Chen A

References (134)

Title : Simultaneous determination of HD56, a novel prodrug, and its active metabolite in cynomolgus monkey plasma using LC-MS\/MS for elucidating its pharmacokinetic profile - Yao_2024_J.Chromatogr.B.Analyt.Technol.Biomed.Life.Sci_1235_124045
Author(s) : Yao S , Zhang W , Xiao J , Zhang Z , Wang L , Ai H , Wu X , Chen A , Zhuang X
Ref : Journal of Chromatography B Analyt Technol Biomed Life Sciences , 1235 :124045 , 2024
Abstract : An LC-MS/MS method was developed and validated for the simultaneous determination of the carboxylic acid ester precursor HD56 and the active product HD561 in cynomolgus monkey plasma. Then, the pharmacokinetic characteristics of both compounds following single and multiple i.g. administrations in cynomolgus monkeys were elucidated. In the method, chromatographic separation was achieved with a C18 reversed-phase column and the target quantification was carried out by an electrospray ionization (ESI) source coupled with triple quadrupole mess detector in positive ionization mode with multiple reaction monitoring (MRM) approach. Using the quantification method, the in vitro stability of HD56 in plasma and HD56 pharmacokinetic behavior after i.g. administration in cynomolgus monkey were investigated. It was approved that HD56 did convert into HD561 post-administration. The overall systemic exposure of HD561 post-conversion from HD56 accounted for only about 17% of HD56. After repeated administration at the same dose, there was no significant difference in exposure levels of both HD56 and HD561. However, after multiple dosing, the exposure of HD56 tended to decrease while that of HD561 tended to increase, resulting in a 30% in the exposure ratio. Remarkably, with a carboxylesterase (CES) activity profile akin to humans, the observed in vivo pharmacokinetic profile in cynomolgus monkeys holds promise for predicting HD56/HD561 PK profiles in humans.
ESTHER : Yao_2024_J.Chromatogr.B.Analyt.Technol.Biomed.Life.Sci_1235_124045
PubMedSearch : Yao_2024_J.Chromatogr.B.Analyt.Technol.Biomed.Life.Sci_1235_124045
PubMedID: 38367406

Title : Mechanism of active acetylcholinesterase inhibition by organic sulfanes in garlic: Non-covalent binding and covalent modifications - Zhu_2023_Int.J.Biol.Macromol__124972
Author(s) : Zhu Y , Shi D , Chen A , Wang Y , Liu L , Bai B
Ref : Int J Biol Macromol , :124972 , 2023
Abstract : Numerous secondary metabolites in medicinal food homology plants such as Allium inhibit the activity of acetylcholinesterase (AChE), but the current understanding of the inhibition mechanism is limited. In this study, we employed ultrafiltration, spectroscopic, molecular docking, and matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS) techniques to investigate the inhibition mechanism of AChE by garlic organic sulfanes, including diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS). The results of UV-spectrophotometry and ultrafiltration experiments showed the inhibition of AChE activity by DAS and DADS was reversible (competitive inhibition), but inhibition by DATS was irreversible. Molecular fluorescence and molecular docking indicated DAS and DADS changed the positions of key amino acids inside the catalytic cavity through hydrophobic interactions with AChE. By using MALDI-TOF-MS/MS, we found DATS irreversibly inhibited AChE activity by opening disulfide-bond switching of disulfide bond 1 (Cys-69 and Cys-96) and disulfide bond 2 (Cys-257 and Cys-272) in AChE, as well as by covalently modifying Cys-272 in disulfide bond 2 to generate AChE-SSA derivatives (strengthened switch). This study provides a basis for further exploration of natural AChE inhibitors using organic active substances in garlic and presents a hypothesis of U-shaped spring force arm effect based on the disulfide bond-switching reaction of DATS that can be used to evaluate the stability of disulfide bonds in proteins.
ESTHER : Zhu_2023_Int.J.Biol.Macromol__124972
PubMedSearch : Zhu_2023_Int.J.Biol.Macromol__124972
PubMedID: 37285891

Title : Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones - Yi_2023_Plant.Physiol__
Author(s) : Yi F , An G , Song A , Cheng K , Liu J , Wang C , Wu S , Wang P , Zhu J , Liang Z , Chang Y , Chu Z , Cai C , Zhang X , Chen A , Xu J , Burritt DJ , Herrera-Estrella L , Tran LP , Li W , Cai Y
Ref : Plant Physiol , : , 2023
Abstract : Verticillium wilt caused by Verticillium dahliae is a serious vascular disease in cotton (Gossypium spp.). V. dahliae induces the expression of the CAROTENOID CLEAVAGE DIOXYGENASE 7 (GauCCD7) gene involved in strigolactone (SL) biosynthesis in Gossypium australe, suggesting a role for SLs in Verticillium wilt resistance. We found that the SL analog rac-GR24 enhanced while the SL biosynthesis inhibitor TIS108 decreased cotton resistance to Verticillium wilt. Knock-down of GbCCD7 and GbCCD8b genes in island cotton (Gossypium barbadense) decreased resistance, whereas overexpression of GbCCD8b in upland cotton (Gossypium hirsutum) increased resistance to Verticillium wilt. Additionally, Arabidopsis (Arabidopsis thaliana) SL mutants defective in CCD7 and CCD8 putative orthologs were susceptible, whereas both Arabidopsis GbCCD7- and GbCCD8b-overexpressing plants were more resistant to Verticillium wilt than wild-type (WT) plants. Transcriptome analyses showed that several genes related to the jasmonic acid (JA)- and abscisic acid (ABA)-signaling pathways, such as MYELOCYTOMATOSIS 2 (GbMYC2) and ABA-INSENSITIVE 5, respectively, were up-regulated in the roots of WT cotton plants in responses to rac-GR24 and V. dahliae infection but down-regulated in the roots of both GbCCD7- and GbCCD8b-silenced cotton plants. Furthermore, GbMYC2 suppressed the expression of GbCCD7 and GbCCD8b by binding to their promoters, which might regulate the homeostasis of SLs in cotton through a negative feedback loop. We also found that GbCCD7- and GbCCD8b-silenced cotton plants were impaired in V. dahliae-induced reactive oxygen species (ROS) accumulation. Taken together, our results suggest that SLs positively regulate cotton resistance to Verticillium wilt through crosstalk with the JA and ABA-signaling pathways and by inducing ROS accumulation.
ESTHER : Yi_2023_Plant.Physiol__
PubMedSearch : Yi_2023_Plant.Physiol__
PubMedID: 36718522

Title : Serum levels of IL-12, IL-18, and IL-21 are indicators of viral load in patients chronically infected with HBV - Zhou_2022_Braz.J.Med.Biol.Res_55_e12320
Author(s) : Zhou F , Xiong H , Zhen S , Chen A , Huang M , Luo Y
Ref : Brazilian Journal of Medical & Biological Research , 55 :e12320 , 2022
Abstract : This study explored the correlation between interleukins (IL)-12, IL-18, and IL-21 and the viral load in patients with chronic hepatitis B virus (HBV). A total of 142 patients were consecutively enrolled. All were hepatitis B surface antigen (HBsAg)-positive for >6 months and did not receive drug therapy. An ELISA kit was used to test the IL-12, IL-18, IL-21, and acetylcholinesterase (AchE) levels in serum samples from chronic HBV patients and healthy control groups. The amounts of IL-12 and IL-18 were highest in the 5-6log10 (high viral load) group, while IL-21 was highest in the 3-4log10 (low viral load) group. Also, the IL-21 amount was decreased in the HBsAg+/HBeAg/HBcAb+ group, and IL-12, IL-18, and IL-21 were decreased in the normal alanine aminotransferase (ALT) group compared to the abnormal ALT group. These data suggested that IL-12, IL-18, and IL-21 serum levels were positively correlated with disease progression and could reflect disease severity for different HBV-DNA loads. Detection of IL-12, IL-18, and IL-21 levels was found to be helpful for evaluating the degree of liver cell damage and predicting the progression of hepatitis.
ESTHER : Zhou_2022_Braz.J.Med.Biol.Res_55_e12320
PubMedSearch : Zhou_2022_Braz.J.Med.Biol.Res_55_e12320
PubMedID: 36383803

Title : One-Step Synthesis of 4-Octyl Itaconate through the Structure Control of Lipase - Liu_2021_J.Org.Chem__
Author(s) : Liu C , Wang Y , Liu J , Chen A , Xu J , Zhang R , Wang F , Nie K , Deng L
Ref : J Org Chem , : , 2021
Abstract : 4-Octyl itaconate is a novel antiviral and immunoregulatory small molecule showing great potential in the treatment of various autoimmune diseases and viral infections. It is difficult to selectively esterify the C4 carboxyl group of itaconate acid via one-step direct esterification using chemical catalysts, while the two-step route with itaconic anhydride as an intermediate is environmentally unfriendly and costly. This research investigated the one-step and green synthesis of 4-octyl itaconate through the structure control of lipase, obtaining 4-octyl itaconate with over 98% yield and over 99% selectivity. Multiscale molecular dynamics simulations were applied to investigate the reaction mechanism. The cavity pocket of lipases resulted in a 4-octyl itaconate selectivity by affecting distribution of substrates toward the catalytic site. Toluene could enhance monoesterification in the C4 carboxyl group and contribute to a nearly 100% conversion from itaconate acid into 4-octyl itaconate by adjusting the catalytic microenvironment around the lipase, producing a shrinkage effect on the channel.
ESTHER : Liu_2021_J.Org.Chem__
PubMedSearch : Liu_2021_J.Org.Chem__
PubMedID: 34085515

Title : The overexpression of three cytochrome P450 genes CYP6CY14, CYP6CY22 and CYP6UN1 contributed to metabolic resistance to dinotefuran in melon\/cotton aphid, Aphis gossypii Glover - Chen_2020_Pestic.Biochem.Physiol_167_104601
Author(s) : Chen A , Zhang H , Shan T , Shi X , Gao X
Ref : Pestic Biochem Physiol , 167 :104601 , 2020
Abstract : Dinotefuran, the third-generation neonicotinoid, has been applied against melon/cotton aphid Aphis gossypii Glover in China. The risk of resistance development, cross-resistance pattern and potential resistance mechanism of dinotefuran in A. gossypii were investigated. A dinotefuran-resistant strain of A. gossypii (DinR) with 74.7-fold resistance was established by continuous selection using dinotefuran. The DinR strain showed a medium level of cross resistance to thiamethoxam (15.2-fold), but no cross resistance to imidacloprid. The synergism assay indicated that piperonyl butoxide and triphenyl phosphate showed synergistic effects on dinotefuran toxicity to the DinR strain with a synergistic ratio of 8.3 and 2.5, respectively, while diethyl maleate showed no synergistic effect. The activities of cytochrome P450 monooxygenase and carboxylesterase were significantly higher in DinR strain than in susceptible strain (SS). Moreover, the gene expression results showed that CYP6CY14, CYP6CY22 and CYP6UN1 were significantly overexpressed in DinR strain compared with SS strain. The expression of CYP6CY14 was 5.8-fold higher in DinR strain than in SS strain. Additionally, the transcription of CYP6CY14, CYP6CY22 and CYP6UN1 in A. gossypii showed dose- and time-dependent responses to dinotefuran exposure. Furthermore, knockdown of CYP6CY14, CYP6CY22 and CYP6UN1 via RNA interference (RNAi) significantly increased mortality of A. gossypii, when A. gossypii was treated with dinotefuran. These results demonstrated the overexpression of CYP6CY14, CYP6CY22 and CYP6UN1 contributed to dinotefuran resistance in A. gossypii.
ESTHER : Chen_2020_Pestic.Biochem.Physiol_167_104601
PubMedSearch : Chen_2020_Pestic.Biochem.Physiol_167_104601
PubMedID: 32527429

Title : Cross-resistance and Fitness Cost Analysis of Resistance to Thiamethoxam in Melon and Cotton Aphid (Hemiptera: Aphididae) - Zhang_2020_J.Econ.Entomol__
Author(s) : Zhang H , Chen A , Shan T , Dong W , Shi X , Gao X
Ref : J Econ Entomol , : , 2020
Abstract : The melon/cotton aphid, Aphis gossypii Glover, is a notorious pest in many crops. The neonicotinoid insecticide thiamethoxam is widely used for A. gossypii control. To evaluate thiamethoxam resistance risk, a melon/cotton aphid strain with an extremely high level of resistance to thiamethoxam (>2,325.6-fold) was established after selection with thiamethoxam for 24 generations. Additionally, the cross-resistance pattern to other neonicotinoids and fitness were analyzed. The cross-resistance results showed the thiamethoxam-resistant strain had extremely high levels of cross-resistance against clothianidin (>311.7-fold) and nitenpyram (299.9-fold), high levels of cross-resistance against dinotefuran (142.3-fold) and acetamiprid (76.6-fold), and low cross-resistance against imidacloprid (9.3-fold). Compared with the life table of susceptible strain, the thiamethoxam-resistant strain had a relative fitness of 0.950, with significant decreases in oviposition days and fecundity and prolonged developmental duration. The molecular mechanism for fitness costs was studied by comparing the mRNA expression levels of juvenile hormone acid O-methyltransferase (JHAMT), juvenile hormone-binding protein (JHBP), juvenile hormone epoxide hydrolase (JHEH), ecdysone receptor (EcR), ultraspiracle protein (USP), and Vitellogenin (Vg) in the susceptible and thiamethoxam-resistant strains. Significant overexpression of JHEH and JHBP and downregulation of EcR and Vg expression were found in the thiamethoxam-resistant strain. These results indicate that A. gossypii has the potential to develop extremely high resistance to thiamethoxam after continuous exposure, with a considerable fitness cost and cross-resistance to other neonicotinoids.
ESTHER : Zhang_2020_J.Econ.Entomol__
PubMedSearch : Zhang_2020_J.Econ.Entomol__
PubMedID: 32372079

Title : ASL Metabolically Regulates Tyrosine Hydroxylase in the Nucleus Locus Coeruleus - Lerner_2019_Cell.Rep_29_2144
Author(s) : Lerner S , Anderzhanova E , Verbitsky S , Eilam R , Kuperman Y , Tsoory M , Kuznetsov Y , Brandis A , Mehlman T , Mazkereth R , McCarter R , Segal M , Nagamani SCS , Chen A , Erez A
Ref : Cell Rep , 29 :2144 , 2019
Abstract : Patients with germline mutations in the urea-cycle enzyme argininosuccinate lyase (ASL) are at risk for developing neurobehavioral and cognitive deficits. We find that ASL is prominently expressed in the nucleus locus coeruleus (LC), the central source of norepinephrine. Using natural history data, we show that individuals with ASL deficiency are at risk for developing attention deficits. By generating LC-ASL-conditional knockout (cKO) mice, we further demonstrate altered response to stressful stimuli with increased seizure reactivity in LC-ASL-cKO mice. Depletion of ASL in LC neurons leads to reduced amount and activity of tyrosine hydroxylase (TH) and to decreased catecholamines synthesis, due to decreased nitric oxide (NO) signaling. NO donors normalize catecholamine levels in the LC, seizure sensitivity, and the stress response in LC-ASL-cKO mice. Our data emphasize ASL importance for the metabolic regulation of LC function with translational relevance for ASL deficiency (ASLD) patients as well as for LC-related pathologies.
ESTHER : Lerner_2019_Cell.Rep_29_2144
PubMedSearch : Lerner_2019_Cell.Rep_29_2144
PubMedID: 31747589

Title : A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants - Pilkington_2018_BMC.Genomics_19_257
Author(s) : Pilkington SM , Crowhurst R , Hilario E , Nardozza S , Fraser L , Peng Y , Gunaseelan K , Simpson R , Tahir J , Deroles SC , Templeton K , Luo Z , Davy M , Cheng C , McNeilage M , Scaglione D , Liu Y , Zhang Q , Datson P , De Silva N , Gardiner SE , Bassett H , Chagne D , McCallum J , Dzierzon H , Deng C , Wang YY , Barron L , Manako K , Bowen J , Foster TM , Erridge ZA , Tiffin H , Waite CN , Davies KM , Grierson EP , Laing WA , Kirk R , Chen X , Wood M , Montefiori M , Brummell DA , Schwinn KE , Catanach A , Fullerton C , Li D , Meiyalaghan S , Nieuwenhuizen N , Read N , Prakash R , Hunter D , Zhang H , McKenzie M , Knabel M , Harris A , Allan AC , Gleave A , Chen A , Janssen BJ , Plunkett B , Ampomah-Dwamena C , Voogd C , Leif D , Lafferty D , Souleyre EJF , Varkonyi-Gasic E , Gambi F , Hanley J , Yao JL , Cheung J , David KM , Warren B , Marsh K , Snowden KC , Lin-Wang K , Brian L , Martinez-Sanchez M , Wang M , Ileperuma N , Macnee N , Campin R , McAtee P , Drummond RSM , Espley RV , Ireland HS , Wu R , Atkinson RG , Karunairetnam S , Bulley S , Chunkath S , Hanley Z , Storey R , Thrimawithana AH , Thomson S , David C , Testolin R , Huang H , Hellens RP , Schaffer RJ
Ref : BMC Genomics , 19 :257 , 2018
Abstract : BACKGROUND: Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. RESULTS: A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. CONCLUSIONS: Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.
ESTHER : Pilkington_2018_BMC.Genomics_19_257
PubMedSearch : Pilkington_2018_BMC.Genomics_19_257
PubMedID: 29661190
Gene_locus related to this paper: actde-CXE3 , actde-CXE5 , actch-a0a2r6p9v4 , actch-a0a2r6phk8 , actch-a0a2r6pty2 , actch-q0zpu6 , actcc-a0a2r6q553 , actcc-a0a2r6quq2 , actcc-a0a2r6q2m9 , actcc-a0a2r6q2n7 , actcc-a0a2r6ru97 , actcc-a0a2r6r3e8 , actcc-a0a2r6qy24 , actcc-a0a2r6pzy5 , actcc-a0a2r6p5n3 , actcc-a0a2r6qdp0 , actcc-a0a2r6qgs9

Title : Urinary organophosphate insecticide metabolite concentrations during pregnancy and children's interpersonal, communication, repetitive, and stereotypic behaviors at 8 years of age: The home study - Millenson_2017_Environ.Res_157_9
Author(s) : Millenson ME , Braun JM , Calafat AM , Barr DB , Huang YT , Chen A , Lanphear BP , Yolton K
Ref : Environ Research , 157 :9 , 2017
Abstract : BACKGROUND: Prenatal exposure to organophosphate insecticides may be associated with autism spectrum disorders and related behaviors. This association may be modified by single nucleotide polymorphisms in the paraoxonase (PON1) enzyme. OBJECTIVE: We examined the relationship of prenatal organophosphate insecticide biomarkers with reciprocal social, repetitive, and stereotypic behaviors in 8-year old children, and modification of this relationship by child PON1 polymorphisms.
METHODS: Among 224 pregnant women, we quantified concentrations of six nonspecific dialkyl phosphate (DAP) metabolites of organophosphate insecticides in two urine samples collected at ~16 and ~26 weeks gestation. When children were eight years old, we administered the Social Responsiveness Scale (SRS), a continuous measure of various dimensions of interpersonal behavior, communication, and repetitive/stereotypic behaviors. We estimated the association between a 10-fold increase in the sum of six DAP concentrations (SigmaDAP) and SRS scores. We examined whether child PON1192 and PON1-108 genotypes modified this association.
RESULTS: After covariate adjustment, SigmaDAP concentrations were not associated with SRS scores [beta=-1.2; 95% confidence interval (CI): -4.0, 1.6]. Among children with the PON1-108TT genotype, SigmaDAP concentrations were associated with 2.5-point higher (95% CI: -4.9, 9.8) SRS scores; however, the association was not different from the 1.8-point decrease (95% CI: -5.8, 2.2) among children with PON1-108CT/CC genotypes (SigmaDAP x PON1-108 p-value =0.54). The association between SigmaDAP concentrations and SRS scores was not modified by PON1192 (SigmaDAP x PON1192 p-value =0.89).
CONCLUSIONS: In this cohort, prenatal urinary DAP concentrations were not associated with children's social behaviors; these associations were not modified by child PON1 genotype.
ESTHER : Millenson_2017_Environ.Res_157_9
PubMedSearch : Millenson_2017_Environ.Res_157_9
PubMedID: 28501654

Title : Perilipin 5 restores the formation of lipid droplets in activated hepatic stellate cells and inhibits their activation - Lin_2016_Lab.Invest_96_791
Author(s) : Lin J , Chen A
Ref : Lab Invest , 96 :791 , 2016
Abstract : Hepatic stellate cells (HSC) are major effectors during hepatic fibrogenesis. The activation of HSC is coupled to the loss of lipid droplets (LDs), which are specialized organelles composed of neutral lipids surrounded by perilipins. LDs have emerged as a focal point of interest in understanding the metabolic regulation of intrahepatic lipids during lipid-mediated liver fibrogenesis. Perilipin 5 (Plin5) is a newly identified LD protein in the perilipin family, which plays a key role in regulating aspects of intracellular trafficking, signaling, and cytoskeletal organization in hepatocytes. Recent work in Plin5 knockout mice suggests a role in high fat diet-induced hepatic lipotoxicity. The current report is to evaluate the impact of Plin5 on HSC activation and to elucidate the underlying mechanisms. We now show that high fat diet-induced liver fibrosis is accompanied by an approximate 75% reduction in Plin5 in HSC, and that spontaneous activation of primary HSC produces temporally coincident loss of Plin5 expression and LD depletion. As modulating lipid content in HSC is a suggested strategy for inhibition of HSC activation and treatment of hepatic fibrosis, we asked whether exogenous Plin5 expression in primary HSC would reverse the activation phenotype and promote LD formation. Recombinant lentiviral Plin5 expression in primary mouse HSC restored the formation of LDs, increased lipid content by inducing expression of pro-lipogenic genes and suppressing expression of pro-lipolytic genes, and suppressed HSC activation (~two fold reduction in expression of procollagen and alpha-smooth muscle actin, two unique biomarkers for activated HSC). In addition, the expression of exogenous Plin5 in HSC attenuated cellular oxidative stress by reducing cellular reactive oxygen species, elevating cellular glutathione, and inducing gene expression of glutamate-cysteine ligase. Taken together, our results indicate that expression of Plin5 plays a critical role in the formation of LDs, the elevation of lipid content in HSC, and the inhibition of the activation of HSC.
ESTHER : Lin_2016_Lab.Invest_96_791
PubMedSearch : Lin_2016_Lab.Invest_96_791
PubMedID: 27135793

Title : Enriched environment improves post-stroke cognitive impairment in mice by potential regulation of acetylation homeostasis in cholinergic circuits - Wang_2016_Brain.Res_1650_232
Author(s) : Wang X , Chen A , Wu H , Ye M , Cheng H , Jiang X , Zhang X , Wu D , Gu X , Shen F , Shan C , Yu D
Ref : Brain Research , 1650 :232 , 2016
Abstract : Post-stroke cognitive impairment (PSCI), commonly seen in the clinical practice, is a major factor impeding patient rehabilitation. Enriched environment (EE) intervention is a simple and effective way to improve cognitive impairment, partially due to the rebalancing of the basal forebrain-hippocampus cholinergic signaling pathway. Epigenetic changes have been identified in many cognitive disorders. However, studies on the effects of EE on epigenetic regulation of cholinergic circuits in PSCI animal models have not yet been reported. In this study, we established a photothrombotic mouse PSCI model and showed that after EE intervention, mice with PSCI had significantly improved water maze performance, better induction of hippocampal long-term potentiation (LTP), enhanced function of the basal forebrain-hippocampus cholinergic circuits of contralateral side of stroke and relatively balanced acetylation homeostasis compared to those of PSCI mice in standard environments (SE). In addition, PSCI mice in EE expressed much higher levels of p-CREB and CBP than in SE, and the chromatins bound to M-type promoter of ChAT gene were more acetylated. These results demonstrate that EE plays an important role in the improvement of PSCI and the underlying mechanism may involve in the acetylation of histones bound to the ChAT gene promoter in cholinergic circuits.
ESTHER : Wang_2016_Brain.Res_1650_232
PubMedSearch : Wang_2016_Brain.Res_1650_232
PubMedID: 27637156

Title : Concentration-response relationship of the alpha7 nicotinic acetylcholine receptor agonist FRM-17874 across multiple in vitro and in vivo assays - Stoiljkovic_2015_Biochem.Pharmacol_97(4)_576
Author(s) : Stoiljkovic M , Leventhal L , Chen A , Chen T , Driscoll R , Flood D , Hodgdon H , Hurst R , Nagy D , Piser T , Tang C , Townsend M , Tu Z , Bertrand D , Koenig G , Hajos M
Ref : Biochemical Pharmacology , 97 :576 , 2015
Abstract : Pharmacological activation of alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) may improve cognition in schizophrenia and Alzheimer's disease. The present studies describe an integrated pharmacological analysis of the effects of FRM-17874, an analogue of encenicline, on alpha7 nAChRs in vitro and in behavioral and neurophysiological assays relevant to cognitive function. FRM-17874 demonstrated high affinity binding to human alpha7 nAChRs, displacing [(3)H]-methyllacaconitine (Ki=4.3nM). In Xenopus laevis oocytes expressing human alpha7 nAChRs, FRM-17874 acted as an agonist, evoking inward currents with an EC50 of 0.42muM. Lower concentrations of FRM-17874 (0.01-3nM) elicited no detectable current, but primed receptors to respond to sub-maximal concentrations of acetylcholine. FRM-17874 improved novel object recognition in rats, and enhanced memory acquisition and reversal learning in the mouse water T-maze. Neurophysiological correlates of cognitive effects of drug treatment, such as synaptic transmission, long-term potentiation, and hippocampal theta oscillation were also evaluated. Modulation of synaptic transmission and plasticity was observed in rat hippocampal slices at concentrations of 3.2 and 5nM. FRM-17874 showed a dose-dependent facilitation of stimulation-induced hippocampal theta oscillation in mice and rats. The FRM-17874 unbound brain concentration-response relationship for increased theta oscillation power was similar in both species, exhibited a biphasic pattern peaking around 3nM, and overlapped with active doses and exposures observed in cognition assays. In summary, behavioral and neurophysiological assays indicate a bell-shaped effective concentration range and this report represents the first attempt to explain the concentration-response function of alpha7 nAChR-mediated pro-cognitive effects in terms of receptor pharmacology.
ESTHER : Stoiljkovic_2015_Biochem.Pharmacol_97(4)_576
PubMedSearch : Stoiljkovic_2015_Biochem.Pharmacol_97(4)_576
PubMedID: 26206187

