(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Bacilli: NE > Bacillales: NE > Bacillaceae: NE > Bacillus: NE > Bacillus cereus group: NE > Bacillus anthracis: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Bacillus thuringiensis serovar konkukian: N, E.
Bacillus thuringiensis subsp. konkukian: N, E.
Bacillus thuringiensis serovar konkukian str. 97-27: N, E.
Bacillus anthracis str. Ames: N, E.
Bacillus cereus ISP3191: N, E.
Bacillus thuringiensis serovar finitimus YBT-020: N, E.
Bacillus cereus biovar anthracis str. CI: N, E.
Bacillus anthracis str. SVA11: N, E.
Bacillus thuringiensis serovar pondicheriensis BGSC 4BA1: N, E.
Bacillus thuringiensis serovar andalousiensis BGSC 4AW1: N, E.
Bacillus thuringiensis serovar monterrey BGSC 4AJ1: N, E.
Bacillus cereus 95/8201: N, E.
Bacillus cereus 03BB102: N, E.
Bacillus anthracis CZC5: N, E.
Bacillus anthracis 52-G: N, E.
Bacillus anthracis 9080-G: N, E.
Bacillus anthracis 8903-G: N, E.
Bacillus anthracis str. A16R: N, E.
Bacillus anthracis str. A16: N, E.
Bacillus anthracis str. BF1: N, E.
Bacillus anthracis str. UR-1: N, E.
Bacillus anthracis str. H9401: N, E.
Bacillus cereus F837/76: N, E.
Bacillus anthracis str. A0248: N, E.
Bacillus anthracis str. CDC 684: N, E.
Bacillus thuringiensis serovar pulsiensis BGSC 4CC1: N, E.
Bacillus cereus BGSC 6E1: N, E.
Bacillus cereus W: N, E.
Bacillus cereus NVH0597-99: N, E.
Bacillus cereus 03BB108: N, E.
Bacillus anthracis Tsiankovskii-I: N, E.
Bacillus anthracis str. Tsiankovskii-I: N, E.
Bacillus anthracis str. A0174: N, E.
Bacillus anthracis str. A0465: N, E.
Bacillus anthracis str. A0389: N, E.
Bacillus anthracis str. A0193: N, E.
Bacillus anthracis str. A0442: N, E.
Bacillus anthracis str. A0488: N, E.
Bacillus thuringiensis str. Al Hakam: N, E.
Bacillus cereus AH820: N, E.
Bacillus cereus BDRD-ST196: N, E.
Bacillus cereus AH621: N, E.
Bacillus cereus Rock3-29: N, E.
Bacillus cereus Rock1-3: N, E.
Bacillus cereus Rock3-28: N, E.
Bacillus cereus R309803: N, E.
Bacillus cereus AH603: N, E.
Bacillus cereus MM3: N, E.
Bacillus mycoides DSM 2048: N, E.
Bacillus cereus AH1271: N, E.
Bacillus cereus E33L: N, E.
Bacillus cereus ATCC 10987: N, E.
Bacillus thuringiensis serovar tochigiensis BGSC 4Y1: N, E.
Bacillus cereus AH1134: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MKKIAKLIKFIGAITILLLIVALIFPTWTSQIKGQNSISTLEKVEINGSD HEIMIRGKDKNNPVIIFVHGGPGTSEIPYAQKYQDLLEEKFTVVHYDQRG SGKSYHFFEDYSNLTSDLLVEDLLAMTDYISKRLGKEKAILIGHSYGTYI GMQAANKAPEKYEAYVGIGQMSDTLEGEMDSLKFVIDQAENAGNKEEVSY LNGLTEKIKNGDTYTPRNYVGKYGGTSRLIENPDGDNIGMLLSNEYNLLD VIRYNVGLSHSQTVLLEKDLKNPLPTKVKKLKLPFYFLMGKYDYNTSFHA AKTYFDTIEAEQKEFITFEKSAHYPQFEEKEKFYEWMCDTFVK
Bacillus thuringiensis is a gram-positive, spore-forming bacterium that forms parasporal crystals at the onset of the sporulation phase of its growth. Here, we report the complete genome sequence of B. thuringiensis serovar finitimus strain YBT-020, whose parasporal crystals consist of Cry26Aa and Cry28Aa crystal proteins and are located between the exosporium and the spore coat and remain adhering to the spore after sporulation.
Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as "B. cereus variety (var.) anthracis".
Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity--including haemolysins, phospholipases and iron acquisition functions--and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.
        
9 lessTitle: Microevolution during an Anthrax outbreak leading to clonal heterogeneity and penicillin resistance Agren J, Finn M, Bengtsson B, Segerman B Ref: PLoS ONE, 9:e89112, 2014 : PubMed
Anthrax is a bacterial disease primarily affecting grazing animals but it can also cause severe disease in humans. We have used genomic epidemiology to study microevolution of the bacterium in a confined outbreak in cattle which involved emergence of an antibiotic-resistant phenotype. At the time of death, the animals contained a heterogeneous population of Single Nucleotide Variants (SNVs), some being clonal but most being subclonal. We found that independent isolates from the same carcass had similar levels of SNV differences as isolates from different animals. Furthermore the relative levels of subclonal populations were different in different locations in the same carcass. The heterogeneity appeared to be derived in part from heterogeneity in the infectious dose. The resistance phenotype was linked to clonal mutations in an anti-sigma factor gene and in one case was preceded by an acquisition of a hypermutator phenotype. In another animal, small subclonal populations were observed with counteracting mutations that had turned off the resistance genes. In summary, this study shows the importance of accounting for both acquired and inherited heterogeneity when doing high-resolution infection tracing and when estimating the risks associated with penicillin treatment.
