(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Protostomia: NE > Ecdysozoa: NE > Panarthropoda: NE > Arthropoda: NE > Mandibulata: NE > Pancrustacea: NE > Hexapoda: NE > Insecta: NE > Dicondylia: NE > Pterygota: NE > Neoptera: NE > Holometabola: NE > Diptera: NE > Brachycera: NE > Muscomorpha: NE > Eremoneura: NE > Cyclorrhapha: NE > Schizophora: NE > Acalyptratae: NE > Ephydroidea: NE > Drosophilidae: NE > Drosophilinae: NE > Drosophilini: NE > Drosophila [fruit fly, genus]: NE > Sophophora: NE > melanogaster group: NE > melanogaster subgroup: NE > Drosophila melanogaster: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MAVEQIDKMAAKAGEATNKWIKPQQPLLTLLLLLATFSQLPAVCSSSILD AASLQEKDPLRDTSMNMIQRNYMVMHSASGSGDHSRSLKRANLANTSITC NDGSHAGFYLRKHPSSKKWIVLLEGGWHCFDVRSCRSRWMRLRHLMTSSQ WPETRDVGGILSPHPEENPYWHNANHVLIPYCSSDSWSGTRTEPDTSDRE NSWRFMGALILRQVIAELIPVGLGRVPGGELMLVGSSAGGMGVMLNLDRI RDFLVNEKKLQITVRGVSDSGWFLDREPYTPAAVASNEAVRQGWKLWQGL LPEECTKSYPTEPWRCYYGYRLYPTLKTPLFVFQWLFDEAQMRVDNVGAP VTPQQWNYIHEMGGALRSSLDNVSAVFAPSCIGHGVLFKRDWVNIKIDDI SLPSALRCWEHSTRSRRHDKLKRSTEPSTAVSHPEHANNQRHQRHRQRLQ RQKHNNVAQSGGQQRKHNHLSKEEREERKRLRQEQRQRRKQRRRQQQQKK ANGGQEHRNKKDNSPKSSNGNDQRKQRRRQQLTAEERQEQRKRRRKAQQQ QMKMQREQPAAGVFLEASAPQKTRSSNNASAGTKSKKRHRVPRVPEKCGL RLLERCSWPQCNHSCPTLTNPMTGEEMRFLELLTAFGLDIEAVAAALGVD MHTLNNMERTELVNMLTQQAN
Signalling by Wnt proteins is finely balanced to ensure normal development and tissue homeostasis while avoiding diseases such as cancer. This is achieved in part by Notum, a highly conserved secreted feedback antagonist. Notum has been thought to act as a phospholipase, shedding glypicans and associated Wnt proteins from the cell surface. However, this view fails to explain specificity, as glypicans bind many extracellular ligands. Here we provide genetic evidence in Drosophila that Notum requires glypicans to suppress Wnt signalling, but does not cleave their glycophosphatidylinositol anchor. Structural analyses reveal glycosaminoglycan binding sites on Notum, which probably help Notum to co-localize with Wnt proteins. They also identify, at the active site of human and Drosophila Notum, a large hydrophobic pocket that accommodates palmitoleate. Kinetic and mass spectrometric analyses of human proteins show that Notum is a carboxylesterase that removes an essential palmitoleate moiety from Wnt proteins and thus constitutes the first known extracellular protein deacylase.
BACKGROUND: The recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences. RESULTS: Although the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes. CONCLUSIONS: Identification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.
The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.
Signalling by Wnt proteins is finely balanced to ensure normal development and tissue homeostasis while avoiding diseases such as cancer. This is achieved in part by Notum, a highly conserved secreted feedback antagonist. Notum has been thought to act as a phospholipase, shedding glypicans and associated Wnt proteins from the cell surface. However, this view fails to explain specificity, as glypicans bind many extracellular ligands. Here we provide genetic evidence in Drosophila that Notum requires glypicans to suppress Wnt signalling, but does not cleave their glycophosphatidylinositol anchor. Structural analyses reveal glycosaminoglycan binding sites on Notum, which probably help Notum to co-localize with Wnt proteins. They also identify, at the active site of human and Drosophila Notum, a large hydrophobic pocket that accommodates palmitoleate. Kinetic and mass spectrometric analyses of human proteins show that Notum is a carboxylesterase that removes an essential palmitoleate moiety from Wnt proteins and thus constitutes the first known extracellular protein deacylase.
        
Title: Sulfated is a negative feedback regulator of wingless in Drosophila You J, Belenkaya T, Lin X Ref: Developmental Dynamics, 240:640, 2011 : PubMed
Drosophila Wingless (Wg) acts as a morphogen to control pattern formation in a concentration dependent manner. Previous studies demonstrated important roles of heparan sulfate proteoglycans (HSPGs) in controlling Wg signaling and distribution. Here, we examined the role of Sulfated (Sulf1), a Drosophila homolog of vertebrate heparan sulfate 6-O endosulfatase, in Wg signaling and distribution. We show that sulf1 is specifically up-regulated by Wg signaling in the wing disc. We found that expression of Wg target gene senseless (sens) was elevated in the sulf1 mutant wing discs. Sulf1 also negatively regulate extracellular levels of Wg. Genetic interaction experiments indicate that Wg antagonist Notum may work synergistically with Sulf1 to restrict Wg signaling, and Dally, a member of Drosophila HSPGs, is a potential target of Sulf1. Our results demonstrate that sulf1 is a novel Wg target gene and by a feedback mechanism, it negatively regulated Wg signaling and distribution in vivo.
        
Title: Wingful, an extracellular feedback inhibitor of Wingless Gerlitz O, Basler K Ref: Genes Dev, 16:1055, 2002 : PubMed
Secreted peptide signals control many fundamental processes during animal development. Proper responses to these signals require cognate inducible feedback antagonists. Here we report the identification of a novel Drosophila Wingless (Wg) target gene, wingful (wf), and show that it encodes a potent extracellular feedback inhibitor of Wg. In contrast to the cytoplasmic protein Naked cuticle (Nkd), the only known Wg feedback antagonist, Wf functions during larval stages, when Nkd function is dispensable. We propose that Wf may provide feedback control for the long-range morphogen activities of Wg.
        
Title: HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient Giraldez AJ, Copley RR, Cohen SM Ref: Dev Cell, 2:667, 2002 : PubMed
The secreted signaling protein Wingless acts as a morphogen to pattern the imaginal discs of Drosophila. Here we report identification of a secreted repressor of Wingless activity, which we call Notum. Loss of Notum function leads to increased Wingless activity by altering the shape of the Wingless protein gradient. When overexpressed, Notum blocks Wingless activity. Notum encodes a member of the alpha/beta-hydrolase superfamily, with similarity to pectin acetylesterases. We present evidence that Notum influences Wingless protein distribution by modifying the heparan sulfate proteoglycans Dally-like and Dally. High levels of Wingless signaling induce Notum expression. Thus, Wingless contributes to shaping its own gradient by regulating expression of a protein that modifies its interaction with cell surface proteoglycans.
BACKGROUND: The recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences. RESULTS: Although the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes. CONCLUSIONS: Identification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.
The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.