Title : Genome Sequence of Halomonas sp. Strain MCTG39a, a Hydrocarbon-Degrading and Exopolymeric Substance-Producing Bacterium - Gutierrez_2015_Genome.Announc_3_e00793
Author(s) : Gutierrez T , Whitman WB , Huntemann M , Copeland A , Chen A , Kyrpides N , Markowitz V , Pillay M , Ivanova N , Mikhailova N , Ovchinnikova G , Andersen E , Pati A , Stamatis D , Reddy TB , Ngan CY , Chovatia M , Daum C , Shapiro N , Cantor MN , Woyke T
Ref : Genome Announc , 3 : , 2015
Abstract : Halomonas sp. strain MCTG39a was isolated from coastal sea surface water based on its ability to utilize n-hexadecane. During growth in marine medium the strain produces an amphiphilic exopolymeric substance (EPS) amended with glucose, which emulsifies a variety of oil hydrocarbon substrates. Here, we present the genome sequence of this strain, which is 4,979,193 bp with 4,614 genes and an average G+C content of 55.0%.
ESTHER : Gutierrez_2015_Genome.Announc_3_e00793
PubMedSearch : Gutierrez_2015_Genome.Announc_3_e00793
PubMedID: 26184945

Title : Complete Genome of Enterobacteriaceae Bacterium Strain FGI 57, a Strain Associated with Leaf-Cutter Ant Fungus Gardens - Aylward_2013_Genome.Announc_1_E00238
Author(s) : Aylward FO , Tremmel DM , Bruce DC , Chain P , Chen A , Walston Davenport K , Detter C , Han CS , Han J , Huntemann M , Ivanova NN , Kyrpides NC , Markowitz V , Mavrommatis K , Nolan M , Pagani I , Pati A , Pitluck S , Deshpande S , Goodwin L , Woyke T , Currie CR
Ref : Genome Announc , 1 : , 2013
Abstract : The Enterobacteriaceae bacterium strain FGI 57 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its single 4.76-Mbp chromosome will shed light on community dynamics and plant biomass degradation in ant fungus gardens.
ESTHER : Aylward_2013_Genome.Announc_1_E00238
PubMedSearch : Aylward_2013_Genome.Announc_1_E00238
PubMedID: 23469353
Gene_locus related to this paper: entbf-l0m2y4 , ecolx-e0qx45 , entbf-l0lyj5 , entbf-l0m5k3 , entbf-l0m5q3

Title : The genome of the hydatid tapeworm Echinococcus granulosus - Zheng_2013_Nat.Genet_45_1168
Author(s) : Zheng H , Zhang W , Zhang L , Zhang Z , Li J , Lu G , Zhu Y , Wang Y , Huang Y , Liu J , Kang H , Chen J , Wang L , Chen A , Yu S , Gao Z , Jin L , Gu W , Wang Z , Zhao L , Shi B , Wen H , Lin R , Jones MK , Brejova B , Vinar T , Zhao G , McManus DP , Chen Z , Zhou Y , Wang S
Ref : Nat Genet , 45 :1168 , 2013
Abstract : Cystic echinococcosis (hydatid disease), caused by the tapeworm E. granulosus, is responsible for considerable human morbidity and mortality. This cosmopolitan disease is difficult to diagnose, treat and control. We present a draft genomic sequence for the worm comprising 151.6 Mb encoding 11,325 genes. Comparisons with the genome sequences from other taxa show that E. granulosus has acquired a spectrum of genes, including the EgAgB family, whose products are secreted by the parasite to interact and redirect host immune responses. We also find that genes in bile salt pathways may control the bidirectional development of E. granulosus, and sequence differences in the calcium channel subunit EgCavbeta1 may be associated with praziquantel sensitivity. Our study offers insights into host interaction, nutrient acquisition, strobilization, reproduction, immune evasion and maturation in the parasite and provides a platform to facilitate the development of new, effective treatments and interventions for echinococcosis control.
ESTHER : Zheng_2013_Nat.Genet_45_1168
PubMedSearch : Zheng_2013_Nat.Genet_45_1168
PubMedID: 24013640
Gene_locus related to this paper: echgr-k4epc5 , echmu-u6hbw4 , echgr-w6ugl0 , echgr-w6u7y4 , echgr-w6vaq5 , echgr-a0a068wxj3 , echgr-a0a068wgw1 , echgr-a0a068wl60

Title : Complete genome sequence of Coriobacterium glomerans type strain (PW2(T)) from the midgut of Pyrrhocoris apterus L. (red soldier bug) - Stackebrandt_2013_Stand.Genomic.Sci_8_15
Author(s) : Stackebrandt E , Zeytun A , Lapidus A , Nolan M , Lucas S , Hammon N , Deshpande S , Cheng JF , Tapia R , Goodwin LA , Pitluck S , Liolios K , Pagani I , Ivanova N , Mavromatis K , Mikhailova N , Huntemann M , Pati A , Chen A , Palaniappan K , Chang YJ , Land M , Hauser L , Rohde M , Pukall R , Goker M , Detter JC , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 8 :15 , 2013
Abstract : Coriobacterium glomerans Haas and Konig 1988, is the only species of the genus Coriobacterium, family Coriobacteriaceae, order Coriobacteriales, phylum Actinobacteria. The bacterium thrives as an endosymbiont of pyrrhocorid bugs, i.e. the red fire bug Pyrrhocoris apterus L. The rationale for sequencing the genome of strain PW2(T) is its endosymbiotic life style which is rare among members of Actinobacteria. Here we describe the features of this symbiont, together with the complete genome sequence and its annotation. This is the first complete genome sequence of a member of the genus Coriobacterium and the sixth member of the order Coriobacteriales for which complete genome sequences are now available. The 2,115,681 bp long single replicon genome with its 1,804 protein-coding and 54 RNA genes is part of the G enomic E ncyclopedia of Bacteria and Archaea project.
ESTHER : Stackebrandt_2013_Stand.Genomic.Sci_8_15
PubMedSearch : Stackebrandt_2013_Stand.Genomic.Sci_8_15
PubMedID: 23961308
Gene_locus related to this paper: corgp-f2n8w7

Title : Complete Genome of Serratia sp. Strain FGI 94, a Strain Associated with Leaf-Cutter Ant Fungus Gardens - Aylward_2013_Genome.Announc_1_e0023912
Author(s) : Aylward FO , Tremmel DM , Starrett GJ , Bruce DC , Chain P , Chen A , Davenport KW , Detter C , Han CS , Han J , Huntemann M , Ivanova NN , Kyrpides NC , Markowitz V , Mavrommatis K , Nolan M , Pagani I , Pati A , Pitluck S , Teshima H , Deshpande S , Goodwin L , Woyke T , Currie CR
Ref : Genome Announc , 1 :e0023912 , 2013
Abstract : Serratia sp. strain FGI 94 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its 4.86-Mbp chromosome will help advance our knowledge of symbiotic interactions and plant biomass degradation in this ancient ant-fungus mutualism.
ESTHER : Aylward_2013_Genome.Announc_1_e0023912
PubMedSearch : Aylward_2013_Genome.Announc_1_e0023912
PubMedID: 23516234
Gene_locus related to this paper: serma-l0mn97 , serma-l0mh84 , serma-l0mif0

Title : Draft genome sequence of Frankia sp. strain CN3, an atypical, noninfective (Nod-) ineffective (Fix-) isolate from Coriaria nepalensis - Ghodhbane-Gtari_2013_Genome.Announc_1_e0008513
Author(s) : Ghodhbane-Gtari F , Beauchemin N , Bruce D , Chain P , Chen A , Walston Davenport K , Deshpande S , Detter C , Furnholm T , Goodwin L , Gtari M , Han C , Han J , Huntemann M , Ivanova N , Kyrpides N , Land ML , Markowitz V , Mavrommatis K , Nolan M , Nouioui I , Pagani I , Pati A , Pitluck S , Santos CL , Sen A , Sur S , Szeto E , Tavares F , Teshima H , Thakur S , Wall L , Woyke T , Tisa LS
Ref : Genome Announc , 1 :e0008513 , 2013
Abstract : We report here the genome sequence of Frankia sp. strain CN3, which was isolated from Coriaria nepalensis. This genome sequence is the first from the fourth lineage of Frankia, strains of which are unable to reinfect actinorhizal plants. At 10 Mb, it represents the largest Frankia genome sequenced to date.
ESTHER : Ghodhbane-Gtari_2013_Genome.Announc_1_e0008513
PubMedSearch : Ghodhbane-Gtari_2013_Genome.Announc_1_e0008513
PubMedID: 23516212
Gene_locus related to this paper: 9acto-g6hh93

Title : Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z-7692(T)) from the alkaline Lake Magadi in the East African Rift - Liolos_2013_Stand.Genomic.Sci_8_165
Author(s) : Liolos K , Abt B , Scheuner C , Teshima H , Held B , Lapidus A , Nolan M , Lucas S , Deshpande S , Cheng JF , Tapia R , Goodwin LA , Pitluck S , Pagani I , Ivanova N , Mavromatis K , Mikhailova N , Huntemann M , Pati A , Chen A , Palaniappan K , Land M , Rohde M , Tindall BJ , Detter JC , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Woyke T , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 8 :165 , 2013
Abstract : Spirochaeta africana Zhilina et al. 1996 is an anaerobic, aerotolerant, spiral-shaped bacterium that is motile via periplasmic flagella. The type strain of the species, Z-7692(T), was isolated in 1993 or earlier from a bacterial bloom in the brine under the trona layer in a shallow lagoon of the alkaline equatorial Lake Magadi in Kenya. Here we describe the features of this organism, together with the complete genome sequence, and annotation. Considering the pending reclassification of S. caldaria to the genus Treponema, S. africana is only the second 'true' member of the genus Spirochaeta with a genome-sequenced type strain to be published. The 3,285,855 bp long genome of strain Z-7692(T) with its 2,817 protein-coding and 57 RNA genes is a part of the G enomic E ncyclopedia of B acteria and A rchaea project.
ESTHER : Liolos_2013_Stand.Genomic.Sci_8_165
PubMedSearch : Liolos_2013_Stand.Genomic.Sci_8_165
PubMedID: 23991249
Gene_locus related to this paper: spiaz-h9uj53

Title : Complete genome sequence of Dehalobacter restrictus PER-K23(T.) - Kruse_2013_Stand.Genomic.Sci_8_375
Author(s) : Kruse T , Maillard J , Goodwin L , Woyke T , Teshima H , Bruce D , Detter C , Tapia R , Han C , Huntemann M , Wei CL , Han J , Chen A , Kyrpides N , Szeto E , Markowitz V , Ivanova N , Pagani I , Pati A , Pitluck S , Nolan M , Holliger C , Smidt H
Ref : Stand Genomic Sci , 8 :375 , 2013
Abstract : Dehalobacter restrictus strain PER-K23 (DSM 9455) is the type strain of the species Dehalobacter restrictus. D. restrictus strain PER-K23 grows by organohalide respiration, coupling the oxidation of H2 to the reductive dechlorination of tetra- or trichloroethene. Growth has not been observed with any other electron donor or acceptor, nor has fermentative growth been shown. Here we introduce the first full genome of a pure culture within the genus Dehalobacter. The 2,943,336 bp long genome contains 2,826 protein coding and 82 RNA genes, including 5 16S rRNA genes. Interestingly, the genome contains 25 predicted reductive dehalogenase genes, the majority of which appear to be full length. The reductive dehalogenase genes are mainly located in two clusters, suggesting a much larger potential for organohalide respiration than previously anticipated.
ESTHER : Kruse_2013_Stand.Genomic.Sci_8_375
PubMedSearch : Kruse_2013_Stand.Genomic.Sci_8_375
PubMedID: 24501624
Gene_locus related to this paper: 9firm-w0ejt1 , 9firm-w0ekb3

Title : Genome sequence of the Leisingera aquimarina type strain (DSM 24565(T)), a member of the marine Roseobacter clade rich in extrachromosomal elements - Riedel_2013_Stand.Genomic.Sci_8_389
Author(s) : Riedel T , Teshima H , Petersen J , Fiebig A , Davenport K , Daligault H , Erkkila T , Gu W , Munk C , Xu Y , Chen A , Pati A , Ivanova N , Goodwin LA , Chain P , Detter JC , Rohde M , Gronow S , Kyrpides NC , Woyke T , Goker M , Brinkhoff T , Klenk HP
Ref : Stand Genomic Sci , 8 :389 , 2013
Abstract : Leisingera aquimarina Vandecandelaere et al. 2008 is a member of the genomically well characterized Roseobacter clade within the family Rhodobacteraceae. Representatives of the marine Roseobacter clade are metabolically versatile and involved in carbon fixation and biogeochemical processes. They form a physiologically heterogeneous group, found predominantly in coastal or polar waters, especially in symbiosis with algae, in microbial mats, in sediments or associated with invertebrates. Here we describe the features of L. aquimarina DSM 24565(T) together with the permanent-draft genome sequence and annotation. The 5,344,253 bp long genome consists of one chromosome and an unusually high number of seven extrachromosomal elements and contains 5,129 protein-coding and 89 RNA genes. It was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2010 and of the activities of the Transregional Collaborative Research Centre 51 funded by the German Research Foundation (DFG).
ESTHER : Riedel_2013_Stand.Genomic.Sci_8_389
PubMedSearch : Riedel_2013_Stand.Genomic.Sci_8_389
PubMedID: 24501625

Title : Whole Genome Sequencing of Thermus oshimai JL-2 and Thermus thermophilus JL-18, Incomplete Denitrifiers from the United States Great Basin - Murugapiran_2013_Genome.Announc_1_e00106
Author(s) : Murugapiran SK , Huntemann M , Wei CL , Han J , Detter JC , Han CS , Erkkila TH , Teshima H , Chen A , Kyrpides N , Mavrommatis K , Markowitz V , Szeto E , Ivanova N , Pagani I , Lam J , McDonald AI , Dodsworth JA , Pati A , Goodwin L , Peters L , Pitluck S , Woyke T , Hedlund BP
Ref : Genome Announc , 1 : , 2013
Abstract : The strains Thermus oshimai JL-2 and Thermus thermophilus JL-18 each have a circular chromosome, 2.07 Mb and 1.9 Mb in size, respectively, and each has two plasmids ranging from 0.27 Mb to 57.2 kb. The megaplasmid of each strain contains a gene cluster for the reduction of nitrate to nitrous oxide, consistent with their incomplete denitrification phenotypes.
ESTHER : Murugapiran_2013_Genome.Announc_1_e00106
PubMedSearch : Murugapiran_2013_Genome.Announc_1_e00106
PubMedID: 23405355
Gene_locus related to this paper: thet2-q72hz1 , thet2-q72j75 , theth-TTC1787 , theos-k7r7w9 , theos-k7r725 , theth-h9zpz9 , theos-k7riw9 , theos-k7qw42 , theos-k7r3i4

Title : Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1(T)), reclassification of Spirochaeta caldaria, Spirochaeta stenostrepta, and Spirochaeta zuelzerae in the genus Treponema as Treponema caldaria comb. nov., Treponema stenostrepta comb. nov., and Treponema zuelzerae comb. nov., and emendation of the genus Treponema - Abt_2013_Stand.Genomic.Sci_8_88
Author(s) : Abt B , Goker M , Scheuner C , Han C , Lu M , Misra M , Lapidus A , Nolan M , Lucas S , Hammon N , Deshpande S , Cheng JF , Tapia R , Goodwin LA , Pitluck S , Liolios K , Pagani I , Ivanova N , Mavromatis K , Mikhailova N , Huntemann M , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Jeffries CD , Rohde M , Spring S , Gronow S , Detter JC , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Woyke T , Klenk HP
Ref : Stand Genomic Sci , 8 :88 , 2013
Abstract : Spirochaeta caldaria Pohlschroeder et al. 1995 is an obligately anaerobic, spiral-shaped bacterium that is motile via periplasmic flagella. The type strain, H1(T), was isolated in 1990 from cyanobacterial mat samples collected at a freshwater hot spring in Oregon, USA, and is of interest because it enhances the degradation of cellulose when grown in co-culture with Clostridium thermocellum. Here we provide a taxonomic re-evaluation for S. caldaria based on phylogenetic analyses of 16S rRNA sequences and whole genomes, and propose the reclassification of S. caldaria and two other Spirochaeta species as members of the emended genus Treponema. Whereas genera such as Borrelia and Sphaerochaeta possess well-distinguished genomic features related to their divergent lifestyles, the physiological and functional genomic characteristics of Spirochaeta and Treponema appear to be intermixed and are of little taxonomic value. The 3,239,340 bp long genome of strain H1(T) with its 2,869 protein-coding and 59 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project.
ESTHER : Abt_2013_Stand.Genomic.Sci_8_88
PubMedSearch : Abt_2013_Stand.Genomic.Sci_8_88
PubMedID: 23961314
Gene_locus related to this paper: trech-f8f1l1

Title : Draft genome sequence of Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida - Sen_2013_Genome.Announc_1_e0010313
Author(s) : Sen A , Beauchemin N , Bruce D , Chain P , Chen A , Walston Davenport K , Deshpande S , Detter C , Furnholm T , Ghodbhane-Gtari F , Goodwin L , Gtari M , Han C , Han J , Huntemann M , Ivanova N , Kyrpides N , Land ML , Markowitz V , Mavrommatis K , Nolan M , Nouioui I , Pagani I , Pati A , Pitluck S , Santos CL , Sur S , Szeto E , Tavares F , Teshima H , Thakur S , Wall L , Woyke T , Wishart J , Tisa LS
Ref : Genome Announc , 1 :e0010313 , 2013
Abstract : Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a high-quality draft genome sequence for Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from root nodules of Alnus nitida.
ESTHER : Sen_2013_Genome.Announc_1_e0010313
PubMedSearch : Sen_2013_Genome.Announc_1_e0010313
PubMedID: 23516220
Gene_locus related to this paper: 9acto-i8qvq8 , 9actn-i8qfl2

Title : Genome sequence of the orange-pigmented seawater bacterium Owenweeksia hongkongensis type strain (UST20020801(T)) - Riedel_2012_Stand.Genomic.Sci_7_120
Author(s) : Riedel T , Held B , Nolan M , Lucas S , Lapidus A , Tice H , Del Rio TG , Cheng JF , Han C , Tapia R , Goodwin LA , Pitluck S , Liolios K , Mavromatis K , Pagani I , Ivanova N , Mikhailova N , Pati A , Chen A , Palaniappan K , Rohde M , Tindall BJ , Detter JC , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 7 :120 , 2012
Abstract : Owenweeksia hongkongensis Lau et al. 2005 is the sole member of the monospecific genus Owenweeksia in the family Cryomorphaceae, a poorly characterized family at the genome level thus far. This family comprises seven genera within the class Flavobacteria. Family members are known to be psychrotolerant, rod-shaped and orange pigmented (beta-carotene), typical for Flavobacteria. For growth, seawater and complex organic nutrients are necessary. The genome of O. hongkongensis UST20020801(T) is only the second genome of a member of the family Cryomorphaceae whose sequence has been deciphered. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,000,057 bp long chromosome with its 3,518 protein-coding and 45 RNA genes is a part of the GenomicEncyclopedia ofBacteriaandArchaea project.
ESTHER : Riedel_2012_Stand.Genomic.Sci_7_120
PubMedSearch : Riedel_2012_Stand.Genomic.Sci_7_120
PubMedID: 23450211
Gene_locus related to this paper: owehd-g8r0w8

Title : Genome sequence of the flexirubin-pigmented soil bacterium Niabella soli type strain (JS13-8(T)) - Anderson_2012_Stand.Genomic.Sci_7_210
Author(s) : Anderson I , Munk C , Lapidus A , Nolan M , Lucas S , Tice H , Del Rio TG , Cheng JF , Han C , Tapia R , Goodwin L , Pitluck S , Liolios K , Mavromatis K , Pagani I , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Rohde M , Tindall BJ , Goker M , Detter JC , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Ivanova N
Ref : Stand Genomic Sci , 7 :210 , 2012
Abstract : Niabella soli Weon et al. 2008 is a member of the Chitinophagaceae, a family within the class Sphingobacteriia that is poorly characterized at the genome level, thus far. N. soli strain JS13-8(T) is of interest for its ability to produce a variety of glycosyl hydrolases. The genome of N. soli strain JS13-8(T) is only the second genome sequence of a type strain from the family Chitinophagaceae to be published, and the first one from the genus Niabella. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,697,343 bp long chromosome with its 3,931 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia ofBacteria andArchaea project.
ESTHER : Anderson_2012_Stand.Genomic.Sci_7_210
PubMedSearch : Anderson_2012_Stand.Genomic.Sci_7_210
PubMedID: 23408178

Title : Complete genome sequence of the sulfur compounds oxidizing chemolithoautotroph Sulfuricurvum kujiense type strain (YK-1(T)) - Han_2012_Stand.Genomic.Sci_6_94
Author(s) : Han C , Kotsyurbenko O , Chertkov O , Held B , Lapidus A , Nolan M , Lucas S , Hammon N , Deshpande S , Cheng JF , Tapia R , Goodwin LA , Pitluck S , Liolios K , Pagani I , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Brambilla EM , Rohde M , Spring S , Sikorski J , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Detter JC
Ref : Stand Genomic Sci , 6 :94 , 2012
Abstract : Sulfuricurvum kujiense Kodama and Watanabe 2004 is the type species of the monotypic genus Sulfuricurvum, which belongs to the family Helicobacteraceae in the class Epsilonproteobacteria. The species is of interest because it is frequently found in crude oil and oil sands where it utilizes various reduced sulfur compounds such as elemental sulfur, sulfide and thiosulfate as electron donors. Members of the species do not utilize sugars, organic acids or hydrocarbons as carbon and energy sources. This genome sequence represents the type strain of the only species in the genus Sulfuricurvum. The genome, which consists of a circular chromosome of 2,574,824 bp length and four plasmids of 118,585 bp, 71,513 bp, 51,014 bp, and 3,421 bp length, respectively, harboring a total of 2,879 protein-coding and 61 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Han_2012_Stand.Genomic.Sci_6_94
PubMedSearch : Han_2012_Stand.Genomic.Sci_6_94
PubMedID: 22675602
Gene_locus related to this paper: sulky-e4u307

Title : Highly sensitive and selective immuno-capture\/electrochemical assay of acetylcholinesterase activity in red blood cells: a biomarker of exposure to organophosphorus pesticides and nerve agents - Chen_2012_Environ.Sci.Technol_46_1828
Author(s) : Chen A , Du D , Lin Y
Ref : Environ Sci Technol , 46 :1828 , 2012
Abstract : Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold (MWCNTs-Au) nanocomposites modified screen printed carbon electrode (SPCE), which is used for the immobilization of AChE specific antibody. Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detection of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentrations of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to OP concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposure to OPs.
ESTHER : Chen_2012_Environ.Sci.Technol_46_1828
PubMedSearch : Chen_2012_Environ.Sci.Technol_46_1828
PubMedID: 22208309

Title : Permanent draft genome sequence of the gliding predator Saprospira grandis strain Sa g1 (= HR1) - Mavromatis_2012_Stand.Genomic.Sci_6_210
Author(s) : Mavromatis K , Chertkov O , Lapidus A , Nolan M , Lucas S , Tice H , Del Rio TG , Cheng JF , Han C , Tapia R , Bruce D , Goodwin LA , Pitluck S , Huntemann M , Liolios K , Pagani I , Ivanova N , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Brambilla EM , Rohde M , Spring S , Goker M , Detter JC , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Woyke T
Ref : Stand Genomic Sci , 6 :210 , 2012
Abstract : Saprospira grandis Gross 1911 is a member of the Saprospiraceae, a family in the class 'Sphingobacteria' that remains poorly characterized at the genomic level. The species is known for preying on other marine bacteria via 'ixotrophy'. S. grandis strain Sa g1 was isolated from decaying crab carapace in France and was selected for genome sequencing because of its isolated location in the tree of life. Only one type strain genome has been published so far from the Saprospiraceae, while the sequence of strain Sa g1 represents the second genome to be published from a non-type strain of S. grandis. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,495,250 bp long Improved-High-Quality draft of the genome with its 3,536 protein-coding and 62 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Mavromatis_2012_Stand.Genomic.Sci_6_210
PubMedSearch : Mavromatis_2012_Stand.Genomic.Sci_6_210
PubMedID: 22768364
Gene_locus related to this paper: sapgl-h6kz52 , 9bact-j0p3n9

Title : Genome sequence of the homoacetogenic bacterium Holophaga foetida type strain (TMBS4(T)) - Anderson_2012_Stand.Genomic.Sci_6_174
Author(s) : Anderson I , Held B , Lapidus A , Nolan M , Lucas S , Tice H , Del Rio TG , Cheng JF , Han C , Tapia R , Goodwin LA , Pitluck S , Liolios K , Mavromatis K , Pagani I , Ivanova N , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Brambilla EM , Rohde M , Spring S , Goker M , Detter JC , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 6 :174 , 2012
Abstract : Holophaga foetida Liesack et al. 1995 is a member of the phylum Acidobacteria and is of interest for its ability to anaerobically degrade aromatic compounds and for its production of volatile sulfur compounds through a unique pathway. The genome of H. foetida strain TMBS4(T) is the first to be sequenced for a representative of the class Holophagae. Here we describe the features of this organism, together with the complete genome sequence (improved high quality draft), and annotation. The 4,127,237 bp long chromosome with its 3,615 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Anderson_2012_Stand.Genomic.Sci_6_174
PubMedSearch : Anderson_2012_Stand.Genomic.Sci_6_174
PubMedID: 22768361
Gene_locus related to this paper: 9bact-h1nzy5