In August 2011, an anthrax outbreak occurred among Hippopotamus amphibius hippopotamuses and humans in Zambia. Here, we report the draft genome sequence of the Bacillus anthracis outbreak strain CZC5, isolated from tissues of H. amphibius hippopotamuses that had died in the outbreak area.
Bacillus anthracis BF-1 was isolated from a cow in Bavaria (Germany) that had succumbed to anthrax. Here, we report the draft genome sequence of this strain, which belongs to the European B2 subclade of B. anthracis. The closest phylogenetic neighbor of strain BF-1 is a strain isolated from cattle in France.
Highly hemolytic strain Bacillus cereus F837/76 was isolated in 1976 from a contaminated prostate wound. The complete nucleotide sequence of this strain reported here counts nearly 36,500 single-nucleotide differences from the closest sequenced strain, Bacillus thuringiensis Al Hakam. F827/76 also contains a 10-kb plasmid that was not detected in the Al Hakam strain.
Bacillus anthracis H9401 (NCCP 12889) is an isolate from a Korean patient with gastrointestinal anthrax. The whole genome of H9401 was sequenced. It is a circular chromosome containing 5,480 open reading frames (ORFs) and two plasmids, pXO1 containing 202 ORFs and pXO2 containing 110 ORFs. H9401 shows high pathogenicity and genome sequence similarity to Ames Ancestor.
We report the draft genome sequence of Bacillus anthracis UR-1, isolated from a fatal case of injectional anthrax in a German heroin user. Analysis of the genome sequence of strain UR-1 may aid in describing phylogenetic relationships between virulent heroin-associated isolates of B. anthracis isolated in the United Kingdom, Germany, and other European countries.
The key genes required for Bacillus anthracis to cause anthrax have been acquired recently by horizontal gene transfer. To understand the genetic background for the evolution of B. anthracis virulence, we obtained high-redundancy genome sequences of 45 strains of the Bacillus cereus sensu lato (s.l.) species that were chosen for their genetic diversity within the species based on the existing multilocus sequence typing scheme. From the resulting data, we called more than 324,000 new genes representing more than 12,333 new gene families for this group. The core genome size for the B. cereus s.l. group was approximately 1750 genes, with another 2150 genes found in almost every genome constituting the extended core. There was a paucity of genes specific and conserved in any clade. We found no evidence of recent large-scale gene loss in B. anthracis or for unusual accumulation of nonsynonymous DNA substitutions in the chromosome; however, several B. cereus genomes isolated from soil and not previously associated with human disease were degraded to various degrees. Although B. anthracis has undergone an ecological shift within the species, its chromosome does not appear to be exceptional on a macroscopic scale compared with close relatives.
Bacillus thuringiensis is a gram-positive, spore-forming bacterium that forms parasporal crystals at the onset of the sporulation phase of its growth. Here, we report the complete genome sequence of B. thuringiensis serovar finitimus strain YBT-020, whose parasporal crystals consist of Cry26Aa and Cry28Aa crystal proteins and are located between the exosporium and the spore coat and remain adhering to the spore after sporulation.
Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as "B. cereus variety (var.) anthracis".
Bacillus thuringiensis is an insect pathogen that is widely used as a biopesticide (E. Schnepf, N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean, Microbiol. Mol. Biol. Rev. 62:775-806, 1998). Here we report the finished, annotated genome sequence of B. thuringiensis Al Hakam, which was collected in Iraq by the United Nations Special Commission (L. Radnedge, P. Agron, K. Hill, P. Jackson, L. Ticknor, P. Keim, and G. Andersen, Appl. Environ. Microbiol. 69:2755-2764, 2003).
We sequenced the complete genome of Bacillus cereus ATCC 10987, a non-lethal dairy isolate in the same genetic subgroup as Bacillus anthracis. Comparison of the chromosomes demonstrated that B.cereus ATCC 10987 was more similar to B.anthracis Ames than B.cereus ATCC 14579, while containing a number of unique metabolic capabilities such as urease and xylose utilization and lacking the ability to utilize nitrate and nitrite. Additionally, genetic mechanisms for variation of capsule carbohydrate and flagella surface structures were identified. Bacillus cereus ATCC 10987 contains a single large plasmid (pBc10987), of approximately 208 kb, that is similar in gene content and organization to B.anthracis pXO1 but is lacking the pathogenicity-associated island containing the anthrax lethal and edema toxin complex genes. The chromosomal similarity of B.cereus ATCC 10987 to B.anthracis Ames, as well as the fact that it contains a large pXO1-like plasmid, may make it a possible model for studying B.anthracis plasmid biology and regulatory cross-talk.
Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity--including haemolysins, phospholipases and iron acquisition functions--and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.