate the need for using independent physical mapping criteria.
        
Title: DNA sequence analysis of a 17 kb fragment of yeast chromosome XI physically localizes the MRB1 gene and reveals eight new open reading frames, including a homologue of the KIN1/KIN2 and SNF1 protein kinases Pallier C, Valens M, Puzos V, Fukuhara H, Cheret G, Sor F, Bolotin-Fukuhara M Ref: Yeast, 9:1149, 1993 : PubMed
We report in this paper the sequence of a part of chromosome XI of Saccharomyces cerevisiae. This 17 kbp nucleotide sequence represents the right half of cosmid pUKG151 and contains nine open reading frames, YKL453, 450, 449, 448, 445, 443, 442, 441 and the 5' part of YKL440. YKL440 was previously identified as the MBR1 gene and plays a role in mitochondrial biogenesis. YKL443 is a homologue of the yeast serine-rich protein (SRP1), while YKL453 presents strong homologies with the KIN1/KIN2/SNF1 kinase family. It must be pointed out that the size of this gene is well above average for yeast.
        
Title: Sequence of the novel essential gene YJU2 and two flanking reading frames located within a 3.2 kb EcoRI fragment from chromosome X of Saccharomyces cerevisiae Forrova H, Kolarov J, Ghislain M, Goffeau A Ref: Yeast, 8:419, 1992 : PubMed