Title : Genome sequence of the Antarctic rhodopsins-containing flavobacterium Gillisia limnaea type strain (R-8282(T)) - Riedel_2012_Stand.Genomic.Sci_7_107
Author(s) : Riedel T , Held B , Nolan M , Lucas S , Lapidus A , Tice H , Del Rio TG , Cheng JF , Han C , Tapia R , Goodwin LA , Pitluck S , Liolios K , Mavromatis K , Pagani I , Ivanova N , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Rohde M , Tindall BJ , Detter JC , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Woyke T
Ref : Stand Genomic Sci , 7 :107 , 2012
Abstract : Gillisia limnaea Van Trappen et al. 2004 is the type species of the genus Gillisia, which is a member of the well characterized family Flavobacteriaceae. The genome of G. limnea R-8282(T) is the first sequenced genome (permanent draft) from a type strain of the genus Gillisia. Here we describe the features of this organism, together with the permanent-draft genome sequence and annotation. The 3,966,857 bp long chromosome (two scaffolds) with its 3,569 protein-coding and 51 RNA genes is a part of the GenomicEncyclopedia of Bacteria and Archaea project.
ESTHER : Riedel_2012_Stand.Genomic.Sci_7_107
PubMedSearch : Riedel_2012_Stand.Genomic.Sci_7_107
PubMedID: 23450183
Gene_locus related to this paper: 9flao-h2bu38

Title : Complete genome sequences of Desulfosporosinus orientis DSM765T, Desulfosporosinus youngiae DSM17734T, Desulfosporosinus meridiei DSM13257T, and Desulfosporosinus acidiphilus DSM22704T - Pester_2012_J.Bacteriol_194_6300
Author(s) : Pester M , Brambilla E , Alazard D , Rattei T , Weinmaier T , Han J , Lucas S , Lapidus A , Cheng JF , Goodwin L , Pitluck S , Peters L , Ovchinnikova G , Teshima H , Detter JC , Han CS , Tapia R , Land ML , Hauser L , Kyrpides NC , Ivanova NN , Pagani I , Huntmann M , Wei CL , Davenport KW , Daligault H , Chain PS , Chen A , Mavromatis K , Markowitz V , Szeto E , Mikhailova N , Pati A , Wagner M , Woyke T , Ollivier B , Klenk HP , Spring S , Loy A
Ref : Journal of Bacteriology , 194 :6300 , 2012
Abstract : Desulfosporosinus species are sulfate-reducing bacteria belonging to the Firmicutes. Their genomes will give insights into the genetic repertoire and evolution of sulfate reducers typically thriving in terrestrial environments and able to degrade toluene (Desulfosporosinus youngiae), to reduce Fe(III) (Desulfosporosinus meridiei, Desulfosporosinus orientis), and to grow under acidic conditions (Desulfosporosinus acidiphilus).
ESTHER : Pester_2012_J.Bacteriol_194_6300
PubMedSearch : Pester_2012_J.Bacteriol_194_6300
PubMedID: 23105050
Gene_locus related to this paper: desaj-i4dc82 , desmd-j7j1v2 , desod-g7wg97 , desaj-i4d5q8

Title : Complete genome sequence of the aerobic, heterotroph Marinithermus hydrothermalis type strain (T1(T)) from a deep-sea hydrothermal vent chimney - Copeland_2012_Stand.Genomic.Sci_6_21
Author(s) : Copeland A , Gu W , Yasawong M , Lapidus A , Lucas S , Deshpande S , Pagani I , Tapia R , Cheng JF , Goodwin LA , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Pan C , Brambilla EM , Rohde M , Tindall BJ , Sikorski J , Goker M , Detter JC , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Woyke T
Ref : Stand Genomic Sci , 6 :21 , 2012
Abstract : Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1(T) was the first isolate within the phylum "Thermus-Deinococcus" to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1(T) is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Copeland_2012_Stand.Genomic.Sci_6_21
PubMedSearch : Copeland_2012_Stand.Genomic.Sci_6_21
PubMedID: 22675595
Gene_locus related to this paper: marht-f2nq80

Title : High-quality draft genome sequence of the Opitutaceae bacterium strain TAV1, a symbiont of the wood-feeding termite Reticulitermes flavipes - Isanapong_2012_J.Bacteriol_194_2744
Author(s) : Isanapong J , Goodwin L , Bruce D , Chen A , Detter C , Han J , Han CS , Held B , Huntemann M , Ivanova N , Land ML , Mavromatis K , Nolan M , Pati A , Pennacchio L , Pitluck S , Szeto E , Tapia R , Woyke T , Rodrigues JL
Ref : Journal of Bacteriology , 194 :2744 , 2012
Abstract : Microbial communities in the termite hindgut are essential for degrading plant material. We present the high-quality draft genome sequence of the Opitutaceae bacterium strain TAV1, the first member of the phylum Verrucomicrobia to be isolated from wood-feeding termites. The genomic analysis reveals genes coding for lignocellulosic degradation and nitrogen fixation.
ESTHER : Isanapong_2012_J.Bacteriol_194_2744
PubMedSearch : Isanapong_2012_J.Bacteriol_194_2744
PubMedID: 22535930
Gene_locus related to this paper: 9bact-i6azi1

Title : Complete genome sequence of Haliscomenobacter hydrossis type strain (O) - Daligault_2011_Stand.Genomic.Sci_4_352
Author(s) : Daligault H , Lapidus A , Zeytun A , Nolan M , Lucas S , Del Rio TG , Tice H , Cheng JF , Tapia R , Han C , Goodwin L , Pitluck S , Liolios K , Pagani I , Ivanova N , Huntemann M , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Brambilla EM , Rohde M , Verbarg S , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Woyke T
Ref : Stand Genomic Sci , 4 :352 , 2011
Abstract : Haliscomenobacter hydrossis van Veen et al. 1973 is the type species of the genus Haliscomenobacter, which belongs to order "Sphingobacteriales". The species is of interest because of its isolated phylogenetic location in the tree of life, especially the so far genomically uncharted part of it, and because the organism grows in a thin, hardly visible hyaline sheath. Members of the species were isolated from fresh water of lakes and from ditch water. The genome of H. hydrossis is the first completed genome sequence reported from a member of the family "Saprospiraceae". The 8,771,651 bp long genome with its three plasmids of 92 kbp, 144 kbp and 164 kbp length contains 6,848 protein-coding and 60 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Daligault_2011_Stand.Genomic.Sci_4_352
PubMedSearch : Daligault_2011_Stand.Genomic.Sci_4_352
PubMedID: 21886862
Gene_locus related to this paper: halh1-f4kq83 , halh1-f4kt82 , halh1-f4l3j3 , halh1-f4krm2 , halh1-f4kqu5 , halh1-f4l2w7

Title : Complete genome sequence of Bacteroides helcogenes type strain (P 36-108) - Pati_2011_Stand.Genomic.Sci_4_45
Author(s) : Pati A , Gronow S , Zeytun A , Lapidus A , Nolan M , Hammon N , Deshpande S , Cheng JF , Tapia R , Han C , Goodwin L , Pitluck S , Liolios K , Pagani I , Ivanova N , Mavromatis K , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Detter JC , Brambilla E , Rohde M , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lucas S
Ref : Stand Genomic Sci , 4 :45 , 2011
Abstract : Bacteroides helcogenes Benno et al. 1983 is of interest because of its isolated phylogenetic location and, although it has been found in pig feces and is known to be pathogenic for pigs, occurrence of this bacterium is rare and it does not cause significant damage in intensive animal husbandry. The genome of B. helcogenes P 36-108(T) is already the fifth completed and published type strain genome from the genus Bacteroides in the family Bacteroidaceae. The 3,998,906 bp long genome with its 3,353 protein-coding and 83 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Pati_2011_Stand.Genomic.Sci_4_45
PubMedSearch : Pati_2011_Stand.Genomic.Sci_4_45
PubMedID: 21475586
Gene_locus related to this paper: bact6-e6sny5 , bact6-e6sqv4 , bact6-e6str2 , bact6-e6suh8 , bact6-e6suk4 , bact6-e6sn75

Title : Complete genome sequence of Desulfobulbus propionicus type strain (1pr3) - Pagani_2011_Stand.Genomic.Sci_4_100
Author(s) : Pagani I , Lapidus A , Nolan M , Lucas S , Hammon N , Deshpande S , Cheng JF , Chertkov O , Davenport K , Tapia R , Han C , Goodwin L , Pitluck S , Liolios K , Mavromatis K , Ivanova N , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Detter JC , Brambilla E , Kannan KP , Djao OD , Rohde M , Pukall R , Spring S , Goker M , Sikorski J , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 4 :100 , 2011
Abstract : Desulfobulbus propionicus Widdel 1981 is the type species of the genus Desulfobulbus, which belongs to the family Desulfobulbaceae. The species is of interest because of its great implication in the sulfur cycle in aquatic sediments, its large substrate spectrum and a broad versatility in using various fermentation pathways. The species was the first example of a pure culture known to disproportionate elemental sulfur to sulfate and sulfide. This is the first completed genome sequence of a member of the genus Desulfobulbus and the third published genome sequence from a member of the family Desulfobulbaceae. The 3,851,869 bp long genome with its 3,351 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Pagani_2011_Stand.Genomic.Sci_4_100
PubMedSearch : Pagani_2011_Stand.Genomic.Sci_4_100
PubMedID: 21475592
Gene_locus related to this paper: despd-e8rdj0 , despd-e8rjl1

Title : Complete genome sequence of Cellulophaga algicola type strain (IC166) - Abt_2011_Stand.Genomic.Sci_4_72
Author(s) : Abt B , Lu M , Misra M , Han C , Nolan M , Lucas S , Hammon N , Deshpande S , Cheng JF , Tapia R , Goodwin L , Pitluck S , Liolios K , Pagani I , Ivanova N , Mavromatis K , Ovchinikova G , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Detter JC , Brambilla E , Rohde M , Tindall BJ , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 4 :72 , 2011
Abstract : Cellulophaga algicola Bowman 2000 belongs to the family Flavobacteriaceae within the phylum 'Bacteroidetes' and was isolated from Melosira collected from the Eastern Antarctic coastal zone. The species is of interest because its members produce a wide range of extracellular enzymes capable of degrading proteins and polysaccharides with temperature optima of 20-30 degrees C. This is the first completed genome sequence of a member of the genus Cellulophaga. The 4,888,353 bp long genome with its 4,285 protein-coding and 62 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Abt_2011_Stand.Genomic.Sci_4_72
PubMedSearch : Abt_2011_Stand.Genomic.Sci_4_72
PubMedID: 21475589
Gene_locus related to this paper: celad-e6x4e5 , celad-e6x420 , celad-e6x777 , celad-e6xbe7

Title : Complete genome sequence of Cellulophaga lytica type strain (LIM-21) - Pati_2011_Stand.Genomic.Sci_4_221
Author(s) : Pati A , Abt B , Teshima H , Nolan M , Lapidus A , Lucas S , Hammon N , Deshpande S , Cheng JF , Tapia R , Han C , Goodwin L , Pitluck S , Liolios K , Pagani I , Mavromatis K , Ovchinikova G , Chen A , Palaniappan K , Land M , Hauser L , Jeffries CD , Detter JC , Brambilla EM , Kannan KP , Rohde M , Spring S , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Ivanova N
Ref : Stand Genomic Sci , 4 :221 , 2011
Abstract : Cellulophaga lytica (Lewin 1969) Johansen et al. 1999 is the type species of the genus Cellulophaga, which belongs to the family Flavobacteriaceae within the phylum 'Bacteroidetes' and was isolated from marine beach mud in Limon, Costa Rica. The species is of biotechnological interest because its members produce a wide range of extracellular enzymes capable of degrading proteins and polysaccharides. After the genome sequence of Cellulophaga algicola this is the second completed genome sequence of a member of the genus Cellulophaga. The 3,765,936 bp long genome with its 3,303 protein-coding and 55 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Pati_2011_Stand.Genomic.Sci_4_221
PubMedSearch : Pati_2011_Stand.Genomic.Sci_4_221
PubMedID: 21677859
Gene_locus related to this paper: cellc-f0re62 , cellc-f0rek7 , cellc-f0rf75 , cellc-f0rgt2

Title : Complete genome sequence of Thermomonospora curvata type strain (B9) - Chertkov_2011_Stand.Genomic.Sci_4_13
Author(s) : Chertkov O , Sikorski J , Nolan M , Lapidus A , Lucas S , Del Rio TG , Tice H , Cheng JF , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Djao OD , Land M , Hauser L , Chang YJ , Jeffries CD , Brettin T , Han C , Detter JC , Rohde M , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 4 :13 , 2011
Abstract : Thermomonospora curvata Henssen 1957 is the type species of the genus Thermomonospora. This genus is of interest because members of this clade are sources of new antibiotics, enzymes, and products with pharmacological activity. In addition, members of this genus participate in the active degradation of cellulose. This is the first complete genome sequence of a member of the family Thermomonosporaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,639,016 bp long genome with its 4,985 protein-coding and 76 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Chertkov_2011_Stand.Genomic.Sci_4_13
PubMedSearch : Chertkov_2011_Stand.Genomic.Sci_4_13
PubMedID: 21475583
Gene_locus related to this paper: thecd-d1a9g5 , thecd-d1a2h1 , thecd-d1a1k1 , thecd-d1a1x8 , thecd-d1a2g9 , thecd-d1a3k3 , thecd-d1a4i6 , thecd-d1a7b6 , thecd-d1a8l9 , thecd-d1a9a3 , thecd-d1a9i2 , thecd-d1a9k7 , thecd-d1a765 , thecd-d1a838 , thecd-d1a847 , thecd-d1aah2 , thecd-d1abb9 , thecd-d1abi3 , thecd-d1abk7 , thecd-d1abn5 , thecd-d1acm8 , thecd-d1acs0 , thecd-d1adv4 , thecd-d1adw6 , thecd-d1aef0 , thecd-d1aat0 , thecd-d1aat5 , thecd-d1aat1 , thecd-d1a9g2 , thecd-d1aep2 , thecd-d1a6x9 , thecd-d1ab99

Title : Complete genome sequence of Calditerrivibrio nitroreducens type strain (Yu37-1) - Pitluck_2011_Stand.Genomic.Sci_4_54
Author(s) : Pitluck S , Sikorski J , Zeytun A , Lapidus A , Nolan M , Lucas S , Hammon N , Deshpande S , Cheng JF , Tapia R , Han C , Goodwin L , Liolios K , Pagani I , Ivanova N , Mavromatis K , Pati A , Chen A , Palaniappan K , Hauser L , Chang YJ , Jeffries CD , Detter JC , Brambilla E , Djao OD , Rohde M , Spring S , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Land M
Ref : Stand Genomic Sci , 4 :54 , 2011
Abstract : Calditerrivibrio nitroreducens Iino et al. 2008 is the type species of the genus Calditerrivibrio. The species is of interest because of its important role in the nitrate cycle as nitrate reducer and for its isolated phylogenetic position in the Tree of Life. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the third complete genome sequence of a member of the family Deferribacteraceae. The 2,216,552 bp long genome with its 2,128 protein-coding and 50 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Pitluck_2011_Stand.Genomic.Sci_4_54
PubMedSearch : Pitluck_2011_Stand.Genomic.Sci_4_54
PubMedID: 21475587

Title : Complete genome sequence of Paludibacter propionicigenes type strain (WB4) - Gronow_2011_Stand.Genomic.Sci_4_36
Author(s) : Gronow S , Munk C , Lapidus A , Nolan M , Lucas S , Hammon N , Deshpande S , Cheng JF , Tapia R , Han C , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Brambilla E , Rohde M , Goker M , Detter JC , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 4 :36 , 2011
Abstract : Paludibacter propionicigenes Ueki et al. 2006 is the type species of the genus Paludibacter, which belongs to the family Porphyromonadaceae. The species is of interest because of the position it occupies in the tree of life where it can be found in close proximity to members of the genus Dysgonomonas. This is the first completed genome sequence of a member of the genus Paludibacter and the third sequence from the family Porphyromonadaceae. The 3,685,504 bp long genome with its 3,054 protein-coding and 64 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Gronow_2011_Stand.Genomic.Sci_4_36
PubMedSearch : Gronow_2011_Stand.Genomic.Sci_4_36
PubMedID: 21475585
Gene_locus related to this paper: palpw-e4t0i0 , palpw-e4t5j4 , palpw-e4t287 , palpw-e4t2d5 , palpw-e4t2d6 , palpw-e4t5h4

Title : Complete genome sequence of Weeksella virosa type strain (9751) - Lang_2011_Stand.Genomic.Sci_4_81
Author(s) : Lang E , Teshima H , Lucas S , Lapidus A , Hammon N , Deshpande S , Nolan M , Cheng JF , Pitluck S , Liolios K , Pagani I , Mikhailova N , Ivanova N , Mavromatis K , Pati A , Tapia R , Han C , Goodwin L , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Brambilla EM , Kopitz M , Rohde M , Goker M , Tindall BJ , Detter JC , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 4 :81 , 2011
Abstract : Weeksella virosa Holmes et al. 1987 is the sole member and type species of the genus Weeksella which belongs to the family Flavobacteriaceae of the phylum Bacteroidetes. Twenty-nine isolates, collected from clinical specimens provided the basis for the taxon description. While the species seems to be a saprophyte of the mucous membranes of healthy man and warm-blooded animals a causal relationship with disease has been reported in a few instances. Except for the ability to produce indole and to hydrolyze Tween and proteins such as casein and gelatin, this aerobic, non-motile, non-pigmented bacterial species is metabolically inert in most traditional biochemical tests. The 2,272,954 bp long genome with its 2,105 protein-coding and 76 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Lang_2011_Stand.Genomic.Sci_4_81
PubMedSearch : Lang_2011_Stand.Genomic.Sci_4_81
PubMedID: 21475590
Gene_locus related to this paper: weevc-f0nz59 , weevc-f0p0t6 , weevc-f0p2m6 , weevc-f0p272 , weevc-f0nzv7 , weevc-f0p2m3

Title : Complete genome sequence of Truepera radiovictrix type strain (RQ-24) - Ivanova_2011_Stand.Genomic.Sci_4_91
Author(s) : Ivanova N , Rohde C , Munk C , Nolan M , Lucas S , Del Rio TG , Tice H , Deshpande S , Cheng JF , Tapia R , Han C , Goodwin L , Pitluck S , Liolios K , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Brambilla E , Rohde M , Goker M , Tindall BJ , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 4 :91 , 2011
Abstract : Truepera radiovictrix Albuquerque et al. 2005 is the type species of the genus Truepera within the phylum "Deinococcus/Thermus". T. radiovictrix is of special interest not only because of its isolated phylogenetic location in the order Deinococcales, but also because of its ability to grow under multiple extreme conditions in alkaline, moderately saline, and high temperature habitats. Of particular interest is the fact that, T. radiovictrix is also remarkably resistant to ionizing radiation, a feature it shares with members of the genus Deinococcus. This is the first completed genome sequence of a member of the family Trueperaceae and the fourth type strain genome sequence from a member of the order Deinococcales. The 3,260,398 bp long genome with its 2,994 protein-coding and 52 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Ivanova_2011_Stand.Genomic.Sci_4_91
PubMedSearch : Ivanova_2011_Stand.Genomic.Sci_4_91
PubMedID: 21475591
Gene_locus related to this paper: trurr-d7cxw6

Title : Complete genome sequence of Oceanithermus profundus type strain (506) - Pati_2011_Stand.Genomic.Sci_4_210
Author(s) : Pati A , Zhang X , Lapidus A , Nolan M , Lucas S , Del Rio TG , Tice H , Cheng JF , Tapia R , Han C , Goodwin L , Pitluck S , Liolios K , Pagani I , Ivanova N , Mavromatis K , Chen A , Palaniappan K , Hauser L , Jeffries CD , Brambilla EM , Rohl A , Mwirichia R , Rohde M , Tindall BJ , Sikorski J , Wirth R , Goker M , Woyke T , Detter JC , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Land M
Ref : Stand Genomic Sci , 4 :210 , 2011
Abstract : Oceanithermus profundus Miroshnichenko et al. 2003 is the type species of the genus Oceanithermus, which belongs to the family Thermaceae. The genus currently comprises two species whose members are thermophilic and are able to reduce sulfur compounds and nitrite. The organism is adapted to the salinity of sea water, is able to utilize a broad range of carbohydrates, some proteinaceous substrates, organic acids and alcohols. This is the first completed genome sequence of a member of the genus Oceanithermus and the fourth sequence from the family Thermaceae. The 2,439,291 bp long genome with its 2,391 protein-coding and 54 RNA genes consists of one chromosome and a 135,351 bp long plasmid, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Pati_2011_Stand.Genomic.Sci_4_210
PubMedSearch : Pati_2011_Stand.Genomic.Sci_4_210
PubMedID: 21677858
Gene_locus related to this paper: ocep5-e4u9z9 , ocep5-e4u767

Title : Complete genome sequence of Tsukamurella paurometabola type strain (no. 33) - Munk_2011_Stand.Genomic.Sci_4_342
Author(s) : Munk AC , Lapidus A , Lucas S , Nolan M , Tice H , Cheng JF , Del Rio TG , Goodwin L , Pitluck S , Liolios K , Huntemann M , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Tapia R , Han C , Land M , Hauser L , Chang YJ , Jeffries CD , Brettin T , Yasawong M , Brambilla EM , Rohde M , Sikorski J , Goker M , Detter JC , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 4 :342 , 2011
Abstract : Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The species is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung infection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806 bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Munk_2011_Stand.Genomic.Sci_4_342
PubMedSearch : Munk_2011_Stand.Genomic.Sci_4_342
PubMedID: 21886861
Gene_locus related to this paper: tsupd-d5uxc3

Title : MicroRNA as repressors of stress-induced anxiety: the case of amygdalar miR-34 - Haramati_2011_J.Neurosci_31_14191
Author(s) : Haramati S , Navon I , Issler O , Ezra-Nevo G , Gil S , Zwang R , Hornstein E , Chen A
Ref : Journal of Neuroscience , 31 :14191 , 2011
Abstract : The etiology and pathophysiology of anxiety and mood disorders is linked to inappropriate regulation of the central stress response. To determine whether microRNAs have a functional role in the regulation of the stress response, we inactivated microRNA processing by a lentiviral-induced local ablation of the Dicer gene in the central amygdala (CeA) of adult mice. CeA Dicer ablation induced a robust increase in anxiety-like behavior, whereas manipulated neurons survive and appear to exhibit normal gross morphology in the time period examined. We also observed that acute stress in wild-type mice induced a differential expression profile of microRNAs in the amygdala. Bioinformatic analysis identified putative gene targets for these stress-responsive microRNAs, some of which are known to be associated with stress. One of the prominent stress-induced microRNAs found in this screen, miR-34c, was further confirmed to be upregulated after acute and chronic stressful challenge and downregulated in Dicer ablated cells. Lentivirally mediated overexpression of miR34c specifically within the adult CeA induced anxiolytic behavior after challenge. Of particular interest, one of the miR-34c targets is the stress-related corticotropin releasing factor receptor type 1 (CRFR1) mRNA, regulated via a single evolutionary conserved seed complementary site on its 3' UTR. Additional in vitro studies demonstrated that miR-34c reduces the responsiveness of cells to CRF in neuronal cells endogenously expressing CRFR1. Our results suggest a physiological role for microRNAs in regulating the central stress response and position them as potential targets for treatment of stress-related disorders.
ESTHER : Haramati_2011_J.Neurosci_31_14191
PubMedSearch : Haramati_2011_J.Neurosci_31_14191
PubMedID: 21976504

Title : Complete genome sequence of Bacteroides salanitronis type strain (BL78) - Gronow_2011_Stand.Genomic.Sci_4_191
Author(s) : Gronow S , Held B , Lucas S , Lapidus A , Del Rio TG , Nolan M , Tice H , Deshpande S , Cheng JF , Pitluck S , Liolios K , Pagani I , Ivanova N , Mavromatis K , Pati A , Tapia R , Han C , Goodwin L , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Brambilla EM , Rohde M , Goker M , Detter JC , Woyke T , Bristow J , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Eisen JA
Ref : Stand Genomic Sci , 4 :191 , 2011
Abstract : Bacteroides salanitronis Lan et al. 2006 is a species of the genus Bacteroides, which belongs to the family Bacteroidaceae. The species is of interest because it was isolated from the gut of a chicken and the growing awareness that the anaerobic microflora of the cecum is of benefit for the host and may impact poultry farming. The 4,308,663 bp long genome consists of a 4.24 Mbp chromosome and three plasmids (6 kbp, 19 kbp, 40 kbp) containing 3,737 protein-coding and 101 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Gronow_2011_Stand.Genomic.Sci_4_191
PubMedSearch : Gronow_2011_Stand.Genomic.Sci_4_191
PubMedID: 21677856
Gene_locus related to this paper: bacsh-f0qz10 , bacsh-f0qz83 , bacsh-f0r0m7 , bacsh-f0r0s7 , bacsh-f0r5r9 , bacsh-f0r030 , bacsh-f0r440 , bacsh-f0r869 , bacsh-f0qzb0 , bacsh-f0r6i2

Title : Complete genome sequence of Isosphaera pallida type strain (IS1B) - Goker_2011_Stand.Genomic.Sci_4_63
Author(s) : Goker M , Cleland D , Saunders E , Lapidus A , Nolan M , Lucas S , Hammon N , Deshpande S , Cheng JF , Tapia R , Han C , Goodwin L , Pitluck S , Liolios K , Pagani I , Ivanova N , Mavromatis K , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Detter JC , Beck B , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 4 :63 , 2011
Abstract : Isosphaera pallida (ex Woronichin 1927) Giovannoni et al. 1995 is the type species of the genus Isosphaera. The species is of interest because it was the first heterotrophic bacterium known to be phototactic, and it occupies an isolated phylogenetic position within the Planctomycetaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the genus Isosphaera and the third of a member of the family Planctomycetaceae. The 5,472,964 bp long chromosome and the 56,340 bp long plasmid with a total of 3,763 protein-coding and 60 RNA genes are part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Goker_2011_Stand.Genomic.Sci_4_63
PubMedSearch : Goker_2011_Stand.Genomic.Sci_4_63
PubMedID: 21475588
Gene_locus related to this paper: isopi-e8qx42 , isopi-e8qz61 , isopi-e8r2k6 , isopi-e8r4h2 , isopi-e8r5e4 , isopi-e8r123 , isopi-e8qz30

Title : Complete genome sequence of Arthrobacter phenanthrenivorans type strain (Sphe3) - Kallimanis_2011_Stand.Genomic.Sci_4_123
Author(s) : Kallimanis A , LaButti KM , Lapidus A , Clum A , Lykidis A , Mavromatis K , Pagani I , Liolios K , Ivanova N , Goodwin L , Pitluck S , Chen A , Palaniappan K , Markowitz V , Bristow J , Velentzas AD , Perisynakis A , Ouzounis CC , Kyrpides NC , Koukkou AI , Drainas C
Ref : Stand Genomic Sci , 4 :123 , 2011
Abstract : Arthrobacter phenanthrenivorans is the type species of the genus, and is able to metabolize phenanthrene as a sole source of carbon and energy. A. phenanthrenivorans is an aerobic, non-motile, and Gram-positive bacterium, exhibiting a rod-coccus growth cycle which was originally isolated from a creosote polluted site in Epirus, Greece. Here we describe the features of this organism, together with the complete genome sequence, and annotation.
ESTHER : Kallimanis_2011_Stand.Genomic.Sci_4_123
PubMedSearch : Kallimanis_2011_Stand.Genomic.Sci_4_123
PubMedID: 21677849
Gene_locus related to this paper: artpp-f0m1v4 , artpp-f0m1v5 , artpp-f0m2s7 , artpp-f0m5g1 , artpp-f0m7u7 , artpp-f0m8i0 , artpp-f0m8w6 , artpp-f0m8w7 , artpp-f0m393 , artpp-f0mb51

Title : Non-contiguous finished genome sequence of Bacteroides coprosuis type strain (PC139) - Land_2011_Stand.Genomic.Sci_4_233
Author(s) : Land M , Held B , Gronow S , Abt B , Lucas S , Del Rio TG , Nolan M , Tice H , Cheng JF , Pitluck S , Liolios K , Pagani I , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Tapia R , Han C , Goodwin L , Chen A , Palaniappan K , Hauser L , Brambilla EM , Rohde M , Goker M , Detter JC , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 4 :233 , 2011
Abstract : Bacteroides coprosuis Whitehead et al. 2005 belongs to the genus Bacteroides, which is a member of the family Bacteroidaceae. Members of the genus Bacteroides in general are known as beneficial protectors of animal guts against pathogenic microorganisms, and as contributors to the degradation of complex molecules such as polysaccharides. B. coprosuis itself was isolated from a manure storage pit of a swine facility, but has not yet been found in an animal host. The species is of interest solely because of its isolated phylogenetic location. The genome of B. coprosuis is already the 5(th) sequenced type strain genome from the genus Bacteroides. The 2,991,798 bp long genome with its 2,461 protein-coding and 78 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Land_2011_Stand.Genomic.Sci_4_233
PubMedSearch : Land_2011_Stand.Genomic.Sci_4_233
PubMedID: 21677860
Gene_locus related to this paper: 9bace-f3zpr3 , 9bace-f3zre7

Title : Complete genome sequence of Mahella australiensis type strain (50-1 BON) - Sikorski_2011_Stand.Genomic.Sci_4_331
Author(s) : Sikorski J , Teshima H , Nolan M , Lucas S , Hammon N , Deshpande S , Cheng JF , Pitluck S , Liolios K , Pagani I , Ivanova N , Huntemann M , Mavromatis K , Ovchinikova G , Pati A , Tapia R , Han C , Goodwin L , Chen A , Palaniappan K , Land M , Hauser L , Ngatchou-Djao OD , Rohde M , Pukall R , Spring S , Abt B , Goker M , Detter JC , Woyke T , Bristow J , Markowitz V , Hugenholtz P , Eisen JA , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 4 :331 , 2011
Abstract : Mahella australiensis Bonilla Salinas et al. 2004 is the type species of the genus Mahella, which belongs to the family Thermoanaerobacteraceae. The species is of interest because it differs from other known anaerobic spore-forming bacteria in its G+C content, and in certain phenotypic traits, such as carbon source utilization and relationship to temperature. Moreover, it has been discussed that this species might be an indigenous member of petroleum and oil reservoirs. This is the first completed genome sequence of a member of the genus Mahella and the ninth completed type strain genome sequence from the family Thermoanaerobacteraceae. The 3,135,972 bp long genome with its 2,974 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Sikorski_2011_Stand.Genomic.Sci_4_331
PubMedSearch : Sikorski_2011_Stand.Genomic.Sci_4_331
PubMedID: 21886860
Gene_locus related to this paper: maha5-f3zvv5

Title : Complete genome sequence of Leadbetterella byssophila type strain (4M15) - Abt_2011_Stand.Genomic.Sci_4_2
Author(s) : Abt B , Teshima H , Lucas S , Lapidus A , Del Rio TG , Nolan M , Tice H , Cheng JF , Pitluck S , Liolios K , Pagani I , Ivanova N , Mavromatis K , Pati A , Tapia R , Han C , Goodwin L , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Goker M , Tindall BJ , Detter JC , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 4 :2 , 2011
Abstract : Leadbetterella byssophila Weon et al. 2005 is the type species of the genus Leadbetterella of the family Cytophagaceae in the phylum Bacteroidetes. Members of the phylum Bacteroidetes are widely distributed in nature, especially in aquatic environments. They are of special interest for their ability to degrade complex biopolymers. L. byssophila occupies a rather isolated position in the tree of life and is characterized by its ability to hydrolyze starch and gelatine, but not agar, cellulose or chitin. Here we describe the features of this organism, together with the complete genome sequence, and annotation. L. byssophila is already the 16(th) member of the family Cytophagaceae whose genome has been sequenced. The 4,059,653 bp long single replicon genome with its 3,613 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Abt_2011_Stand.Genomic.Sci_4_2
PubMedSearch : Abt_2011_Stand.Genomic.Sci_4_2
PubMedID: 21475582
Gene_locus related to this paper: leab4-e4rqy5 , leab4-e4ru27 , leab4-e4ruf5 , leab4-e4rul3 , leab4-e4rut6 , leab4-e4rwa2 , leab4-e4rwt5 , leab4-e4rwv8 , leab4-e4ry52 , leab4-e4rzw2

Title : Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21) - Chang_2011_Stand.Genomic.Sci_5_97
Author(s) : Chang YJ , Land M , Hauser L , Chertkov O , Del Rio TG , Nolan M , Copeland A , Tice H , Cheng JF , Lucas S , Han C , Goodwin L , Pitluck S , Ivanova N , Ovchinikova G , Pati A , Chen A , Palaniappan K , Mavromatis K , Liolios K , Brettin T , Fiebig A , Rohde M , Abt B , Goker M , Detter JC , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 5 :97 , 2011
Abstract : Ktedonobacter racemifer corrig. Cavaletti et al. 2007 is the type species of the genus Ktedonobacter, which in turn is the type genus of the family Ktedonobacteraceae, the type family of the order Ktedonobacterales within the class Ktedonobacteria in the phylum 'Chloroflexi'. Although K. racemifer shares some morphological features with the actinobacteria, it is of special interest because it was the first cultivated representative of a deep branching unclassified lineage of otherwise uncultivated environmental phylotypes tentatively located within the phylum 'Chloroflexi'. The aerobic, filamentous, non-motile, spore-forming Gram-positive heterotroph was isolated from soil in Italy. The 13,661,586 bp long non-contiguous finished genome consists of ten contigs and is the first reported genome sequence from a member of the class Ktedonobacteria. With its 11,453 protein-coding and 87 RNA genes, it is the largest prokaryotic genome reported so far. It comprises a large number of over-represented COGs, particularly genes associated with transposons, causing the genetic redundancy within the genome being considerably larger than expected by chance. This work is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Chang_2011_Stand.Genomic.Sci_5_97
PubMedSearch : Chang_2011_Stand.Genomic.Sci_5_97
PubMedID: 22180814
Gene_locus related to this paper: 9chlr-d6ttv1 , 9chlr-d6thn5 , 9chlr-d6tk73 , 9chlr-d6tzq4 , 9chlr-d6tri7 , 9chlr-d6tuz4 , 9chlr-d6tri9 , 9chlr-d6tsy5 , 9chlr-d6u5k6 , 9chlr-d6u6a8 , 9chlr-d6tye6 , 9chlr-d6tpj9

Title : Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae da Costa and Rainey, 2010 - Klenk_2011_Stand.Genomic.Sci_5_121
Author(s) : Klenk HP , Lapidus A , Chertkov O , Copeland A , Del Rio TG , Nolan M , Lucas S , Chen F , Tice H , Cheng JF , Han C , Bruce D , Goodwin L , Pitluck S , Pati A , Ivanova N , Mavromatis K , Daum C , Chen A , Palaniappan K , Chang YJ , Land M , Hauser L , Jeffries CD , Detter JC , Rohde M , Abt B , Pukall R , Goker M , Bristow J , Markowitz V , Hugenholtz P , Eisen JA
Ref : Stand Genomic Sci , 5 :121 , 2011
Abstract : Bacillus tusciae Bonjour & Aragno 1994 is a hydrogen-oxidizing, thermoacidophilic spore former that lives as a facultative chemolithoautotroph in solfataras. Although 16S rRNA gene sequencing was well established at the time of the initial description of the organism, 16S sequence data were not available and the strain was placed into the genus Bacillus based on limited chemotaxonomic information. Despite the now obvious misplacement of strain T2 as a member of the genus Bacillus in 16S rRNA-based phylogenetic trees, the misclassification remained uncorrected for many years, which was likely due to the extremely difficult, analysis-hampering cultivation conditions and poor growth rate of the strain. Here we provide a taxonomic re-evaluation of strain T2T (= DSM 2912 = NBRC 15312) and propose its reclassification as the type strain of a new species, Kyrpidia tusciae, and the type species of the new genus Kyrpidia, which is a sister-group of Alicyclobacillus. The family Alicyclobacillaceae da Costa and Rainey, 2010 is emended. The 3,384,766 bp genome with its 3,323 protein-coding and 78 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Klenk_2011_Stand.Genomic.Sci_5_121
PubMedSearch : Klenk_2011_Stand.Genomic.Sci_5_121
PubMedID: 22180816

Title : Enhancement of consolidated long-term memory by overexpression of protein kinase Mzeta in the neocortex - Shema_2011_Science_331_1207
Author(s) : Shema R , Haramati S , Ron S , Hazvi S , Chen A , Sacktor TC , Dudai Y
Ref : Science , 331 :1207 , 2011
Abstract : Memories are more easily disrupted than improved. Many agents can impair memories during encoding and consolidation. In contrast, the armamentarium of potential memory enhancers is so far rather modest. Moreover, the effect of the latter appears to be limited to enhancing new memories during encoding and the initial period of cellular consolidation, which can last from a few minutes to hours after learning. Here, we report that overexpression in the rat neocortex of the protein kinase C isozyme protein kinase Mzeta (PKMzeta) enhances long-term memory, whereas a dominant negative PKMzeta disrupts memory, even long after memory has been formed.
ESTHER : Shema_2011_Science_331_1207
PubMedSearch : Shema_2011_Science_331_1207
PubMedID: 21385716

Title : Complete genome sequence of Marivirga tractuosa type strain (H-43) - Pagani_2011_Stand.Genomic.Sci_4_154
Author(s) : Pagani I , Chertkov O , Lapidus A , Lucas S , Del Rio TG , Tice H , Copeland A , Cheng JF , Nolan M , Saunders E , Pitluck S , Held B , Goodwin L , Liolios K , Ovchinikova G , Ivanova N , Mavromatis K , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Jeffries CD , Detter JC , Han C , Tapia R , Ngatchou-Djao OD , Rohde M , Goker M , Spring S , Sikorski J , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 4 :154 , 2011
Abstract : Marivirga tractuosa (Lewin 1969) Nedashkovskaya et al. 2010 is the type species of the genus Marivirga, which belongs to the family Flammeovirgaceae. Members of this genus are of interest because of their gliding motility. The species is of interest because representative strains show resistance to several antibiotics, including gentamicin, kanamycin, neomycin, polymixin and streptomycin. This is the first complete genome sequence of a member of the family Flammeovirgaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,511,574 bp long chromosome and the 4,916 bp plasmid with their 3,808 protein-coding and 49 RNA genes are a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Pagani_2011_Stand.Genomic.Sci_4_154
PubMedSearch : Pagani_2011_Stand.Genomic.Sci_4_154
PubMedID: 21677852
Gene_locus related to this paper: marth-e4tt12

Title : Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase - Du_2011_Biosens.Bioelectron_26_3857
Author(s) : Du D , Chen A , Xie Y , Zhang A , Lin Y
Ref : Biosensors & Bioelectronics , 26 :3857 , 2011
Abstract : A new sandwich-like electrochemical immunosensor has been developed for quantification of organophosphorylated acetylcholinesterase (OP-AChE), an exposure biomarker of organophosphate pesticides and nerve agents. Zirconia nanoparticles (ZrO2 NPs) were anchored on a screen printed electrode (SPE) to preferably capture OP-AChE adducts by metal chelation with phospho-moieties, which was selectively recognized by lead phosphate-apoferritin labeled anti-AChE antibody (LPA-anti-AChE). The sandwich-like immunoreactions were performed among ZrO2 NPs, OP-AChE and LPA-anti-AChE to form ZrO2/OP-AChE/LPA-anti-AChE complex and the released lead ions were detected on a disposable SPE. The binding affinity was investigated by both square wave voltammetry (SWV) and quartz crystal microbalance (QCM) measurements. The proposed immunosensor yielded a linear response current over a broad OP-AChE concentrations range from 0.05 nM to 10 nM, with detection limit of 0.02 nM, which has enough sensitivity for monitoring of low-dose exposure to OPs. This method avoids the drawback of unavailability of commercial OP-specific antibody as well as amplifies detection signal by using apoferritin encoded metallic phosphate nanoparticle tags. This nanoparticle-based immunosensor offers a new method for rapid, sensitive, selective and inexpensive quantification of phosphorylated adducts for monitoring of OP pesticides and nerve agents exposures.
ESTHER : Du_2011_Biosens.Bioelectron_26_3857
PubMedSearch : Du_2011_Biosens.Bioelectron_26_3857
PubMedID: 21481580

Title : Complete genome sequence of Desulfarculus baarsii type strain (2st14) - Sun_2010_Stand.Genomic.Sci_3_276
Author(s) : Sun H , Spring S , Lapidus A , Davenport K , Del Rio TG , Tice H , Nolan M , Copeland A , Cheng JF , Lucas S , Tapia R , Goodwin L , Pitluck S , Ivanova N , Pagani I , Mavromatis K , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Hauser L , Chang YJ , Jeffries CD , Detter JC , Han C , Rohde M , Brambilla E , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Land M
Ref : Stand Genomic Sci , 3 :276 , 2010
Abstract : Desulfarculus baarsii (Widdel 1981) Kuever et al. 2006 is the type and only species of the genus Desulfarculus, which represents the family Desulfarculaceae and the order Desulfarculales. This species is a mesophilic sulfate-reducing bacterium with the capability to oxidize acetate and fatty acids of up to 18 carbon atoms completely to CO(2). The acetyl-CoA/CODH (Wood-Ljungdahl) pathway is used by this species for the complete oxidation of carbon sources and autotrophic growth on formate. The type strain 2st14(T) was isolated from a ditch sediment collected near the University of Konstanz, Germany. This is the first completed genome sequence of a member of the order Desulfarculales. The 3,655,731 bp long single replicon genome with its 3,303 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Sun_2010_Stand.Genomic.Sci_3_276
PubMedSearch : Sun_2010_Stand.Genomic.Sci_3_276
PubMedID: 21304732
Gene_locus related to this paper: desb2-e1qfv0 , desb2-e1qiq4 , desb2-e1qd85

Title : Complete genome sequence of Gordonia bronchialis type strain (3410) - Ivanova_2010_Stand.Genomic.Sci_2_19
Author(s) : Ivanova N , Sikorski J , Jando M , Lapidus A , Nolan M , Lucas S , Del Rio TG , Tice H , Copeland A , Cheng JF , Chen F , Bruce D , Goodwin L , Pitluck S , Mavromatis K , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Chain P , Saunders E , Han C , Detter JC , Brettin T , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 2 :19 , 2010
Abstract : Gordonia bronchialis Tsukamura 1971 is the type species of the genus. G. bronchialis is a human-pathogenic organism that has been isolated from a large variety of human tissues. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family Gordoniaceae. The 5,290,012 bp long genome with its 4,944 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Ivanova_2010_Stand.Genomic.Sci_2_19
PubMedSearch : Ivanova_2010_Stand.Genomic.Sci_2_19
PubMedID: 21304674
Gene_locus related to this paper: gorb4-d0lfd8

Title : Complete genome sequence of Methanoplanus petrolearius type strain (SEBR 4847) - Brambilla_2010_Stand.Genomic.Sci_3_203
Author(s) : Brambilla E , Djao OD , Daligault H , Lapidus A , Lucas S , Hammon N , Nolan M , Tice H , Cheng JF , Han C , Tapia R , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Spring S , Sikorski J , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 3 :203 , 2010
Abstract : Methanoplanus petrolearius Ollivier et al. 1998 is the type strain of the genus Methanoplanus. The strain was originally isolated from an offshore oil field from the Gulf of Guinea. Members of the genus Methanoplanus are of interest because they play an important role in the carbon cycle and also because of their significant contribution to the global warming by methane emission in the atmosphere. Like other archaea of the family Methanomicrobiales, the members of the genus Methanoplanus are able to use CO(2) and H(2) as a source of carbon and energy; acetate is required for growth and probably also serves as carbon source. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Methanomicrobiaceae and the sixth complete genome sequence from the order Methanomicrobiales. The 2,843,290 bp long genome with its 2,824 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Brambilla_2010_Stand.Genomic.Sci_3_203
PubMedSearch : Brambilla_2010_Stand.Genomic.Sci_3_203
PubMedID: 21304750
Gene_locus related to this paper: metp4-e1rj85 , metp4-e1rk92 , metp4-e1ree0

Title : Complete genome sequence of Haliangium ochraceum type strain (SMP-2) - Ivanova_2010_Stand.Genomic.Sci_2_96
Author(s) : Ivanova N , Daum C , Lang E , Abt B , Kopitz M , Saunders E , Lapidus A , Lucas S , Glavina Del Rio T , Nolan M , Tice H , Copeland A , Cheng JF , Chen F , Bruce D , Goodwin L , Pitluck S , Mavromatis K , Pati A , Mikhailova N , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Detter JC , Brettin T , Rohde M , Goker M , Bristow J , Markowitz V , Eisen JA , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 2 :96 , 2010
Abstract : Haliangium ochraceum Fudou et al. 2002 is the type species of the genus Haliangium in the myxococcal family 'Haliangiaceae'. Members of the genus Haliangium are the first halophilic myxobacterial taxa described. The cells of the species follow a multicellular lifestyle in highly organized biofilms, called swarms, they decompose bacterial and yeast cells as most myxobacteria do. The fruiting bodies contain particularly small coccoid myxospores. H. ochraceum encodes the first actin homologue identified in a bacterial genome. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the myxococcal suborder Nannocystineae, and the 9,446,314 bp long single replicon genome with its 6,898 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Ivanova_2010_Stand.Genomic.Sci_2_96
PubMedSearch : Ivanova_2010_Stand.Genomic.Sci_2_96
PubMedID: 21304682
Gene_locus related to this paper: halo1-d0lid9 , halo1-d0lm49 , halo1-d0lrn3 , halo1-d0ljm2

Title : Complete genome sequence of Coraliomargarita akajimensis type strain (04OKA010-24) - Mavromatis_2010_Stand.Genomic.Sci_2_290
Author(s) : Mavromatis K , Abt B , Brambilla E , Lapidus A , Copeland A , Deshpande S , Nolan M , Lucas S , Tice H , Cheng JF , Han C , Detter JC , Woyke T , Goodwin L , Pitluck S , Held B , Brettin T , Tapia R , Ivanova N , Mikhailova N , Pati A , Liolios K , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 2 :290 , 2010
Abstract : Coraliomargarita akajimensis Yoon et al. 2007 is the type species of the genus Coraliomargarita. C. akajimensis is an obligately aerobic, Gram-negative, non-spore-forming, non-motile, spherical bacterium that was isolated from seawater surrounding the hard coral Galaxea fascicularis. C. akajimensis is of special interest because of its phylogenetic position in a genomically under-studied area of the bacterial diversity. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Puniceicoccaceae. The 3,750,771 bp long genome with its 3,137 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Mavromatis_2010_Stand.Genomic.Sci_2_290
PubMedSearch : Mavromatis_2010_Stand.Genomic.Sci_2_290
PubMedID: 21304713
Gene_locus related to this paper: corad-d5ehl2 , corad-d5ene2 , corad-d5epb6 , corad-d5epc2 , corad-d5epz5

Title : Complete genome sequence of Conexibacter woesei type strain (ID131577) - Pukall_2010_Stand.Genomic.Sci_2_212
Author(s) : Pukall R , Lapidus A , Glavina Del Rio T , Copeland A , Tice H , Cheng JF , Lucas S , Chen F , Nolan M , Bruce D , Goodwin L , Pitluck S , Mavromatis K , Ivanova N , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Chain P , Meincke L , Sims D , Brettin T , Detter JC , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Kyrpides NC , Klenk HP , Hugenholtz P
Ref : Stand Genomic Sci , 2 :212 , 2010
Abstract : The genus Conexibacter (Monciardini et al. 2003) represents the type genus of the family Conexibacteraceae (Stackebrandt 2005, emend. Zhi et al. 2009) with Conexibacter woesei as the type species of the genus. C. woesei is a representative of a deep evolutionary line of descent within the class Actinobacteria. Strain ID131577(T) was originally isolated from temperate forest soil in Gerenzano (Italy). Cells are small, short rods that are motile by peritrichous flagella. They may form aggregates after a longer period of growth and, then as a typical characteristic, an undulate structure is formed by self-aggregation of flagella with entangled bacterial cells. Here we describe the features of the organism, together with the complete sequence and annotation. The 6,359,369 bp long genome of C. woesei contains 5,950 protein-coding and 48 RNA genes and is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Pukall_2010_Stand.Genomic.Sci_2_212
PubMedSearch : Pukall_2010_Stand.Genomic.Sci_2_212
PubMedID: 21304704
Gene_locus related to this paper: conwi-d3fc89

Title : Complete genome sequence of Haloterrigena turkmenica type strain (4k) - Saunders_2010_Stand.Genomic.Sci_2_107
Author(s) : Saunders E , Tindall BJ , Fahnrich R , Lapidus A , Copeland A , Del Rio TG , Lucas S , Chen F , Tice H , Cheng JF , Han C , Detter JC , Bruce D , Goodwin L , Chain P , Pitluck S , Pati A , Ivanova N , Mavromatis K , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Brettin T , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 2 :107 , 2010
Abstract : Haloterrigena turkmenica (Zvyagintseva and Tarasov 1987) Ventosa et al. 1999, comb. nov. is the type species of the genus Haloterrigena in the euryarchaeal family Halobacteriaceae. It is of phylogenetic interest because of the yet unclear position of the genera Haloterrigena and Natrinema within the Halobacteriaceae, which created some taxonomic problems historically. H. turkmenica, was isolated from sulfate saline soil in Turkmenistan, is a relatively fast growing, chemoorganotrophic, carotenoid-containing, extreme halophile, requiring at least 2 M NaCl for growth. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Haloterrigena, but the eighth genome sequence from a member of the family Halobacteriaceae. The 5,440,782 bp genome (including six plasmids) with its 5,287 protein-coding and 63 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Saunders_2010_Stand.Genomic.Sci_2_107
PubMedSearch : Saunders_2010_Stand.Genomic.Sci_2_107
PubMedID: 21304683
Gene_locus related to this paper: halsp-YUXL , haltv-d2rs70 , haltv-d2rtx9 , haltv-d2rwf4 , haltv-d2rwl5 , haltv-d2rxg6 , haltv-d2rxv9 , haltv-d2ry22 , haltv-d2rzg9 , haltv-d2rzl4 , haltv-d2s3c9

Title : Complete genome sequence of Nocardiopsis dassonvillei type strain (IMRU 509) - Sun_2010_Stand.Genomic.Sci_3_325
Author(s) : Sun H , Lapidus A , Nolan M , Lucas S , Del Rio TG , Tice H , Cheng JF , Tapia R , Han C , Goodwin L , Pitluck S , Pagani I , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Djao OD , Rohde M , Sikorski J , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 3 :325 , 2010
Abstract : Nocardiopsis dassonvillei (Brocq-Rousseau 1904) Meyer 1976 is the type species of the genus Nocardiopsis, which in turn is the type genus of the family Nocardiopsaceae. This species is of interest because of its ecological versatility. Members of N. dassonvillei have been isolated from a large variety of natural habitats such as soil and marine sediments, from different plant and animal materials as well as from human patients. Moreover, representatives of the genus Nocardiopsis participate actively in biopolymer degradation. This is the first complete genome sequence in the family Nocardiopsaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,543,312 bp long genome consist of a 5.77 Mbp chromosome and a 0.78 Mbp plasmid and with its 5,570 protein-coding and 77 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Sun_2010_Stand.Genomic.Sci_3_325
PubMedSearch : Sun_2010_Stand.Genomic.Sci_3_325
PubMedID: 21304737
Gene_locus related to this paper: nocdd-d7auf1 , nocdd-d7avl6 , nocdd-d7b2j7 , nocdd-d7b3b3 , nocdd-d7b6l9 , nocdd-d7b210 , nocdd-d7b279 , nocdd-d7b3k0 , nocdd-d7awb2

Title : Complete genome sequence of Cellulomonas flavigena type strain (134) - Abt_2010_Stand.Genomic.Sci_3_15
Author(s) : Abt B , Foster B , Lapidus A , Clum A , Sun H , Pukall R , Lucas S , Glavina Del Rio T , Nolan M , Tice H , Cheng JF , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Ovchinnikova G , Pati A , Goodwin L , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 3 :15 , 2010
Abstract : Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Abt_2010_Stand.Genomic.Sci_3_15
PubMedSearch : Abt_2010_Stand.Genomic.Sci_3_15
PubMedID: 21304688
Gene_locus related to this paper: celfn-d5uif8 , celfn-d5uil9 , celfn-d5ukl6 , celfn-d5ulu1 , celfn-d5ulp3 , celfn-d5ul75 , celfn-d5ufu5 , celfn-d5ugh8

Title : Complete genome sequence of Vulcanisaeta distributa type strain (IC-017) - Mavromatis_2010_Stand.Genomic.Sci_3_117
Author(s) : Mavromatis K , Sikorski J , Pabst E , Teshima H , Lapidus A , Lucas S , Nolan M , Glavina Del Rio T , Cheng JF , Bruce D , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Spring S , Goker M , Wirth R , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 3 :117 , 2010
Abstract : Vulcanisaeta distributa Itoh et al. 2002 belongs to the family Thermoproteaceae in the phylum Crenarchaeota. The genus Vulcanisaeta is characterized by a global distribution in hot and acidic springs. This is the first genome sequence from a member of the genus Vulcanisaeta and seventh genome sequence in the family Thermoproteaceae. The 2,374,137 bp long genome with its 2,544 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteriaand Archaea project.
ESTHER : Mavromatis_2010_Stand.Genomic.Sci_3_117
PubMedSearch : Mavromatis_2010_Stand.Genomic.Sci_3_117
PubMedID: 21304741
Gene_locus related to this paper: vuldi-e1qt20 , vuldi-e1qqi6

Title : Complete genome sequence of Ferrimonas balearica type strain (PAT) - Nolan_2010_Stand.Genomic.Sci_3_174
Author(s) : Nolan M , Sikorski J , Davenport K , Lucas S , Del Rio TG , Tice H , Cheng JF , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Tapia R , Brettin T , Detter JC , Han C , Yasawong M , Rohde M , Tindall BJ , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 3 :174 , 2010
Abstract : Ferrimonas balearica Rossello-Mora et al. 1996 is the type species of the genus Ferrimonas, which belongs to the family Ferrimonadaceae within the Gammaproteobacteria. The species is a Gram-negative, motile, facultatively anaerobic, non spore-forming bacterium, which is of special interest because it is a chemoorganotroph and has a strictly respiratory metabolism with oxygen, nitrate, Fe(III)-oxyhydroxide, Fe(III)-citrate, MnO(2), selenate, selenite and thiosulfate as electron acceptors. This is the first completed genome sequence of a member of the genus Ferrimonas and also the first sequence from a member of the family Ferrimonadaceae. The 4,279,159 bp long genome with its 3,803 protein-coding and 144 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Nolan_2010_Stand.Genomic.Sci_3_174
PubMedSearch : Nolan_2010_Stand.Genomic.Sci_3_174
PubMedID: 21304747
Gene_locus related to this paper: ferbd-e1slj2 , ferbd-e1sm86 , ferbd-e1sm96 , ferbd-e1sr13 , ferbd-e1sv19 , ferbd-e1sva3 , ferbd-e1swh8 , ferbd-e1ss88 , ferbd-e1swm0 , ferbd-e1snp4

Title : Complete genome sequence of Arcanobacterium haemolyticum type strain (11018) - Yasawong_2010_Stand.Genomic.Sci_3_126
Author(s) : Yasawong M , Teshima H , Lapidus A , Nolan M , Lucas S , Glavina Del Rio T , Tice H , Cheng JF , Bruce D , Detter C , Tapia R , Han C , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Sikorski J , Pukall R , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 3 :126 , 2010
Abstract : Arcanobacterium haemolyticum (ex MacLean et al. 1946) Collins et al. 1983 is the type species of the genus Arcanobacterium, which belongs to the family Actinomycetaceae. The strain is of interest because it is an obligate parasite of the pharynx of humans and farm animal; occasionally, it causes pharyngeal or skin lesions. It is a Gram-positive, nonmotile and non-sporulating bacterium. The strain described in this study was isolated from infections amongst American soldiers of certain islands of the North and West Pacific. This is the first completed sequence of a member of the genus Arcanobacterium and the ninth type strain genome from the family Actinomycetaceae. The 1,986,154 bp long genome with its 1,821 protein-coding and 64 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Yasawong_2010_Stand.Genomic.Sci_3_126
PubMedSearch : Yasawong_2010_Stand.Genomic.Sci_3_126
PubMedID: 21304742
Gene_locus related to this paper: archd-d7bl98 , archd-d7bm52 , archd-d7bne1 , archd-d7bkh7

Title : Complete genome sequence of Planctomyces limnophilus type strain (Mu 290) - Labutti_2010_Stand.Genomic.Sci_3_47
Author(s) : LaButti K , Sikorski J , Schneider S , Nolan M , Lucas S , Glavina Del Rio T , Tice H , Cheng JF , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Tindall BJ , Rohde M , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 3 :47 , 2010
Abstract : Planctomyces limnophilus Hirsch and Muller 1986 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall which is stabilized by a proteinaceous layer rather than a peptidoglycan layer. Besides Pirellula staleyi, this is the second completed genome sequence of the family Planctomycetaceae. P. limnophilus is of interest because it differs from Pirellula by the presence of a stalk and its structure of fibril bundles, its cell shape and size, the formation of multicellular rosettes, low salt tolerance and red pigmented colonies. The 5,460,085 bp long genome with its 4,304 protein-coding and 66 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Labutti_2010_Stand.Genomic.Sci_3_47
PubMedSearch : Labutti_2010_Stand.Genomic.Sci_3_47
PubMedID: 21304691
Gene_locus related to this paper: plal2-d5spy8 , plal2-d5ssg7 , plal2-d5ssq1 , plal2-d5stl8 , plal2-d5su74 , plal2-d5swy9 , plal2-d5sxa1 , plal2-d5sxi9 , plal2-d5swp5

Title : Complete genome sequence of Acidaminococcus fermentans type strain (VR4) - Chang_2010_Stand.Genomic.Sci_3_1
Author(s) : Chang YJ , Pukall R , Saunders E , Lapidus A , Copeland A , Nolan M , Glavina Del Rio T , Lucas S , Chen F , Tice H , Cheng JF , Han C , Detter JC , Bruce D , Goodwin L , Pitluck S , Mikhailova N , Liolios K , Pati A , Ivanova N , Mavromatis K , Chen A , Palaniappan K , Land M , Hauser L , Jeffries CD , Brettin T , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 3 :1 , 2010
Abstract : Acidaminococcus fermentans (Rogosa 1969) is the type species of the genus Acidaminococcus, and is of phylogenetic interest because of its isolated placement in a genomically little characterized region of the Firmicutes. A. fermentans is known for its habitation of the gastrointestinal tract and its ability to oxidize trans-aconitate. Its anaerobic fermentation of glutamate has been intensively studied and will now be complemented by the genomic basis. The strain described in this report is a nonsporulating, nonmotile, Gram-negative coccus, originally isolated from a pig alimentary tract. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Acidaminococcaceae, and the 2,329,769 bp long genome with its 2,101 protein-coding and 81 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Chang_2010_Stand.Genomic.Sci_3_1
PubMedSearch : Chang_2010_Stand.Genomic.Sci_3_1
PubMedID: 21304687
Gene_locus related to this paper: acifv-d2rju3 , acifv-d2rk38 , acifv-d2rmp3

Title : Complete genome sequence of Sulfurimonas autotrophica type strain (OK10) - Sikorski_2010_Stand.Genomic.Sci_3_194
Author(s) : Sikorski J , Munk C , Lapidus A , Ngatchou Djao OD , Lucas S , Glavina Del Rio T , Nolan M , Tice H , Han C , Cheng JF , Tapia R , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Sims D , Meincke L , Brettin T , Detter JC , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Lang E , Spring S , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 3 :194 , 2010
Abstract : Sulfurimonas autotrophica Inagaki et al. 2003 is the type species of the genus Sulfurimonas. This genus is of interest because of its significant contribution to the global sulfur cycle as it oxidizes sulfur compounds to sulfate and by its apparent habitation of deep-sea hydrothermal and marine sulfidic environments as potential ecological niche. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the second complete genome sequence of the genus Sulfurimonas and the 15(th) genome in the family Helicobacteraceae. The 2,153,198 bp long genome with its 2,165 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Sikorski_2010_Stand.Genomic.Sci_3_194
PubMedSearch : Sikorski_2010_Stand.Genomic.Sci_3_194
PubMedID: 21304749
Gene_locus related to this paper: sulao-e0up24 , sulao-e0ute6 , sulao-metxa

Title : Complete genome sequence of Olsenella uli type strain (VPI D76D-27C) - Goker_2010_Stand.Genomic.Sci_3_76
Author(s) : Goker M , Held B , Lucas S , Nolan M , Yasawong M , Glavina Del Rio T , Tice H , Cheng JF , Bruce D , Detter JC , Tapia R , Han C , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Sikorski J , Pukall R , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 3 :76 , 2010
Abstract : Olsenella uli (Olsen et al. 1991) Dewhirst et al. 2001 is the type species of the genus Olsenella, which belongs to the actinobacterial family Coriobacteriaceae. The species is of interest because it is frequently isolated from dental plaque in periodontitis patients and can cause primary endodontic infection. The species is a Gram-positive, non-motile and non-sporulating bacterium. The strain described in this study was isolated from human gingival crevices. This is the first completed sequence of the genus Olsenella and the fifth sequence from a member of the family Coriobacteriaceae. The 2,051,896 bp long genome with its 1,795 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Goker_2010_Stand.Genomic.Sci_3_76
PubMedSearch : Goker_2010_Stand.Genomic.Sci_3_76
PubMedID: 21304694
Gene_locus related to this paper: olsuv-e1qw86 , olsuv-e1qw87 , olsuv-e1qz20 , olsuv-e1qwd9

Title : miRNA malfunction causes spinal motor neuron disease - Haramati_2010_Proc.Natl.Acad.Sci.U.S.A_107_13111
Author(s) : Haramati S , Chapnik E , Sztainberg Y , Eilam R , Zwang R , Gershoni N , McGlinn E , Heiser PW , Wills AM , Wirguin I , Rubin LL , Misawa H , Tabin CJ , Brown R, Jr. , Chen A , Hornstein E
Ref : Proc Natl Acad Sci U S A , 107 :13111 , 2010
Abstract : Defective RNA metabolism is an emerging mechanism involved in ALS pathogenesis and possibly in other neurodegenerative disorders. Here, we show that microRNA (miRNA) activity is essential for long-term survival of postmitotic spinal motor neurons (SMNs) in vivo. Thus, mice that do not process miRNA in SMNs exhibit hallmarks of spinal muscular atrophy (SMA), including sclerosis of the spinal cord ventral horns, aberrant end plate architecture, and myofiber atrophy with signs of denervation. Furthermore, a neurofilament heavy subunit previously implicated in motor neuron degeneration is specifically up-regulated in miRNA-deficient SMNs. We demonstrate that the heavy neurofilament subunit is a target of miR-9, a miRNA that is specifically down-regulated in a genetic model of SMA. These data provide evidence for miRNA function in SMN diseases and emphasize the potential role of miR-9-based regulatory mechanisms in adult neurons and neurodegenerative states.
ESTHER : Haramati_2010_Proc.Natl.Acad.Sci.U.S.A_107_13111
PubMedSearch : Haramati_2010_Proc.Natl.Acad.Sci.U.S.A_107_13111
PubMedID: 20616011

Title : Complete genome sequence of Intrasporangium calvum type strain (7 KIP) - Del Rio_2010_Stand.Genomic.Sci_3_294
Author(s) : Del Rio TG , Chertkov O , Yasawong M , Lucas S , Deshpande S , Cheng JF , Detter C , Tapia R , Han C , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Pukall R , Sikorski J , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 3 :294 , 2010
Abstract : Intrasporangium calvum Kalakoutskii et al. 1967 is the type species of the genus Intrasporangium, which belongs to the actinobacterial family Intrasporangiaceae. The species is a Gram-positive bacterium that forms a branching mycelium, which tends to break into irregular fragments. The mycelium of this strain may bear intercalary vesicles but does not contain spores. The strain described in this study is an airborne organism that was isolated from a school dining room in 1967. One particularly interesting feature of I. calvum is that the type of its menaquinone is different from all other representatives of the family Intrasporangiaceae. This is the first completed genome sequence from a member of the genus Intrasporangium and also the first sequence from the family Intrasporangiaceae. The 4,024,382 bp long genome with its 3,653 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Del Rio_2010_Stand.Genomic.Sci_3_294
PubMedSearch : Del Rio_2010_Stand.Genomic.Sci_3_294
PubMedID: 21304734
Gene_locus related to this paper: intc7-e6s7p7 , intc7-e6s9d8 , intc7-e6sds3 , intc7-e6s7a1 , intc7-e6sc55

Title : Complete genome sequence of Syntrophothermus lipocalidus type strain (TGB-C1) - Djao_2010_Stand.Genomic.Sci_3_268
Author(s) : Djao OD , Zhang X , Lucas S , Lapidus A , Del Rio TG , Nolan M , Tice H , Cheng JF , Han C , Tapia R , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Ovchinnikova G , Pati A , Brambilla E , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Sikorski J , Spring S , Goker M , Detter JC , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 3 :268 , 2010
Abstract : Syntrophothermus lipocalidus Sekiguchi et al. 2000 is the type species of the genus Syntrophothermus. The species is of interest because of its strictly anaerobic lifestyle, its participation in the primary step of the degradation of organic maters, and for releasing products which serve as substrates for other microorganisms. It also contributes significantly to maintain a regular pH in its environment by removing the fatty acids through beta-oxidation. The strain is able to metabolize isobutyrate and butyrate, which are the substrate and the product of degradation of the substrate, respectively. This is the first complete genome sequence of a member of the genus Syntrophothermus and the second in the family Syntrophomonadaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,405,559 bp long genome with its 2,385 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Djao_2010_Stand.Genomic.Sci_3_268
PubMedSearch : Djao_2010_Stand.Genomic.Sci_3_268
PubMedID: 21304731
Gene_locus related to this paper: synlt-d7cpg4

Title : Non-contiguous finished genome sequence of Aminomonas paucivorans type strain (GLU-3) - Pitluck_2010_Stand.Genomic.Sci_3_285
Author(s) : Pitluck S , Yasawong M , Held B , Lapidus A , Nolan M , Copeland A , Lucas S , Del Rio TG , Tice H , Cheng JF , Chertkov O , Goodwin L , Tapia R , Han C , Liolios K , Ivanova N , Mavromatis K , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Pukall R , Spring S , Rohde M , Sikorski J , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 3 :285 , 2010
Abstract : Aminomonas paucivorans Baena et al. 1999 is the type species of the genus Aminomonas, which belongs to the family Synergistaceae. The species is of interest because it is an asaccharolytic chemoorganotrophic bacterium which ferments quite a number of amino acids. This is the first finished genome sequence (with one gap in a rDNA region) of a member of the genus Aminomonas and the third sequence from the family Synergistaceae. The 2,630,120 bp long genome with its 2,433 protein-coding and 61 RNA genes is a part of the GenomicEncyclopedia ofBacteria andArchaea project.
ESTHER : Pitluck_2010_Stand.Genomic.Sci_3_285
PubMedSearch : Pitluck_2010_Stand.Genomic.Sci_3_285
PubMedID: 21304733
Gene_locus related to this paper: 9bact-e3cyn3

Title : Complete genome sequence of Thermaerobacter marianensis type strain (7p75a) - Han_2010_Stand.Genomic.Sci_3_337
Author(s) : Han C , Gu W , Zhang X , Lapidus A , Nolan M , Copeland A , Lucas S , Del Rio TG , Tice H , Cheng JF , Tapia R , Goodwin L , Pitluck S , Pagani I , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Schneider S , Rohde M , Goker M , Pukall R , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Detter JC
Ref : Stand Genomic Sci , 3 :337 , 2010
Abstract : Thermaerobacter marianensis Takai et al. 1999 is the type species of the genus Thermaerobacter, which belongs to the Clostridiales family Incertae Sedis XVII. The species is of special interest because T. marianensis is an aerobic, thermophilic marine bacterium, originally isolated from the deepest part in the western Pacific Ocean (Mariana Trench) at the depth of 10.897m. Interestingly, the taxonomic status of the genus has not been clarified until now. The genus Thermaerobacter may represent a very deep group within the Firmicutes or potentially a novel phylum. The 2,844,696 bp long genome with its 2,375 protein-coding and 60 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Han_2010_Stand.Genomic.Sci_3_337
PubMedSearch : Han_2010_Stand.Genomic.Sci_3_337
PubMedID: 21304738
Gene_locus related to this paper: them7-e6sh68 , them7-e6shq4 , them7-e6shv1

Title : Complete genome sequence of Acetohalobium arabaticum type strain (Z-7288) - Sikorski_2010_Stand.Genomic.Sci_3_57
Author(s) : Sikorski J , Lapidus A , Chertkov O , Lucas S , Copeland A , Glavina Del Rio T , Nolan M , Tice H , Cheng JF , Han C , Brambilla E , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Bruce D , Detter C , Tapia R , Goodwin L , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Goker M , Spring S , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 3 :57 , 2010
Abstract : Acetohalobium arabaticum Zhilina and Zavarzin 1990 is of special interest because of its physiology and its participation in the anaerobic C(1)-trophic chain in hypersaline environments. This is the first completed genome sequence of the family Halobacteroidaceae and only the second genome sequence in the order Halanaerobiales. The 2,469,596 bp long genome with its 2,353 protein-coding and 90 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Sikorski_2010_Stand.Genomic.Sci_3_57
PubMedSearch : Sikorski_2010_Stand.Genomic.Sci_3_57
PubMedID: 21304692
Gene_locus related to this paper: aceaz-d9qsg6 , aceaz-d9qqr0

Title : Complete genome sequence of Methanothermus fervidus type strain (V24S) - Anderson_2010_Stand.Genomic.Sci_3_315
Author(s) : Anderson I , Djao OD , Misra M , Chertkov O , Nolan M , Lucas S , Lapidus A , Del Rio TG , Tice H , Cheng JF , Tapia R , Han C , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Brambilla E , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Sikorski J , Spring S , Rohde M , Eichinger K , Huber H , Wirth R , Goker M , Detter JC , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 3 :315 , 2010
Abstract : Methanothermus fervidus Stetter 1982 is the type strain of the genus Methanothermus. This hyperthermophilic genus is of a thought to be endemic in Icelandic hot springs. M. fervidus was not only the first characterized organism with a maximal growth temperature (97 degrees C) close to the boiling point of water, but also the first archaeon in which a detailed functional analysis of its histone protein was reported and the first one in which the function of 2,3-cyclodiphosphoglycerate in thermoadaptation was characterized. Strain V24S(T) is of interest because of its very low substrate ranges, it grows only on H(2) + CO(2). This is the first completed genome sequence of the family Methanothermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,243,342 bp long genome with its 1,311 protein-coding and 50 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Anderson_2010_Stand.Genomic.Sci_3_315
PubMedSearch : Anderson_2010_Stand.Genomic.Sci_3_315
PubMedID: 21304736

Title : Complete genome sequence of Aminobacterium colombiense type strain (ALA-1) - Chertkov_2010_Stand.Genomic.Sci_2_280
Author(s) : Chertkov O , Sikorski J , Brambilla E , Lapidus A , Copeland A , Glavina Del Rio T , Nolan M , Lucas S , Tice H , Cheng JF , Han C , Detter JC , Bruce D , Tapia R , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Spring S , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 2 :280 , 2010
Abstract : Aminobacterium colombiense Baena et al. 1999 is the type species of the genus Aminobacterium. This genus is of large interest because of its isolated phylogenetic location in the family Synergistaceae, its strictly anaerobic lifestyle, and its ability to grow by fermentation of a limited range of amino acids but not carbohydrates. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the second completed genome sequence of a member of the family Synergistaceae and the first genome sequence of a member of the genus Aminobacterium. The 1,980,592 bp long genome with its 1,914 protein-coding and 56 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Chertkov_2010_Stand.Genomic.Sci_2_280
PubMedSearch : Chertkov_2010_Stand.Genomic.Sci_2_280
PubMedID: 21304712

Title : Complete genome sequence of Spirochaeta smaragdinae type strain (SEBR 4228) - Mavromatis_2010_Stand.Genomic.Sci_3_136
Author(s) : Mavromatis K , Yasawong M , Chertkov O , Lapidus A , Lucas S , Nolan M , Del Rio TG , Tice H , Cheng JF , Pitluck S , Liolios K , Ivanova N , Tapia R , Han C , Bruce D , Goodwin L , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Detter JC , Rohde M , Brambilla E , Spring S , Goker M , Sikorski J , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 3 :136 , 2010
Abstract : Spirochaeta smaragdinae Magot et al. 1998 belongs to the family Spirochaetaceae. The species is Gram-negative, motile, obligately halophilic and strictly anaerobic and is of interest because it is able to ferment numerous polysaccharides. S. smaragdinae is the only species of the family Spirochaetaceae known to reduce thiosulfate or element sulfur to sulfide. This is the first complete genome sequence in the family Spirochaetaceae. The 4,653,970 bp long genome with its 4,363 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Mavromatis_2010_Stand.Genomic.Sci_3_136
PubMedSearch : Mavromatis_2010_Stand.Genomic.Sci_3_136
PubMedID: 21304743
Gene_locus related to this paper: spiss-e1r584 , spiss-e1rce8

Title : Complete genome sequence of Streptosporangium roseum type strain (NI 9100) - Nolan_2010_Stand.Genomic.Sci_2_29
Author(s) : Nolan M , Sikorski J , Jando M , Lucas S , Lapidus A , Glavina Del Rio T , Chen F , Tice H , Pitluck S , Cheng JF , Chertkov O , Sims D , Meincke L , Brettin T , Han C , Detter JC , Bruce D , Goodwin L , Land M , Hauser L , Chang YJ , Jeffries CD , Ivanova N , Mavromatis K , Mikhailova N , Chen A , Palaniappan K , Chain P , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 2 :29 , 2010
Abstract : Streptosporangium roseum Crauch 1955 is the type strain of the species which is the type species of the genus Streptosporangium. The 'pinkish coiled Streptomyces-like organism with a spore case' was isolated from vegetable garden soil in 1955. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the family Streptosporangiaceae, and the second largest microbial genome sequence ever deciphered. The 10,369,518 bp long genome with its 9421 protein-coding and 80 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Nolan_2010_Stand.Genomic.Sci_2_29
PubMedSearch : Nolan_2010_Stand.Genomic.Sci_2_29
PubMedID: 21304675
Gene_locus related to this paper: strrd-d2aqk6 , strrd-d2aqt5 , strrd-d2ar22 , strrd-d2ar75 , strrd-d2arp5 , strrd-d2auf6 , strrd-d2aw37 , strrd-d2awh0 , strrd-d2awp2 , strrd-d2axt7 , strrd-d2ayh4 , strrd-d2ayq3 , strrd-d2ayx8 , strrd-d2az98 , strrd-d2b0g2 , strrd-d2b0t3 , strrd-d2b0u2 , strrd-d2b0u6 , strrd-d2b0w5 , strrd-d2b2m3 , strrd-d2b2r7 , strrd-d2b3g9 , strrd-d2b3i2 , strrd-d2b3i7 , strrd-d2b4f5 , strrd-d2b4y4 , strrd-d2b4z9 , strrd-d2b5z6 , strrd-d2b6v8 , strrd-d2b6y3 , strrd-d2b7a9 , strrd-d2b7h6 , strrd-d2b9k5 , strrd-d2b9n9 , strrd-d2b152 , strrd-d2b235 , strrd-d2b519 , strrd-d2b540 , strrd-d2b638 , strrd-d2b812 , strrd-d2ba59 , strrd-d2bae6 , strrd-d2bai2 , strrd-d2bbp7 , strrd-d2bc04 , strrd-d2bc32 , strrd-d2bc93 , strrd-d2bd97 , strrd-d2bdh0 , strrd-d2bdh1 , strrd-d2bdl4 , strrd-d2bdq5 , strrd-d2bdt5 , strrd-d2bdv3 , strrd-d2be60 , strrd-d2be88 , strrd-d2bf33 , strrd-d2bf77 , strrd-d2b7c2 , strrd-d2awc2 , strrd-d2as88 , strrd-d2aw56 , strrd-d2b3r3 , strrd-d2bf75 , strrd-d2b2d4 , strrd-d2b1i6

Title : Complete genome sequence of Xylanimonas cellulosilytica type strain (XIL07) - Foster_2010_Stand.Genomic.Sci_2_1
Author(s) : Foster B , Pukall R , Abt B , Nolan M , Glavina Del Rio T , Chen F , Lucas S , Tice H , Pitluck S , Cheng JF , Chertkov O , Brettin T , Han C , Detter JC , Bruce D , Goodwin L , Ivanova N , Mavromatis K , Pati A , Mikhailova N , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Chain P , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 2 :1 , 2010
Abstract : Xylanimonas cellulosilytica Rivas et al. 2003 is the type species of the genus Xylanimonas of the actinobacterial family Promicromonosporaceae. The species X. cellulosilytica is of interest because of its ability to hydrolyze cellulose and xylan. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the large family Promicromonosporaceae, and the 3,831,380 bp long genome (one chromosome plus an 88,604 bp long plasmid) with its 3485 protein-coding and 61 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Foster_2010_Stand.Genomic.Sci_2_1
PubMedSearch : Foster_2010_Stand.Genomic.Sci_2_1
PubMedID: 21304672

Title : Complete genome sequence of Meiothermus ruber type strain (21) - Tindall_2010_Stand.Genomic.Sci_3_26
Author(s) : Tindall BJ , Sikorski J , Lucas S , Goltsman E , Copeland A , Glavina Del Rio T , Nolan M , Tice H , Cheng JF , Han C , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Ovchinnikova G , Pati A , Fahnrich R , Goodwin L , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 3 :26 , 2010
Abstract : Meiothermus ruber (Loginova et al. 1984) Nobre et al. 1996 is the type species of the genus Meiothermus. This thermophilic genus is of special interest, as its members share relatively low degrees of 16S rRNA gene sequence similarity and constitute a separate evolutionary lineage from members of the genus Thermus, from which they can generally be distinguished by their slightly lower temperature optima. The temperature related split is in accordance with the chemotaxonomic feature of the polar lipids. M. ruber is a representative of the low-temperature group. This is the first completed genome sequence of the genus Meiothermus and only the third genome sequence to be published from a member of the family Thermaceae. The 3,097,457 bp long genome with its 3,052 protein-coding and 53 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Tindall_2010_Stand.Genomic.Sci_3_26
PubMedSearch : Tindall_2010_Stand.Genomic.Sci_3_26
PubMedID: 21304689
Gene_locus related to this paper: meird-d3pkm5 , meird-d3pnp5 , meird-d3pnr1 , meird-d3pnw2 , meird-d3pq15 , meird-d3pqm5 , meird-d3ps60

Title : Complete genome sequence of Ignisphaera aggregans type strain (AQ1.S1) - Goker_2010_Stand.Genomic.Sci_3_66
Author(s) : Goker M , Held B , Lapidus A , Nolan M , Spring S , Yasawong M , Lucas S , Glavina Del Rio T , Tice H , Cheng JF , Goodwin L , Tapia R , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Brambilla E , Land M , Hauser L , Chang YJ , Jeffries CD , Brettin T , Detter JC , Han C , Rohde M , Sikorski J , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 3 :66 , 2010
Abstract : Ignisphaera aggregans Niederberger et al. 2006 is the type and sole species of genus Ignisphaera. This archaeal species is characterized by a coccoid-shape and is strictly anaerobic, moderately acidophilic, heterotrophic hyperthermophilic and fermentative. The type strain AQ1.S1(T) was isolated from a near neutral, boiling spring in Kuirau Park, Rotorua, New Zealand. This is the first completed genome sequence of the genus Ignisphaera and the fifth genome (fourth type strain) sequence in the family Desulfurococcaceae. The 1,875,953 bp long genome with its 2,009 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Goker_2010_Stand.Genomic.Sci_3_66
PubMedSearch : Goker_2010_Stand.Genomic.Sci_3_66
PubMedID: 21304693

Title : Complete genome sequence of Meiothermus silvanus type strain (VI-R2) - Sikorski_2010_Stand.Genomic.Sci_3_37
Author(s) : Sikorski J , Tindall BJ , Lowry S , Lucas S , Nolan M , Copeland A , Glavina Del Rio T , Tice H , Cheng JF , Han C , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Goodwin L , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 3 :37 , 2010
Abstract : Meiothermus silvanus (Tenreiro et al. 1995) Nobre et al. 1996 belongs to a thermophilic genus whose members share relatively low degrees of 16S rRNA gene sequence similarity. Meiothermus constitutes an evolutionary lineage separate from members of the genus Thermus, from which they can generally be distinguished by their slightly lower temperature optima. M. silvanus is of special interest as it causes colored biofilms in the paper making industry and may thus be of economic importance as a biofouler. This is the second completed genome sequence of a member of the genus Meiothermus and only the third genome sequence to be published from a member of the family Thermaceae. The 3,721,669 bp long genome with its 3,667 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Sikorski_2010_Stand.Genomic.Sci_3_37
PubMedSearch : Sikorski_2010_Stand.Genomic.Sci_3_37
PubMedID: 21304690
Gene_locus related to this paper: meisd-d7bbz4 , meisd-d7bbu2 , meisd-d7bjh0 , meisd-d7bez6 , meisd-d7bfp6

Title : Complete genome sequence of Alicyclobacillus acidocaldarius type strain (104-IA) - Mavromatis_2010_Stand.Genomic.Sci_2_9
Author(s) : Mavromatis K , Sikorski J , Lapidus A , Glavina Del Rio T , Copeland A , Tice H , Cheng JF , Lucas S , Chen F , Nolan M , Bruce D , Goodwin L , Pitluck S , Ivanova N , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Chain P , Meincke L , Sims D , Chertkov O , Han C , Brettin T , Detter JC , Wahrenburg C , Rohde M , Pukall R , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 2 :9 , 2010
Abstract : Alicyclobacillus acidocaldarius (Darland and Brock 1971) is the type species of the larger of the two genera in the bacillal family 'Alicyclobacillaceae'. A. acidocaldarius is a free-living and non-pathogenic organism, but may also be associated with food and fruit spoilage. Due to its acidophilic nature, several enzymes from this species have since long been subjected to detailed molecular and biochemical studies. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family 'Alicyclobacillaceae'. The 3,205,686 bp long genome (chromosome and three plasmids) with its 3,153 protein-coding and 82 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Mavromatis_2010_Stand.Genomic.Sci_2_9
PubMedSearch : Mavromatis_2010_Stand.Genomic.Sci_2_9
PubMedID: 21304673

Title : Complete genome sequence of Sphaerobacter thermophilus type strain (S 6022) - Pati_2010_Stand.Genomic.Sci_2_49
Author(s) : Pati A , LaButti K , Pukall R , Nolan M , Glavina Del Rio T , Tice H , Cheng JF , Lucas S , Chen F , Copeland A , Ivanova N , Mavromatis K , Mikhailova N , Pitluck S , Bruce D , Goodwin L , Land M , Hauser L , Chang YJ , Jeffries CD , Chen A , Palaniappan K , Chain P , Brettin T , Sikorski J , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 2 :49 , 2010
Abstract : Sphaerobacter thermophilus Demharter et al. 1989 is the sole and type species of the genus Sphaerobacter, which is the type genus of the family Sphaerobacteraceae, the order Sphaerobacterales and the subclass Sphaerobacteridae. Phylogenetically, it belongs to the genomically little studied class of the Thermomicrobia in the bacterial phylum Chloroflexi. Here, the genome of strain S 6022(T) is described which is an obligate aerobe that was originally isolated from an aerated laboratory-scale fermentor that was pulse fed with municipal sewage sludge. We describe the features of this organism, together with the complete genome and annotation. This is the first complete genome sequence of the thermomicrobial subclass Sphaerobacteridae, and the second sequence from the chloroflexal class Thermomicrobia. The 3,993,764 bp genome with its 3,525 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Pati_2010_Stand.Genomic.Sci_2_49
PubMedSearch : Pati_2010_Stand.Genomic.Sci_2_49
PubMedID: 21304677

Title : Complete genome sequence of 'Thermobaculum terrenum' type strain (YNP1) - Kiss_2010_Stand.Genomic.Sci_3_153
Author(s) : Kiss H , Cleland D , Lapidus A , Lucas S , Del Rio TG , Nolan M , Tice H , Han C , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Lu M , Brettin T , Detter JC , Goker M , Tindall BJ , Beck B , McDermott TR , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Cheng JF
Ref : Stand Genomic Sci , 3 :153 , 2010
Abstract : 'Thermobaculum terrenum' Botero et al. 2004 is the sole species within the proposed genus 'Thermobaculum'. Strain YNP1(T) is the only cultivated member of an acid tolerant, extremely thermophilic species belonging to a phylogenetically isolated environmental clone group within the phylum Chloroflexi. At present, the name 'Thermobaculum terrenum' is not yet validly published as it contravenes Rule 30 (3a) of the Bacteriological Code. The bacterium was isolated from a slightly acidic extreme thermal soil in Yellowstone National Park, Wyoming (USA). Depending on its final taxonomic allocation, this is likely to be the third completed genome sequence of a member of the class Thermomicrobia and the seventh type strain genome from the phylum Chloroflexi. The 3,101,581 bp long genome with its 2,872 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Kiss_2010_Stand.Genomic.Sci_3_153
PubMedSearch : Kiss_2010_Stand.Genomic.Sci_3_153
PubMedID: 21304745
Gene_locus related to this paper: thet1-d1cbe2 , thet1-d1cbh1 , thet1-d1cbh5 , thet1-d1cdw7 , thet1-d1cej0 , thet1-d1cfr4 , thet1-d1chv7 , thet1-d1cih9

Title : Complete genome sequence of Ilyobacter polytropus type strain (CuHbu1) - Sikorski_2010_Stand.Genomic.Sci_3_304
Author(s) : Sikorski J , Chertkov O , Lapidus A , Nolan M , Lucas S , Del Rio TG , Tice H , Cheng JF , Tapia R , Han C , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Brambilla E , Yasawong M , Rohde M , Pukall R , Spring S , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 3 :304 , 2010
Abstract : Ilyobacter polytropus Stieb and Schink 1984 is the type species of the genus Ilyobacter, which belongs to the fusobacterial family Fusobacteriaceae. The species is of interest because its members are able to ferment quite a number of sugars and organic acids. I. polytropus has a broad versatility in using various fermentation pathways. Also, its members do not degrade poly-beta-hydroxybutyrate but only the monomeric 3-hydroxybutyrate. This is the first completed genome sequence of a member of the genus Ilyobacter and the second sequence from the family Fusobacteriaceae. The 3,132,314 bp long genome with its 2,934 protein-coding and 108 RNA genes consists of two chromosomes (2 and 1 Mbp long) and one plasmid, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Sikorski_2010_Stand.Genomic.Sci_3_304
PubMedSearch : Sikorski_2010_Stand.Genomic.Sci_3_304
PubMedID: 21304735

Title : Complete genome sequence of Archaeoglobus profundus type strain (AV18) - von Jan_2010_Stand.Genomic.Sci_2_327
Author(s) : von Jan M , Lapidus A , Del Rio TG , Copeland A , Tice H , Cheng JF , Lucas S , Chen F , Nolan M , Goodwin L , Han C , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Ovchinnikova G , Chertkov O , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Saunders E , Brettin T , Detter JC , Chain P , Eichinger K , Huber H , Spring S , Rohde M , Goker M , Wirth R , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 2 :327 , 2010
Abstract : Archaeoglobus profundus (Burggraf et al. 1990) is a hyperthermophilic archaeon in the euryarchaeal class Archaeoglobi, which is currently represented by the single family Archaeoglobaceae, containing six validly named species and two strains ascribed to the genus 'Geoglobus' which is taxonomically challenged as the corresponding type species has no validly published name. All members were isolated from marine hydrothermal habitats and are obligate anaerobes. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the second completed genome sequence of a member of the class Archaeoglobi. The 1,563,423 bp genome with its 1,858 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : von Jan_2010_Stand.Genomic.Sci_2_327
PubMedSearch : von Jan_2010_Stand.Genomic.Sci_2_327
PubMedID: 21304717

Title : Complete genome sequence of Arcobacter nitrofigilis type strain (CI) - Pati_2010_Stand.Genomic.Sci_2_300
Author(s) : Pati A , Gronow S , Lapidus A , Copeland A , Glavina Del Rio T , Nolan M , Lucas S , Tice H , Cheng JF , Han C , Chertkov O , Bruce D , Tapia R , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Detter JC , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 2 :300 , 2010
Abstract : Arcobacter nitrofigilis (McClung et al. 1983) Vandamme et al. 1991 is the type species of the genus Arcobacter in the family Campylobacteraceae within the Epsilonproteobacteria. The species was first described in 1983 as Campylobacter nitrofigilis [1] after its detection as a free-living, nitrogen-fixing Campylobacter species associated with Spartina alterniflora Loisel roots [2]. It is of phylogenetic interest because of its lifestyle as a symbiotic organism in a marine environment in contrast to many other Arcobacter species which are associated with warm-blooded animals and tend to be pathogenic. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a type stain of the genus Arcobacter. The 3,192,235 bp genome with its 3,154 protein-coding and 70 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Pati_2010_Stand.Genomic.Sci_2_300
PubMedSearch : Pati_2010_Stand.Genomic.Sci_2_300
PubMedID: 21304714
Gene_locus related to this paper: arcnc-d5v0e6 , arcnc-d5v643

Title : Complete genome sequence of Brachyspira murdochii type strain (56-150) - Pati_2010_Stand.Genomic.Sci_2_260
Author(s) : Pati A , Sikorski J , Gronow S , Munk C , Lapidus A , Copeland A , Glavina Del Tio T , Nolan M , Lucas S , Chen F , Tice H , Cheng JF , Han C , Detter JC , Bruce D , Tapia R , Goodwin L , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Spring S , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 2 :260 , 2010
Abstract : Brachyspira murdochii Stanton et al. 1992 is a non-pathogenic, host-associated spirochete of the family Brachyspiraceae. Initially isolated from the intestinal content of a healthy swine, the 'group B spirochaetes' were first described as Serpulina murdochii. Members of the family Brachyspiraceae are of great phylogenetic interest because of the extremely isolated location of this family within the phylum 'Spirochaetes'. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a type strain of a member of the family Brachyspiraceae and only the second genome sequence from a member of the genus Brachyspira. The 3,241,804 bp long genome with its 2,893 protein-coding and 40 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Pati_2010_Stand.Genomic.Sci_2_260
PubMedSearch : Pati_2010_Stand.Genomic.Sci_2_260
PubMedID: 21304710
Gene_locus related to this paper: bram5-d5u3y5 , bram5-d5u7a7 , bram5-d5u9f8 , bram5-d5ua75 , bram5-d5u886

Title : Permanent draft genome sequence of Dethiosulfovibrio peptidovorans type strain (SEBR 4207) - Labutti_2010_Stand.Genomic.Sci_3_85
Author(s) : LaButti K , Mayilraj S , Clum A , Lucas S , Glavina Del Rio T , Nolan M , Tice H , Cheng JF , Pitluck S , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Goodwin L , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Spring S , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 3 :85 , 2010
Abstract : Dethiosulfovibrio peptidovorans Magot et al. 1997 is the type species of the genus Dethiosulfovibrio of the family Synergistaceae in the recently created phylum Synergistetes. The strictly anaerobic, vibriod, thiosulfate-reducing bacterium utilizes peptides and amino acids, but neither sugars nor fatty acids. It was isolated from an offshore oil well where it was been reported to be involved in pitting corrosion of mild steel. Initially, this bacterium was described as a distant relative of the genus Thermoanaerobacter, but was not assigned to a genus, it was subsequently placed into the novel phylum Synergistetes. A large number of repeats in the genome sequence prevented an economically justifiable closure of the last gaps. This is only the third published genome from a member of the phylum Synergistetes. The 2,576,359 bp long genome consists of three contigs with 2,458 protein-coding and 59 RNA genes and is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Labutti_2010_Stand.Genomic.Sci_3_85
PubMedSearch : Labutti_2010_Stand.Genomic.Sci_3_85
PubMedID: 21304695

Title : Complete genome sequence of Desulfohalobium retbaense type strain (HR(100)) - Spring_2010_Stand.Genomic.Sci_2_38
Author(s) : Spring S , Nolan M , Lapidus A , Glavina Del Rio T , Copeland A , Tice H , Cheng JF , Lucas S , Land M , Chen F , Bruce D , Goodwin L , Pitluck S , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Hauser L , Chang YJ , Jeffries CD , Munk C , Kiss H , Chain P , Han C , Brettin T , Detter JC , Schuler E , Goker M , Rohde M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 2 :38 , 2010
Abstract : Desulfohalobium retbaense (Ollivier et al. 1991) is the type species of the polyphyletic genus Desulfohalobium, which comprises, at the time of writing, two species and represents the family Desulfohalobiaceae within the Deltaproteobacteria. D. retbaense is a moderately halophilic sulfate-reducing bacterium, which can utilize H(2) and a limited range of organic substrates, which are incompletely oxidized to acetate and CO(2), for growth. The type strain HR(100) (T) was isolated from sediments of the hypersaline Retba Lake in Senegal. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the family Desulfohalobiaceae. The 2,909,567 bp genome (one chromosome and a 45,263 bp plasmid) with its 2,552 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Spring_2010_Stand.Genomic.Sci_2_38
PubMedSearch : Spring_2010_Stand.Genomic.Sci_2_38
PubMedID: 21304676
Gene_locus related to this paper: sphtd-d1c5v2

Title : Complete genome sequence of Segniliparus rotundus type strain (CDC 1076) - Sikorski_2010_Stand.Genomic.Sci_2_203
Author(s) : Sikorski J , Lapidus A , Copeland A , Misra M , Glavina Del Rio T , Nolan M , Lucas S , Chen F , Tice H , Cheng JF , Jando M , Schneider S , Bruce D , Goodwin L , Pitluck S , Liolios K , Mikhailova N , Pati A , Ivanova N , Mavromatis K , Chen A , Palaniappan K , Chertkov O , Land M , Hauser L , Chang YJ , Jeffries CD , Brettin T , Detter JC , Han C , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 2 :203 , 2010
Abstract : Segniliparus rotundus Butler 2005 is the type species of the genus Segniliparus, which is currently the only genus in the corynebacterial family Segniliparaceae. This family is of large interest because of a novel late-emerging genus-specific mycolate pattern. The type strain has been isolated from human sputum and is probably an opportunistic pathogen. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family Segniliparaceae. The 3,157,527 bp long genome with its 3,081 protein-coding and 52 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Sikorski_2010_Stand.Genomic.Sci_2_203
PubMedSearch : Sikorski_2010_Stand.Genomic.Sci_2_203
PubMedID: 21304703
Gene_locus related to this paper: segrd-d6z8m1 , segrd-d6z8p5 , segrd-d6z9l9 , segrd-d6za06 , segrd-d6zaa6 , segrd-d6zav0 , segrd-d6zbl4 , segrd-d6zbs4 , segrd-d6zc43 , segrd-d6zca1 , segrd-d6zcn6 , segrd-d6zdf7 , segrd-d6zds6 , segrd-d6zdt4 , segrd-d6zdz3 , segrd-d6zed7 , segrd-d6zej1 , segrd-d6zfg4 , segrd-d6zfr6 , segrd-d6za90 , segrd-d6za91 , segrd-d6zd15 , segrd-d6zcg9 , segrd-d6zb77

Title : Complete genome sequence of Chitinophaga pinensis type strain (UQM 2034) - Glavina_2010_Stand.Genomic.Sci_2_87
Author(s) : Glavina Del Rio T , Abt B , Spring S , Lapidus A , Nolan M , Tice H , Copeland A , Cheng JF , Chen F , Bruce D , Goodwin L , Pitluck S , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Chain P , Saunders E , Detter JC , Brettin T , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lucas S
Ref : Stand Genomic Sci , 2 :87 , 2010
Abstract : Chitinophaga pinensis Sangkhobol and Skerman 1981 is the type strain of the species which is the type species of the rapidly growing genus Chitinophaga in the sphingobacterial family 'Chitinophagaceae'. Members of the genus Chitinophaga vary in shape between filaments and spherical bodies without the production of a fruiting body, produce myxospores, and are of special interest for their ability to degrade chitin. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family 'Chitinophagaceae', and the 9,127,347 bp long single replicon genome with its 7,397 protein-coding and 95 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Glavina_2010_Stand.Genomic.Sci_2_87
PubMedSearch : Glavina_2010_Stand.Genomic.Sci_2_87
PubMedID: 21304681
Gene_locus related to this paper: chipd-c7pkc8

Title : Complete genome sequence of Sebaldella termitidis type strain (NCTC 11300) - Harmon-Smith_2010_Stand.Genomic.Sci_2_220
Author(s) : Harmon-Smith M , Celia L , Chertkov O , Lapidus A , Copeland A , Glavina Del Rio T , Nolan M , Lucas S , Tice H , Cheng JF , Han C , Detter JC , Bruce D , Goodwin L , Pitluck S , Pati A , Liolios K , Ivanova N , Mavromatis K , Mikhailova N , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Brettin T , Goker M , Beck B , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Chen F
Ref : Stand Genomic Sci , 2 :220 , 2010
Abstract : Sebaldella termitidis (Sebald 1962) Collins and Shah 1986, is the only species in the genus Sebaldella within the fusobacterial family 'Leptotrichiaceae'. The sole and type strain of the species was first isolated about 50 years ago from intestinal content of Mediterranean termites. The species is of interest for its very isolated phylogenetic position within the phylum Fusobacteria in the tree of life, with no other species sharing more than 90% 16S rRNA sequence similarity. The 4,486,650 bp long genome with its 4,210 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Harmon-Smith_2010_Stand.Genomic.Sci_2_220
PubMedSearch : Harmon-Smith_2010_Stand.Genomic.Sci_2_220
PubMedID: 21304705
Gene_locus related to this paper: sebte-d1am65

Title : Complete genome sequence of Denitrovibrio acetiphilus type strain (N2460) - Kiss_2010_Stand.Genomic.Sci_2_270
Author(s) : Kiss H , Lang E , Lapidus A , Copeland A , Nolan M , Glavina Del Rio T , Chen F , Lucas S , Tice H , Cheng JF , Han C , Goodwin L , Pitluck S , Liolios K , Pati A , Ivanova N , Mavromatis K , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Detter JC , Brettin T , Spring S , Rohde M , Goker M , Woyke T , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 2 :270 , 2010
Abstract : Denitrovibrio acetiphilus Myhr and Torsvik 2000 is the type species of the genus Denitrovibrio in the bacterial family Deferribacteraceae. It is of phylogenetic interest because there are only six genera described in the family Deferribacteraceae. D. acetiphilus was isolated as a representative of a population reducing nitrate to ammonia in a laboratory column simulating the conditions in off-shore oil recovery fields. When nitrate was added to this column undesirable hydrogen sulfide production was stopped because the sulfate reducing populations were superseded by these nitrate reducing bacteria. Here we describe the features of this marine, mesophilic, obligately anaerobic organism respiring by nitrate reduction, together with the complete genome sequence, and annotation. This is the second complete genome sequence of the order Deferribacterales and the class Deferribacteres, which is the sole class in the phylum Deferribacteres. The 3,222,077 bp genome with its 3,034 protein-coding and 51 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Kiss_2010_Stand.Genomic.Sci_2_270
PubMedSearch : Kiss_2010_Stand.Genomic.Sci_2_270
PubMedID: 21304711
Gene_locus related to this paper: dena2-d4h2g2 , dena2-d4h260

Title : Complete genome sequence of Thermocrinis albus type strain (HI 11\/12) - Wirth_2010_Stand.Genomic.Sci_2_194
Author(s) : Wirth R , Sikorski J , Brambilla E , Misra M , Lapidus A , Copeland A , Nolan M , Lucas S , Chen F , Tice H , Cheng JF , Han C , Detter JC , Tapia R , Bruce D , Goodwin L , Pitluck S , Pati A , Anderson I , Ivanova N , Mavromatis K , Mikhailova N , Chen A , Palaniappan K , Bilek Y , Hader T , Land M , Hauser L , Chang YJ , Jeffries CD , Tindall BJ , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 2 :194 , 2010
Abstract : Thermocrinis albus Eder and Huber 2002 is one of three species in the genus Thermocrinis in the family Aquificaceae. Members of this family have become of significant interest because of their involvement in global biogeochemical cycles in high-temperature ecosystems. This interest had already spurred several genome sequencing projects for members of the family. We here report the first completed genome sequence a member of the genus Thermocrinis and the first type strain genome from a member of the family Aquificaceae. The 1,500,577 bp long genome with its 1,603 protein-coding and 47 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Wirth_2010_Stand.Genomic.Sci_2_194
PubMedSearch : Wirth_2010_Stand.Genomic.Sci_2_194
PubMedID: 21304702
Gene_locus related to this paper: theah-d3smz6

Title : Complete genome sequence of Thermosphaera aggregans type strain (M11TL) - Spring_2010_Stand.Genomic.Sci_2_245
Author(s) : Spring S , Rachel R , Lapidus A , Davenport K , Tice H , Copeland A , Cheng JF , Lucas S , Chen F , Nolan M , Bruce D , Goodwin L , Pitluck S , Ivanova N , Mavromatis K , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CC , Brettin T , Detter JC , Tapia R , Han C , Heimerl T , Weikl F , Brambilla E , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 2 :245 , 2010
Abstract : Thermosphaera aggregans Huber et al. 1998 is the type species of the genus Thermosphaera, which comprises at the time of writing only one species. This species represents archaea with a hyperthermophilic, heterotrophic, strictly anaerobic and fermentative phenotype. The type strain M11TL(T) was isolated from a water-sediment sample of a hot terrestrial spring (Obsidian Pool, Yellowstone National Park, Wyoming). Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,316,595 bp long single replicon genome with its 1,410 protein-coding and 47 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Spring_2010_Stand.Genomic.Sci_2_245
PubMedSearch : Spring_2010_Stand.Genomic.Sci_2_245
PubMedID: 21304709
Gene_locus related to this paper: theam-d5u0z4

Title : Complete genome sequence of Kytococcus sedentarius type strain (541) - Sims_2009_Stand.Genomic.Sci_1_12
Author(s) : Sims D , Brettin T , Detter JC , Han C , Lapidus A , Copeland A , Glavina Del Rio T , Nolan M , Chen F , Lucas S , Tice H , Cheng JF , Bruce D , Goodwin L , Pitluck S , Ovchinnikova G , Pati A , Ivanova N , Mavrommatis K , Chen A , Palaniappan K , D'Haeseleer P , Chain P , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Schneider S , Goker M , Pukall R , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 1 :12 , 2009
Abstract : Kytococcus sedentarius (ZoBell and Upham 1944) Stackebrandt et al. 1995 is the type strain of the species, and is of phylogenetic interest because of its location in the Dermacoccaceae, a poorly studied family within the actinobacterial suborder Micrococcineae. Kytococcus sedentarius is known for the production of oligoketide antibiotics as well as for its role as an opportunistic pathogen causing valve endocarditis, hemorrhagic pneumonia, and pitted keratolysis. It is strictly aerobic and can only grow when several amino acids are provided in the medium. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from a marine environment. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Dermacoccaceae and the 2,785,024 bp long single replicon genome with its 2639 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Sims_2009_Stand.Genomic.Sci_1_12
PubMedSearch : Sims_2009_Stand.Genomic.Sci_1_12
PubMedID: 21304632
Gene_locus related to this paper: kytsd-c7nfq8 , kytsd-c7nib9 , kytsd-c7niy9 , kytsd-c7nl26 , kytsd-c7nj46 , kytsd-c7nig1

Title : Complete genome sequence of Desulfotomaculum acetoxidans type strain (5575) - Spring_2009_Stand.Genomic.Sci_1_242
Author(s) : Spring S , Lapidus A , Schroder M , Gleim D , Sims D , Meincke L , Glavina Del Rio T , Tice H , Copeland A , Cheng JF , Lucas S , Chen F , Nolan M , Bruce D , Goodwin L , Pitluck S , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Chain P , Saunders E , Brettin T , Detter JC , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Han C
Ref : Stand Genomic Sci , 1 :242 , 2009
Abstract : Desulfotomaculum acetoxidans Widdel and Pfennig 1977 was one of the first sulfate-reducing bacteria known to grow with acetate as sole energy and carbon source. It is able to oxidize substrates completely to carbon dioxide with sulfate as the electron acceptor, which is reduced to hydrogen sulfide. All available data about this species are based on strain 5575(T), isolated from piggery waste in Germany. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a Desulfotomaculum species with validly published name. The 4,545,624 bp long single replicon genome with its 4370 protein-coding and 100 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Spring_2009_Stand.Genomic.Sci_1_242
PubMedSearch : Spring_2009_Stand.Genomic.Sci_1_242
PubMedID: 21304664
Gene_locus related to this paper: desas-c8vw82 , desas-c8vxd2

Title : Complete genome sequence of Desulfomicrobium baculatum type strain (X) - Copeland_2009_Stand.Genomic.Sci_1_29
Author(s) : Copeland A , Spring S , Goker M , Schneider S , Lapidus A , Del Rio TG , Tice H , Cheng JF , Chen F , Nolan M , Bruce D , Goodwin L , Pitluck S , Ivanova N , Mavrommatis K , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CC , Meincke L , Sims D , Brettin T , Detter JC , Han C , Chain P , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lucas S
Ref : Stand Genomic Sci , 1 :29 , 2009
Abstract : Desulfomicrobium baculatum is the type species of the genus Desulfomicrobium, which is the type genus of the family Desulfomicrobiaceae. It is of phylogenetic interest because of the isolated location of the family Desulfomicrobiaceae within the order Desulfovibrionales. D. baculatum strain X(T) is a Gram-negative, motile, sulfate-reducing bacterium isolated from water-saturated manganese carbonate ore. It is strictly anaerobic and does not require NaCl for growth, although NaCl concentrations up to 6% (w/v) are tolerated. The metabolism is respiratory or fermentative. In the presence of sulfate, pyruvate and lactate are incompletely oxidized to acetate and CO(2). Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the deltaproteobacterial family Desulfomicrobiaceae, and this 3,942,657 bp long single replicon genome with its 3494 protein-coding and 72 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Copeland_2009_Stand.Genomic.Sci_1_29
PubMedSearch : Copeland_2009_Stand.Genomic.Sci_1_29
PubMedID: 21304634
Gene_locus related to this paper: desbd-c7ln23 , desbd-c7lrc0 , desbd-c7lw38 , desbd-c7ls17

Title : Complete genome sequence of Halomicrobium mukohataei type strain (arg-2) - Tindall_2009_Stand.Genomic.Sci_1_270
Author(s) : Tindall BJ , Schneider S , Lapidus A , Copeland A , Glavina Del Rio T , Nolan M , Lucas S , Chen F , Tice H , Cheng JF , Saunders E , Bruce D , Goodwin L , Pitluck S , Mikhailova N , Pati A , Ivanova N , Mavrommatis K , Chen A , Palaniappan K , Chain P , Land M , Hauser L , Chang YJ , Jeffries CD , Brettin T , Han C , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Klenk HP , Kyrpides NC , Detter JC
Ref : Stand Genomic Sci , 1 :270 , 2009
Abstract : Halomicrobium mukohataei (Ihara et al. 1997) Oren et al. 2002 is the type species of the genus Halomicrobium. It is of phylogenetic interest because of its isolated location within the large euryarchaeal family Halobacteriaceae. H. mukohataei is an extreme halophile that grows essentially aerobically, but can also grow anaerobically under a change of morphology and with nitrate as electron acceptor. The strain, whose genome is described in this report, is a free-living, motile, Gram-negative euryarchaeon, originally isolated from Salinas Grandes in Jujuy, Andes highlands, Argentina. Its genome contains three genes for the 16S rRNA that differ from each other by up to 9%. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence from the poorly populated genus Halomicrobium, and the 3,332,349 bp long genome (chromosome and one plasmid) with its 3416 protein-coding and 56 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Tindall_2009_Stand.Genomic.Sci_1_270
PubMedSearch : Tindall_2009_Stand.Genomic.Sci_1_270
PubMedID: 21304667
Gene_locus related to this paper: halmd-c7nwe5 , halmd-c7nwh2 , halmd-c7p0c0 , halmd-c7p2d1 , halmd-c7p3m9

Title : Complete genome sequence of Pirellula staleyi type strain (ATCC 27377) - Clum_2009_Stand.Genomic.Sci_1_308
Author(s) : Clum A , Tindall BJ , Sikorski J , Ivanova N , Mavrommatis K , Lucas S , Glavina T , Del R , Nolan M , Chen F , Tice H , Pitluck S , Cheng JF , Chertkov O , Brettin T , Han C , Detter JC , Kuske C , Bruce D , Goodwin L , Ovchinikova G , Pati A , Mikhailova N , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Chain P , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 1 :308 , 2009
Abstract : Pirellula staleyi Schlesner and Hirsch 1987 is the type species of the genus Pirellula of the family Planctomycetaceae. Members of this pear- or teardrop-shaped bacterium show a clearly visible pointed attachment pole and can be distinguished from other Planctomycetes by a lack of true stalks. Strains closely related to the species have been isolated from fresh and brackish water, as well as from hypersaline lakes. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the order Planctomyces and only the second sequence from the phylum Planctobacteria/Planctomycetes. The 6,196,199 bp long genome with its 4773 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Clum_2009_Stand.Genomic.Sci_1_308
PubMedSearch : Clum_2009_Stand.Genomic.Sci_1_308
PubMedID: 21304671
Gene_locus related to this paper: pirsd-d2qwf7 , pirsd-d2qya4 , pirsd-d2qyh4 , pirsd-d2qyx7 , pirsd-d2r0n7 , pirsd-d2r1w6 , pirsd-d2r2c5 , pirsd-d2r2f7 , pirsd-d2r3w0 , pirsd-d2r4c3 , pirsd-d2r5t1 , pirsd-d2r9d5 , pirsd-d2r496 , pirsd-d2r881 , pirsd-d2r024

Title : Complete genome sequence of Streptobacillus moniliformis type strain (9901) - Nolan_2009_Stand.Genomic.Sci_1_300
Author(s) : Nolan M , Gronow S , Lapidus A , Ivanova N , Copeland A , Lucas S , Del Rio TG , Chen F , Tice H , Pitluck S , Cheng JF , Sims D , Meincke L , Bruce D , Goodwin L , Brettin T , Han C , Detter JC , Ovchinikova G , Pati A , Mavromatis K , Mikhailova N , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Rohde M , Sproer C , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Chain P
Ref : Stand Genomic Sci , 1 :300 , 2009
Abstract : Streptobacillus moniliformis Levaditi et al. 1925 is the type and sole species of the genus Streptobacillus, and is of phylogenetic interest because of its isolated location in the sparsely populated and neither taxonomically nor genomically much accessed family 'Leptotrichiaceae' within the phylum Fusobacteria. The 'Leptotrichiaceae' have not been well characterized, genomically or taxonomically. S. moniliformis,is a Gram-negative, non-motile, pleomorphic bacterium and is the etiologic agent of rat bite fever and Haverhill fever. Strain 9901(T), the type strain of the species, was isolated from a patient with rat bite fever. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is only the second completed genome sequence of the order Fusobacteriales and no more than the third sequence from the phylum Fusobacteria. The 1,662,578 bp long chromosome and the 10,702 bp plasmid with a total of 1511 protein-coding and 55 RNA genes are part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Nolan_2009_Stand.Genomic.Sci_1_300
PubMedSearch : Nolan_2009_Stand.Genomic.Sci_1_300
PubMedID: 21304670
Gene_locus related to this paper: strm9-d1ayq9 , strm9-d1avt1

Title : Complete genome sequence of Halorhabdus utahensis type strain (AX-2) - Anderson_2009_Stand.Genomic.Sci_1_218
Author(s) : Anderson I , Tindall BJ , Pomrenke H , Goker M , Lapidus A , Nolan M , Copeland A , Glavina Del Rio T , Chen F , Tice H , Cheng JF , Lucas S , Chertkov O , Bruce D , Brettin T , Detter JC , Han C , Goodwin L , Land M , Hauser L , Chang YJ , Jeffries CD , Pitluck S , Pati A , Mavromatis K , Ivanova N , Ovchinnikova G , Chen A , Palaniappan K , Chain P , Rohde M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 1 :218 , 2009
Abstract : Halorhabdus utahensis Waino et al. 2000 is the type species of the genus, which is of phylogenetic interest because of its location on one of the deepest branches within the very extensive euryarchaeal family Halobacteriaceae. H. utahensis is a free-living, motile, rod shaped to pleomorphic, Gram-negative archaeon, which was originally isolated from a sediment sample collected from the southern arm of Great Salt Lake, Utah, USA. When grown on appropriate media, H. utahensis can form polyhydroxybutyrate (PHB). Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the a member of halobacterial genus Halorhabdus, and the 3,116,795 bp long single replicon genome with its 3027 protein-coding and 48 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Anderson_2009_Stand.Genomic.Sci_1_218
PubMedSearch : Anderson_2009_Stand.Genomic.Sci_1_218
PubMedID: 21304660
Gene_locus related to this paper: halud-c7npq6 , halud-c7npw0 , halud-c7nsl4 , halud-c7nut6 , halud-c7npw2

Title : Complete genome sequence of Halogeometricum borinquense type strain (PR3) - Malfatti_2009_Stand.Genomic.Sci_1_150
Author(s) : Malfatti S , Tindall BJ , Schneider S , Fahnrich R , Lapidus A , Labuttii K , Copeland A , Glavina Del Rio T , Nolan M , Chen F , Lucas S , Tice H , Cheng JF , Bruce D , Goodwin L , Pitluck S , Anderson I , Pati A , Ivanova N , Mavromatis K , Chen A , Palaniappan K , D'Haeseleer P , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Chain P
Ref : Stand Genomic Sci , 1 :150 , 2009
Abstract : Halogeometricum borinquense Montalvo-Rodriguez et al. 1998 is the type species of the genus, and is of phylogenetic interest because of its distinct location between the halobacterial genera Haloquadratum and Halosarcina. H. borinquense requires extremely high salt (NaCl) concentrations for growth. It can not only grow aerobically but also anaerobically using nitrate as electron acceptor. The strain described in this report is a free-living, motile, pleomorphic, euryarchaeon, which was originally isolated from the solar salterns of Cabo Rojo, Puerto Rico. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the halobacterial genus Halogeometricum, and this 3,944,467 bp long six replicon genome with its 3937 protein-coding and 57 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Malfatti_2009_Stand.Genomic.Sci_1_150
PubMedSearch : Malfatti_2009_Stand.Genomic.Sci_1_150
PubMedID: 21304651
Gene_locus related to this paper: 9eury-c1v4h6 , 9eury-c1v4p7 , 9eury-c1v4w8 , 9eury-c1v5h9 , 9eury-c1v5q3 , 9eury-c1v5t3 , 9eury-c1v7y6 , 9eury-c1v8n9 , 9eury-c1v568 , 9eury-c1vb62 , 9eury-c1vc42 , 9eury-c1vcz1 , 9eury-c1vd75 , 9eury-c1vdd8 , 9eury-c1ve13 , 9eury-c1ve51 , 9eury-c1vei1 , 9eury-c1vet7 , halbp-e4nkx5 , halbp-e4nra7 , halbp-e4nub0 , halbp-e4nmr3

Title : Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICP) - Clum_2009_Stand.Genomic.Sci_1_38
Author(s) : Clum A , Nolan M , Lang E , Glavina Del Rio T , Tice H , Copeland A , Cheng JF , Lucas S , Chen F , Bruce D , Goodwin L , Pitluck S , Ivanova N , Mavrommatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Goker M , Spring S , Land M , Hauser L , Chang YJ , Jeffries CC , Chain P , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 1 :38 , 2009
Abstract : Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family Acidimicrobiaceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO(2) concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order Acidomicrobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Clum_2009_Stand.Genomic.Sci_1_38
PubMedSearch : Clum_2009_Stand.Genomic.Sci_1_38
PubMedID: 21304635
Gene_locus related to this paper: acifd-c7m0l6 , acifd-c7m0z1 , acifd-c7m1g1 , acifd-c7m1p7

Title : Complete genome sequence of Eggerthella lenta type strain (IPP VPI 0255) - Saunders_2009_Stand.Genomic.Sci_1_174
Author(s) : Saunders E , Pukall R , Abt B , Lapidus A , Glavina Del Rio T , Copeland A , Tice H , Cheng JF , Lucas S , Chen F , Nolan M , Bruce D , Goodwin L , Pitluck S , Ivanova N , Mavromatis K , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Chain P , Meincke L , Sims D , Brettin T , Detter JC , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Han C
Ref : Stand Genomic Sci , 1 :174 , 2009
Abstract : Eggerthella lenta (Eggerth 1935) Wade et al. 1999, emended Wurdemann et al. 2009 is the type species of the genus Eggerthella, which belongs to the actinobacterial family Coriobacteriaceae. E. lenta is a Gram-positive, non-motile, non-sporulating pathogenic bacterium that can cause severe bacteremia. The strain described in this study has been isolated from a rectal tumor in 1935. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Eggerthella, and the 3,632,260 bp long single replicon genome with its 3123 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Saunders_2009_Stand.Genomic.Sci_1_174
PubMedSearch : Saunders_2009_Stand.Genomic.Sci_1_174
PubMedID: 21304654
Gene_locus related to this paper: eggle-c8wmc6 , eggle-c8wpb6

Title : Complete genome sequence of Slackia heliotrinireducens type strain (RHS 1) - Pukall_2009_Stand.Genomic.Sci_1_234
Author(s) : Pukall R , Lapidus A , Nolan M , Copeland A , Glavina Del Rio T , Lucas S , Chen F , Tice H , Cheng JF , Chertkov O , Bruce D , Goodwin L , Kuske C , Brettin T , Detter JC , Han C , Pitluck S , Pati A , Mavrommatis K , Ivanova N , Ovchinnikova G , Chen A , Palaniappan K , Schneider S , Rohde M , Chain P , D'Haeseleer P , Goker M , Bristow J , Eisen JA , Markowitz V , Kyrpides NC , Klenk HP , Hugenholtz P
Ref : Stand Genomic Sci , 1 :234 , 2009
Abstract : Slackia heliotrinireducens (Lanigan 1983) Wade et al. 1999 is of phylogenetic interest because of its location in a genomically yet uncharted section of the family Coriobacteriaceae, within the deep branching Actinobacteria. Strain RHS 1(T) was originally isolated from the ruminal flora of a sheep. It is a proteolytic anaerobic coccus, able to reductively cleave pyrrolizidine alkaloids. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Slackia, and the 3,165,038 bp long single replicon genome with its 2798 protein-coding and 60 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Pukall_2009_Stand.Genomic.Sci_1_234
PubMedSearch : Pukall_2009_Stand.Genomic.Sci_1_234
PubMedID: 21304663
Gene_locus related to this paper: slahd-c7n2q9 , slahd-c7n5g8 , slahd-c7n8d3 , slahd-c7n116 , slahd-c7n1y7 , slahd-c7n5i5 , slahd-c7n6x8 , slahd-c7n8a4 , slahd-c7n2t9

Title : Complete genome sequence of Rhodothermus marinus type strain (R-10) - Nolan_2009_Stand.Genomic.Sci_1_283
Author(s) : Nolan M , Tindall BJ , Pomrenke H , Lapidus A , Copeland A , Glavina Del Rio T , Lucas S , Chen F , Tice H , Cheng JF , Saunders E , Han C , Bruce D , Goodwin L , Chain P , Pitluck S , Ovchinikova G , Pati A , Ivanova N , Mavromatis K , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Brettin T , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Detter JC
Ref : Stand Genomic Sci , 1 :283 , 2009
Abstract : Rhodothermus marinus Alfredsson et al. 1995 is the type species of the genus and is of phylogenetic interest because the Rhodothermaceae represent the deepest lineage in the phylum Bacteroidetes. R. marinus R-10(T) is a Gram-negative, non-motile, non-spore-forming bacterium isolated from marine hot springs off the coast of Iceland. Strain R-10(T) is strictly aerobic and requires slightly halophilic conditions for growth. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Rhodothermus, and only the second sequence from members of the family Rhodothermaceae. The 3,386,737 bp genome (including a 125 kb plasmid) with its 2914 protein-coding and 48 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Nolan_2009_Stand.Genomic.Sci_1_283
PubMedSearch : Nolan_2009_Stand.Genomic.Sci_1_283
PubMedID: 21304669
Gene_locus related to this paper: rhom4-d0mhy8 , rhom4-d0mg25 , rhom4-d0mhd2 , rhom4-d0mhw6

Title : Complete genome sequence of Sanguibacter keddieii type strain (ST-74) - Ivanova_2009_Stand.Genomic.Sci_1_110
Author(s) : Ivanova N , Sikorski J , Sims D , Brettin T , Detter JC , Han C , Lapidus A , Copeland A , Glavina Del Rio T , Nolan M , Chen F , Lucas S , Tice H , Cheng JF , Bruce D , Goodwin L , Pitluck S , Pati A , Mavromatis K , Chen A , Palaniappan K , D'Haeseleer P , Chain P , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Goker M , Pukall R , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 1 :110 , 2009
Abstract : Sanguibacter keddieii is the type species of the genus Sanguibacter, the only genus within the family of Sanguibacteraceae. Phylogenetically, this family is located in the neighborhood of the genus Oerskovia and the family Cellulomonadaceae within the actinobacterial suborder Micrococcineae. The strain described in this report was isolated from blood of apparently healthy cows. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Sanguibacteraceae, and the 4,253,413 bp long single replicon genome with its 3735 protein-coding and 70 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Ivanova_2009_Stand.Genomic.Sci_1_110
PubMedSearch : Ivanova_2009_Stand.Genomic.Sci_1_110
PubMedID: 21304646
Gene_locus related to this paper: sanks-d1bag5 , sanks-d1bah5 , sanks-d1bah6 , sanks-d1bat1 , sanks-d1bay1 , sanks-d1bb04 , sanks-d1bbg6 , sanks-d1bbs4 , sanks-d1bdb3 , sanks-d1bdq0 , sanks-d1bdy6 , sanks-d1bec0 , sanks-d1bes6 , sanks-d1bf19 , sanks-d1bfc5 , sanks-d1bfe7 , sanks-d1bfs7 , sanks-d1bg53 , sanks-d1bgd3 , sanks-d1bgi7 , sanks-d1bhh0 , sanks-d1biq2 , sanks-d1bjg2 , sanks-d1bkh6 , sanks-d1bb73

Title : Complete genome sequence of Atopobium parvulum type strain (IPP 1246) - Copeland_2009_Stand.Genomic.Sci_1_166
Author(s) : Copeland A , Sikorski J , Lapidus A , Nolan M , Del Rio TG , Lucas S , Chen F , Tice H , Pitluck S , Cheng JF , Pukall R , Chertkov O , Brettin T , Han C , Detter JC , Kuske C , Bruce D , Goodwin L , Ivanova N , Mavromatis K , Mikhailova N , Chen A , Palaniappan K , Chain P , Rohde M , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 1 :166 , 2009
Abstract : Atopobium parvulum (Weinberg et al. 1937) Collins and Wallbanks 1993 comb. nov. is the type strain of the species and belongs to the genomically yet unstudied Atopobium/Olsenella branch of the family Coriobacteriaceae. The species A. parvulum is of interest because its members are frequently isolated from the human oral cavity and are found to be associated with halitosis (oral malodor) but not with periodontitis. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Atopobium, and the 1,543,805 bp long single replicon genome with its 1369 protein-coding and 49 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Copeland_2009_Stand.Genomic.Sci_1_166
PubMedSearch : Copeland_2009_Stand.Genomic.Sci_1_166
PubMedID: 21304653
Gene_locus related to this paper: atopd-c8w7b9 , atopd-c8w7c0 , atopd-c8w7k9 , atopd-c8w886

Title : Complete genome sequence of Beutenbergia cavernae type strain (HKI 0122) - Land_2009_Stand.Genomic.Sci_1_21
Author(s) : Land M , Pukall R , Abt B , Goker M , Rohde M , Glavina Del Rio T , Tice H , Copeland A , Cheng JF , Lucas S , Chen F , Nolan M , Bruce D , Goodwin L , Pitluck S , Ivanova N , Mavromatis K , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Hauser L , Chang YJ , Jefferies CC , Saunders E , Brettin T , Detter JC , Han C , Chain P , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 1 :21 , 2009
Abstract : Beutenbergia cavernae (Groth et al. 1999) is the type species of the genus and is of phylogenetic interest because of its isolated location in the actinobacterial suborder Micrococcineae. B. cavernae HKI 0122(T) is a Gram-positive, non-motile, non-spore-forming bacterium isolated from a cave in Guangxi (China). B. cavernae grows best under aerobic conditions and shows a rod-coccus growth cycle. Its cell wall peptidoglycan contains the diagnostic L-lysine <-- L-glutamate interpeptide bridge. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence from the poorly populated micrococcineal family Beutenbergiaceae, and this 4,669,183 bp long single replicon genome with its 4225 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Land_2009_Stand.Genomic.Sci_1_21
PubMedSearch : Land_2009_Stand.Genomic.Sci_1_21
PubMedID: 21304633
Gene_locus related to this paper: beuc1-c5bux6 , beuc1-c5bve3 , beuc1-c5bvg4 , beuc1-c5bvm8 , beuc1-c5bwz5 , beuc1-c5bx55 , beuc1-c5bxw8 , beuc1-c5bxx8 , beuc1-c5byj2 , beuc1-c5bzt8 , beuc1-c5c0d3 , beuc1-c5c0f9 , beuc1-c5c1b7 , beuc1-c5c4j9 , beuc1-c5c4m3 , beuc1-c5c5h5 , beuc1-c5c5t9 , beuc1-c5c6d1 , beuc1-c5c476 , beuc1-c5c478 , beuc1-c5c572 , beuc1-c5c4i4 , beuc1-c5bxv5

Title : Complete genome sequence of Jonesia denitrificans type strain (Prevot 55134) - Pukall_2009_Stand.Genomic.Sci_1_262
Author(s) : Pukall R , Gehrich-Schroter G , Lapidus A , Nolan M , Glavina Del Rio T , Lucas S , Chen F , Tice H , Pitluck S , Cheng JF , Copeland A , Saunders E , Brettin T , Detter JC , Bruce D , Goodwin L , Pati A , Ivanova N , Mavromatis K , Ovchinnikova G , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Chain P , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Han C
Ref : Stand Genomic Sci , 1 :262 , 2009
Abstract : Jonesia denitrificans (Prevot 1961) Rocourt et al. 1987 is the type species of the genus Jonesia, and is of phylogenetic interest because of its isolated location in the actinobacterial suborder Micrococcineae. J. denitrificans is characterized by a typical coryneform morphology and is able to form irregular nonsporulating rods showing branched and club-like forms. Coccoid cells occur in older cultures. J. denitrificans is classified as a pathogenic organism for animals (vertebrates). The type strain whose genome is described here was originally isolated from cooked ox blood. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the genus for which a complete genome sequence is described. The 2,749,646 bp long genome with its 2558 protein-coding and 71 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Pukall_2009_Stand.Genomic.Sci_1_262
PubMedSearch : Pukall_2009_Stand.Genomic.Sci_1_262
PubMedID: 21304666
Gene_locus related to this paper: jondd-c7qz27 , jondd-c7qza6 , jondd-c7r0s6 , jondd-c7r2p4 , jondd-c7r2s4 , jondd-c7r5f7 , jondd-c7r044 , jondd-c7r128 , jondd-c7r357

Title : Complete genome sequence of Cryptobacterium curtum type strain (12-3) - Mavrommatis_2009_Stand.Genomic.Sci_1_93
Author(s) : Mavrommatis K , Pukall R , Rohde C , Chen F , Sims D , Brettin T , Kuske C , Detter JC , Han C , Lapidus A , Copeland A , Glavina Del Rio T , Nolan M , Lucas S , Tice H , Cheng JF , Bruce D , Goodwin L , Pitluck S , Ovchinnikova G , Pati A , Ivanova N , Chen A , Palaniappan K , Chain P , D'Haeseleer P , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Rohde M , Klenk HP , Kyrpides NC
Ref : Stand Genomic Sci , 1 :93 , 2009
Abstract : Cryptobacterium curtum Nakazawa etal. 1999 is the type species of the genus, and is of phylogenetic interest because of its very distant and isolated position within the family Coriobacteriaceae. C. curtum is an asaccharolytic, opportunistic pathogen with a typical occurrence in the oral cavity, involved in dental and oral infections like periodontitis, inflammations and abscesses. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the actinobacterial family Coriobacteriaceae, and this 1,617,804 bp long single replicon genome with its 1364 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Mavrommatis_2009_Stand.Genomic.Sci_1_93
PubMedSearch : Mavrommatis_2009_Stand.Genomic.Sci_1_93
PubMedID: 21304644

Title : Complete genome sequence of Kangiella koreensis type strain (SW-125) - Han_2009_Stand.Genomic.Sci_1_226
Author(s) : Han C , Sikorski J , Lapidus A , Nolan M , Glavina Del Rio T , Tice H , Cheng JF , Lucas S , Chen F , Copeland A , Ivanova N , Mavromatis K , Ovchinnikova G , Pati A , Bruce D , Goodwin L , Pitluck S , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Chain P , Saunders E , Brettin T , Goker M , Tindall BJ , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Detter JC
Ref : Stand Genomic Sci , 1 :226 , 2009
Abstract : Kangiella koreensis (Yoon et al. 2004) is the type species of the genus and is of phylogenetic interest because of the very isolated location of the genus Kangiella in the gammaproteobacterial order Oceanospirillales. K. koreensis SW-125(T) is a Gram-negative, non-motile, non-spore-forming bacterium isolated from tidal flat sediments at Daepo Beach, Yellow Sea, Korea. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence from the genus Kangiella and only the fourth genome from the order Oceanospirillales. This 2,852,073 bp long single replicon genome with its 2647 protein-coding and 48 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Han_2009_Stand.Genomic.Sci_1_226
PubMedSearch : Han_2009_Stand.Genomic.Sci_1_226
PubMedID: 21304661
Gene_locus related to this paper: kankd-c7r7f7 , kankd-c7r7w2 , kankd-c7r8t4 , kankd-c7r9y8 , kankd-c7r701 , kankd-c7r727 , kankd-c7r779 , kankd-c7r785 , kankd-c7ra17 , kankd-c7rc78

Title : Complete genome sequence of Saccharomonospora viridis type strain (P101) - Pati_2009_Stand.Genomic.Sci_1_141
Author(s) : Pati A , Sikorski J , Nolan M , Lapidus A , Copeland A , Glavina Del Rio T , Lucas S , Chen F , Tice H , Pitluck S , Cheng JF , Chertkov O , Brettin T , Han C , Detter JC , Kuske C , Bruce D , Goodwin L , Chain P , D'Haeseleer P , Chen A , Palaniappan K , Ivanova N , Mavromatis K , Mikhailova N , Rohde M , Tindall BJ , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 1 :141 , 2009
Abstract : Saccharomonospora viridis (Schuurmans et al. 1956) Nonomurea and Ohara 1971 is the type species of the genus Saccharomonospora which belongs to the family Pseudonocardiaceae. S. viridis is of interest because it is a Gram-negative organism classified among the usually Gram-positive actinomycetes. Members of the species are frequently found in hot compost and hay, and its spores can cause farmer's lung disease, bagassosis, and humidifier fever. Strains of the species S. viridis have been found to metabolize the xenobiotic pentachlorophenol (PCP). The strain described in this study has been isolated from peat-bog in Ireland. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the family Pseudonocardiaceae, and the 4,308,349 bp long single replicon genome with its 3906 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Pati_2009_Stand.Genomic.Sci_1_141
PubMedSearch : Pati_2009_Stand.Genomic.Sci_1_141
PubMedID: 21304650
Gene_locus related to this paper: sacvd-DsvA , sacvd-c7mpm7 , sacvd-c7mpv6 , sacvd-c7mqn5 , sacvd-c7mrh9 , sacvd-c7mrj7 , sacvd-c7msh1 , sacvd-c7mss4 , sacvd-c7msy5 , sacvd-c7mua8 , sacvd-c7mv20 , sacvd-c7mvm9 , sacvd-c7mx36 , sacvd-c7my02 , sacvd-c7myf1 , sacvd-c7myf2 , sacvd-c7myh3 , sacvd-c7myv3 , sacvd-c7mzb0 , sacvd-c7n0e5 , sacvd-c7mxx2 , sacvd-c7mwe5 , sacvd-c7mve8 , sacvd-c7mu02 , sacvd-c7myq6

Title : Complete genome sequence of Brachybacterium faecium type strain (Schefferle 6-10) - Lapidus_2009_Stand.Genomic.Sci_1_3
Author(s) : Lapidus A , Pukall R , Labuttii K , Copeland A , Del Rio TG , Nolan M , Chen F , Lucas S , Tice H , Cheng JF , Bruce D , Goodwin L , Pitluck S , Rohde M , Goker M , Pati A , Ivanova N , Mavrommatis K , Chen A , Palaniappan K , D'Haeseleer P , Chain P , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 1 :3 , 2009
Abstract : Brachybacterium faecium Collins et al. 1988 is the type species of the genus, and is of phylogenetic interest because of its location in the Dermabacteraceae, a rather isolated family within the actinobacterial suborder Micrococcineae. B. faecium is known for its rod-coccus growth cycle and the ability to degrade uric acid. It grows aerobically or weakly anaerobically. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from poultry deep litter. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the actinobacterial family Dermabacteraceae, and the 3,614,992 bp long single replicon genome with its 3129 protein-coding and 69 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Lapidus_2009_Stand.Genomic.Sci_1_3
PubMedSearch : Lapidus_2009_Stand.Genomic.Sci_1_3
PubMedID: 21304631
Gene_locus related to this paper: brafd-c7maj6 , brafd-c7mb43 , brafd-c7mc54 , brafd-c7mcf0 , brafd-c7mfs9 , brafd-c7mfx9 , brafd-c7mg22 , brafd-c7mbr0 , brafd-c7mi27 , brafd-c7mhn6

Title : Complete genome sequence of Actinosynnema mirum type strain (101) - Land_2009_Stand.Genomic.Sci_1_46
Author(s) : Land M , Lapidus A , Mayilraj S , Chen F , Copeland A , Del Rio TG , Nolan M , Lucas S , Tice H , Cheng JF , Chertkov O , Bruce D , Goodwin L , Pitluck S , Rohde M , Goker M , Pati A , Ivanova N , Mavromatis K , Chen A , Palaniappan K , Hauser L , Chang YJ , Jeffries CC , Brettin T , Detter JC , Han C , Chain P , Tindall BJ , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 1 :46 , 2009
Abstract : Actinosynnema mirum Hasegawa et al. 1978 is the type species of the genus, and is of phylogenetic interest because of its central phylogenetic location in the Actino-synnemataceae, a rapidly growing family within the actinobacterial suborder Pseudo-nocardineae. A. mirum is characterized by its motile spores borne on synnemata and as a producer of nocardicin antibiotics. It is capable of growing aerobically and under a moderate CO(2) atmosphere. The strain is a Gram-positive, aerial and substrate mycelium producing bacterium, originally isolated from a grass blade collected from the Raritan River, New Jersey. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Actinosynnemataceae, and only the second sequence from the actinobacterial suborder Pseudonocardineae. The 8,248,144 bp long single replicon genome with its 7100 protein-coding and 77 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Land_2009_Stand.Genomic.Sci_1_46
PubMedSearch : Land_2009_Stand.Genomic.Sci_1_46
PubMedID: 21304636
Gene_locus related to this paper: actmd-c6w9l3 , actmd-c6w9n7 , actmd-c6w9s6 , actmd-c6w9w6 , actmd-c6w881 , actmd-c6w899 , actmd-c6waq3 , actmd-c6wbu4 , actmd-c6wc84 , actmd-c6we33 , actmd-c6wed0 , actmd-c6wee7 , actmd-c6weq5 , actmd-c6wer8 , actmd-c6wf96 , actmd-c6wfj7 , actmd-c6wg08 , actmd-c6wgs1 , actmd-c6wh70 , actmd-c6wh84 , actmd-c6whc5 , actmd-c6whm5 , actmd-c6wi63 , actmd-c6wiw2 , actmd-c6wl14 , actmd-c6wla7 , actmd-c6wlp6 , actmd-c6wnr8 , actmd-c6wnv1 , actmd-c6wq55 , actmd-c6wqd1 , actmd-c6wqs5 , actmd-c6wqw5 , actmd-c6wrs4 , actmd-c6ws01 , actmd-c6ws38 , actmd-c6wre6 , actmd-c6wj22 , actmd-c6wmc1 , actmd-c6wn31 , actmd-c6wqv1 , actmd-c6wlx3 , actmd-c6wmy9

Title : Complete genome sequence of Pedobacter heparinus type strain (HIM 762-3) - Han_2009_Stand.Genomic.Sci_1_54
Author(s) : Han C , Spring S , Lapidus A , Del Rio TG , Tice H , Copeland A , Cheng JF , Lucas S , Chen F , Nolan M , Bruce D , Goodwin L , Pitluck S , Ivanova N , Mavromatis K , Mikhailova N , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CC , Saunders E , Chertkov O , Brettin T , Goker M , Rohde M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Detter JC
Ref : Stand Genomic Sci , 1 :54 , 2009
Abstract : Pedobacter heparinus (Payza and Korn 1956) Steyn et al. 1998 comb. nov. is the type species of the rapidly growing genus Pedobacter within the family Sphingobacteriaceae of the phylum 'Bacteroidetes'. P. heparinus is of interest, because it was the first isolated strain shown to grow with heparin as sole carbon and nitrogen source and because it produces several enzymes involved in the degradation of mucopolysaccharides. All available data about this species are based on a sole strain that was isolated from dry soil. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first report on a complete genome sequence of a member of the genus Pedobacter, and the 5,167,383 bp long single replicon genome with its 4287 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Han_2009_Stand.Genomic.Sci_1_54
PubMedSearch : Han_2009_Stand.Genomic.Sci_1_54
PubMedID: 21304637
Gene_locus related to this paper: pedhd-c6xsb2 , pedhd-c6xtc2 , pedhd-c6xtt3 , pedhd-c6xwf3 , pedhd-c6xzk8 , pedhd-c6y3i4 , pedhd-c6y3z2 , pedhd-c6y041 , pedhd-c6y150 , pedhd-c6xze4 , pedhd-c6xze5 , pedhd-c6y111

Title : Complete genome sequence of Anaerococcus prevotii type strain (PC1) - Labutti_2009_Stand.Genomic.Sci_1_159
Author(s) : LaButti K , Pukall R , Steenblock K , Glavina Del Rio T , Tice H , Copeland A , Cheng JF , Lucas S , Chen F , Nolan M , Bruce D , Goodwin L , Pitluck S , Ivanova N , Mavromatis K , Ovchinnikova G , Pati A , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Chain P , Saunders E , Brettin T , Detter JC , Han C , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP , Lapidus A
Ref : Stand Genomic Sci , 1 :159 , 2009
Abstract : Anaerococcus prevotii (Foubert and Douglas 1948) Ezaki et al. 2001 is the type species of the genus, and is of phylogenetic interest because of its arguable assignment to the provisionally arranged family 'Peptostreptococcaceae'. A. prevotii is an obligate anaerobic coccus, usually arranged in clumps or tetrads. The strain, whose genome is described here, was originally isolated from human plasma; other strains of the species were also isolated from clinical specimen. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the genus. Next to Finegoldia magna, A. prevotii is only the second species from the family 'Peptostreptococcaceae' for which a complete genome sequence is described. The 1,998,633 bp long genome (chromosome and one plasmid) with its 1852 protein-coding and 61 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Labutti_2009_Stand.Genomic.Sci_1_159
PubMedSearch : Labutti_2009_Stand.Genomic.Sci_1_159
PubMedID: 21304652
Gene_locus related to this paper: anapd-c7ri43

Title : Complete genome sequence of Stackebrandtia nassauensis type strain (LLR-40K-21) - Munk_2009_Stand.Genomic.Sci_1_234
Author(s) : Munk C , Lapidus A , Copeland A , Jando M , Mayilraj S , Glavina Del Rio T , Nolan M , Chen F , Lucas S , Tice H , Cheng JF , Han C , Detter JC , Bruce D , Goodwin L , Chain P , Pitluck S , Goker M , Ovchinikova G , Pati A , Ivanova N , Mavromatis K , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 1 :234 , 2009
Abstract : Stackebrandtia nassauensis Labeda and Kroppenstedt (2005) is the type species of the genus Stackebrandtia, and a member of the actinobacterial family Glycomycetaceae. Stackebrandtia currently contains two species, which are differentiated from Glycomyces spp. by cellular fatty acid and menaquinone composition. Strain LLR-40K-21(T) is Gram-positive, aerobic, and nonmotile, with a branched substrate mycelium and on some media an aerial mycelium. The strain was originally isolated from a soil sample collected from a road side in Nassau, Bahamas. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the actinobacterial suborder Glycomycineae. The 6,841,557 bp long single replicon genome with its 6487 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Munk_2009_Stand.Genomic.Sci_1_234
PubMedSearch : Munk_2009_Stand.Genomic.Sci_1_234
PubMedID: 21304662
Gene_locus related to this paper: stanl-d3pu17 , stanl-d3pum9 , stanl-d3puq6 , stanl-d3pv31 , stanl-d3pve8 , stanl-d3px28 , stanl-d3pxd2 , stanl-d3pxk8 , stanl-d3pxp3 , stanl-d3pxu2 , stanl-d3py25 , stanl-d3py33 , stanl-d3pzi4 , stanl-d3q2d8 , stanl-d3q2s1 , stanl-d3q2z9 , stanl-d3q3r4 , stanl-d3q3u7 , stanl-d3q4g9 , stanl-d3q4i5 , stanl-d3q4i6 , stanl-d3q5k1 , stanl-d3q5x3 , stanl-d3q6b0 , stanl-d3q6y1 , stanl-d3q7h0 , stanl-d3q8a8 , stanl-d3q8h5 , stanl-d3q8k0 , stanl-d3q8m9 , stanl-d3q8q0 , stanl-d3q8y3 , stanl-d3q9n2 , stanl-d3q9n8 , stanl-d3q9v6 , stanl-d3q028 , stanl-d3q293 , stanl-d3q721 , stanl-d3q784 , stanl-d3q912 , stanl-d3q956 , stanl-d3qak3 , stanl-d3qas4 , stanl-d3qb03 , stanl-d3qbc6 , stanl-d3q1i5 , stanl-d3pws8 , stanl-d3py92 , stanl-d3qbx6

Title : Complete genome sequence of Leptotrichia buccalis type strain (C-1013-b) - Ivanova_2009_Stand.Genomic.Sci_1_126
Author(s) : Ivanova N , Gronow S , Lapidus A , Copeland A , Glavina Del Rio T , Nolan M , Lucas S , Chen F , Tice H , Cheng JF , Saunders E , Bruce D , Goodwin L , Brettin T , Detter JC , Han C , Pitluck S , Mikhailova N , Pati A , Mavrommatis K , Chen A , Palaniappan K , Land M , Hauser L , Chang YJ , Jeffries CD , Chain P , Rohde C , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 1 :126 , 2009
Abstract : Leptotrichia buccalis (Robin 1853) Trevisan 1879 is the type species of the genus, and is of phylogenetic interest because of its isolated location in the sparsely populated and neither taxonomically nor genomically adequately accessed family 'Leptotrichiaceae' within the phylum 'Fusobacteria'. Species of Leptotrichia are large, fusiform, non-motile, non-sporulating rods, which often populate the human oral flora. L. buccalis is anaerobic to aerotolerant, and saccharolytic. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the order 'Fusobacteriales' and no more than the second sequence from the phylum 'Fusobacteria'. The 2,465,610 bp long single replicon genome with its 2306 protein-coding and 61 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Ivanova_2009_Stand.Genomic.Sci_1_126
PubMedSearch : Ivanova_2009_Stand.Genomic.Sci_1_126
PubMedID: 21304648
Gene_locus related to this paper: lepbd-c7naa9 , lepbd-c7nay1 , lepbd-c7ncm7

Title : Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845) - Mavrommatis_2009_Stand.Genomic.Sci_1_101
Author(s) : Mavrommatis K , Gronow S , Saunders E , Land M , Lapidus A , Copeland A , Glavina Del Rio T , Nolan M , Lucas S , Chen F , Tice H , Cheng JF , Bruce D , Goodwin L , Pitluck S , Pati A , Ivanova N , Chen A , Palaniappan K , Chain P , Hauser L , Chang YJ , Jeffries CD , Brettin T , Detter JC , Han C , Bristow J , Goker M , Rohde M , Eisen JA , Markowitz V , Kyrpides NC , Klenk HP , Hugenholtz P
Ref : Stand Genomic Sci , 1 :101 , 2009
Abstract : Capnocytophaga ochracea (Prevot et al. 1956) Leadbetter et al. 1982 is the type species of the genus Capnocytophaga. It is of interest because of its location in the Flavobacteriaceae, a genomically not yet charted family within the order Flavobacteriales. The species grows as fusiform to rod shaped cells which tend to form clumps and are able to move by gliding. C. ochracea is known as a capnophilic (CO(2)-requiring) organism with the ability to grow under anaerobic as well as aerobic conditions (oxygen concentration larger than 15%), here only in the presence of 5% CO(2). Strain VPI 2845(T), the type strain of the species, is portrayed in this report as a gliding, Gram-negative bacterium, originally isolated from a human oral cavity. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence from the flavobacterial genus Capnocytophaga, and the 2,612,925 bp long single replicon genome with its 2193 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Mavrommatis_2009_Stand.Genomic.Sci_1_101
PubMedSearch : Mavrommatis_2009_Stand.Genomic.Sci_1_101
PubMedID: 21304645
Gene_locus related to this paper: capgi-c2m6q0 , capod-c7m434 , capod-c7m7m0 , capod-c7m8e1 , capod-c7m590 , capoc-e4mus7

Title : Complete genome sequence of Catenulispora acidiphila type strain (ID 139908) - Copeland_2009_Stand.Genomic.Sci_1_119
Author(s) : Copeland A , Lapidus A , Glavina Del Rio T , Nolan M , Lucas S , Chen F , Tice H , Cheng JF , Bruce D , Goodwin L , Pitluck S , Mikhailova N , Pati A , Ivanova N , Mavromatis K , Chen A , Palaniappan K , Chain P , Land M , Hauser L , Chang YJ , Jeffries CD , Chertkov O , Brettin T , Detter JC , Han C , Ali Z , Tindall BJ , Goker M , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 1 :119 , 2009
Abstract : Catenulispora acidiphila Busti et al. 2006 is the type species of the genus Catenulispora, and is of interest because of the rather isolated phylogenetic location it occupies within the scarcely explored suborder Catenulisporineae of the order Actinomycetales. C. acidiphilia is known for its acidophilic, aerobic lifestyle, but can also grow scantly under anaerobic conditions. Under regular conditions, C. acidiphilia grows in long filaments of relatively short aerial hyphae with marked septation. It is a free living, non motile, Gram-positive bacterium isolated from a forest soil sample taken from a wooded area in Gerenzano, Italy. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the actinobacterial family Catenulisporaceae, and the 10,467,782 bp long single replicon genome with its 9056 protein-coding and 69 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Copeland_2009_Stand.Genomic.Sci_1_119
PubMedSearch : Copeland_2009_Stand.Genomic.Sci_1_119
PubMedID: 21304647
Gene_locus related to this paper: catad-c7pvc2 , catad-c7pvf9 , catad-c7pwm0 , catad-c7pwp0 , catad-c7pws9 , catad-c7pxh4 , catad-c7py99 , catad-c7pyw2 , catad-c7pz32 , catad-c7pz91 , catad-c7pze9 , catad-c7pzn0 , catad-c7q0c0 , catad-c7q0r2 , catad-c7q1d2 , catad-c7q1l8 , catad-c7q3r3 , catad-c7q3t4 , catad-c7q4e4 , catad-c7q5v1 , catad-c7q6u5 , catad-c7q6u8 , catad-c7q7m3 , catad-c7q7s8 , catad-c7q8l0 , catad-c7q8u5 , catad-c7q8y2 , catad-c7q9c0 , catad-c7q209 , catad-c7q740 , catad-c7q940 , catad-c7q983 , catad-c7qam3 , catad-c7qam5 , catad-c7qam7 , catad-c7qat2 , catad-c7qav4 , catad-c7qc64 , catad-c7qdc4 , catad-c7qds2 , catad-c7qdv2 , catad-c7qe72 , catad-c7qed5 , catad-c7qfj4 , catad-c7qfu6 , catad-c7qg26 , catad-c7qgn7 , catad-c7qh87 , catad-c7qh95 , catad-c7qi49 , catad-c7qi50 , catad-c7qib3 , catad-c7qju9 , catad-c7q631 , catad-c7pzc9 , catad-c7pw02 , catad-c7pvj4 , catad-c7q6w1 , catad-c7q7k2 , catad-c7q329

Title : Complete genome sequence of Dyadobacter fermentans type strain (NS114) - Lang_2009_Stand.Genomic.Sci_1_133
Author(s) : Lang E , Lapidus A , Chertkov O , Brettin T , Detter JC , Han C , Copeland A , Glavina Del Rio T , Nolan M , Chen F , Lucas S , Tice H , Cheng JF , Land M , Hauser L , Chang YJ , Jeffries CD , Kopitz M , Bruce D , Goodwin L , Pitluck S , Ovchinnikova G , Pati A , Ivanova N , Mavrommatis K , Chen A , Palaniappan K , Chain P , Bristow J , Eisen JA , Markowitz V , Hugenholtz P , Goker M , Rohde M , Kyrpides NC , Klenk HP
Ref : Stand Genomic Sci , 1 :133 , 2009
Abstract : Dyadobacter fermentans (Chelius and Triplett, 2000) is the type species of the genus Dyadobacter. It is of phylogenetic interest because of its location in the Cytophagaceae, a very diverse family within the order 'Sphingobacteriales'. D. fermentans has a mainly respiratory metabolism, stains Gram-negative, is non-motile and oxidase and catalase positive. It is characterized by the production of cell filaments in aging cultures, a flexirubin-like pigment and its ability to ferment glucose, which is almost unique in the aerobically living members of this taxonomically difficult family. Here we describe the features of this organism, together with the complete genome sequence, and its annotation. This is the first complete genome sequence of the sphingobacterial genus Dyadobacter, and this 6,967,790 bp long single replicon genome with its 5804 protein-coding and 50 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
ESTHER : Lang_2009_Stand.Genomic.Sci_1_133
PubMedSearch : Lang_2009_Stand.Genomic.Sci_1_133
PubMedID: 21304649
Gene_locus related to this paper: dyafd-c6vtl2 , dyafd-c6vtn9 , dyafd-c6vuf1 , dyafd-c6vv37 , dyafd-c6vw49 , dyafd-c6vx42 , dyafd-c6vx54 , dyafd-c6vx95 , dyafd-c6vy00 , dyafd-c6vy01 , dyafd-c6vy05 , dyafd-c6vy98 , dyafd-c6vyc2 , dyafd-c6vyy9 , dyafd-c6vz95 , dyafd-c6vz96 , dyafd-c6w0j7 , dyafd-c6w1q5 , dyafd-c6w3h8 , dyafd-c6w4r6 , dyafd-c6w5n0 , dyafd-c6w5s2 , dyafd-c6w6a8 , dyafd-c6w6k0 , dyafd-c6w6z4 , dyafd-c6w7f1 , dyafd-c6w7i5 , dyafd-c6w325 , dyafd-c6w605 , dyafd-c6w743 , dyafd-c6w773 , dyafd-c6vux0 , dyafd-c6vux5 , dyafd-c6w724 , dyafd-c6w248

Title : Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C\/EBP proteins - Chen_2003_Neuron_39_655
Author(s) : Chen A , Muzzio IA , Malleret G , Bartsch D , Verbitsky M , Pavlidis P , Yonan AL , Vronskaya S , Grody MB , Cepeda I , Gilliam TC , Kandel ER
Ref : Neuron , 39 :655 , 2003
Abstract : To examine the role of C/EBP-related transcription factors in long-term synaptic plasticity and memory storage, we have used the tetracycline-regulated system and expressed in the forebrain of mice a broad dominant-negative inhibitor of C/EBP (EGFP-AZIP), which preferentially interacts with several inhibiting isoforms of C/EBP. EGFP-AZIP also reduces the expression of ATF4, a distant member of the C/EBP family of transcription factors that is homologous to the Aplysia memory suppressor gene ApCREB-2. Consistent with the removal of inhibitory constraints on transcription, we find an increase in the pattern of gene transcripts in the hippocampus of EGFP-AZIP transgenic mice and both a reversibly enhanced hippocampal-based spatial memory and LTP. These results suggest that several proteins within the C/EBP family including ATF4 (CREB-2) act to constrain long-term synaptic changes and memory formation. Relief of this inhibition lowers the threshold for hippocampal-dependent long-term synaptic potentiation and memory storage in mice.
ESTHER : Chen_2003_Neuron_39_655
PubMedSearch : Chen_2003_Neuron_39_655
PubMedID: 12925279

Title : Identification of beta-endorphin-6(16-17) as the principal metabolite of des-tyrosin-gamma-endorphin (DTgammaE) in vitro and assessment of its activity in neurotransmitter receptor binding assays - Schoemaker_1982_Eur.J.Pharmacol_81_459
Author(s) : Schoemaker H , Davis TP , Pedigo NW , Chen A , Berens ES , Ragan P , Ling NC , Yamamura HI
Ref : European Journal of Pharmacology , 81 :459 , 1982
Abstract : Des-tyrosine-gamma-endorphin (beta-endorphin-(2-17); DTgamma E) lacks direct in vitro activity at dopaminergic receptors, but does inhibit in vivo [3H]spiperone binding in various rat brain areas. The principal objective of these studies was to test the hypothesis that DTgammaE may exert its selective, neuroleptic-like activity through an active metabolite. Accordingly, DTgammaE was incubated at 37 degrees C in a whole rat brain homogenate of neutral pH after which samples were prepared for HPLC analysis. The major, heat-stable metabolite of DTgammaE was identified as the clinically active, beta-endorphin related fragment, beta-endorphine-(6-17). The beta-endorphin sequences 4-17, 5-17, l0-17, 12-17 and 2-16 were also present but in minor amounts. Identical results were obtained studying DTgammaE metabolism using rat striatal tissue slices. Neurotransmitter receptor binding experiments showed that beta-endorphin-(6-17) was inactive at central dopaminergic, serotonergic, muscarinic, benzodiazepine and opiate receptors measured in vitro. Thus, like DTgammaE, beta-endorphin-(6-17) differs from classical neuroleptics in that it does not inhibit in vitro [3H]spiperone binding in the corpus striatum, frontal cortex or mesolimbic areas of the rat brain. It may be that DTgammaE and beta-endorphine-(66-17) exert their selective neuroleptic-like activity through an indirect inhibition of central dopaminergic activity, possibly in combination with an in vivo antagonism of the postsynaptic dopamine receptor.
ESTHER : Schoemaker_1982_Eur.J.Pharmacol_81_459
PubMedSearch : Schoemaker_1982_Eur.J.Pharmacol_81_459
PubMedID: 6126374