Gelbart WM

References (7)

Title : Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data - Matthews_2015_G3.(Bethesda)_5_1721
Author(s) : Matthews BB , Dos Santos G , Crosby MA , Emmert DB , St Pierre SE , Gramates LS , Zhou P , Schroeder AJ , Falls K , Strelets V , Russo SM , Gelbart WM
Ref : G3 (Bethesda) , 5 :1721 , 2015
Abstract : We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3' UTRs (up to 15-18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts.
ESTHER : Matthews_2015_G3.(Bethesda)_5_1721
PubMedSearch : Matthews_2015_G3.(Bethesda)_5_1721
PubMedID: 26109357
Gene_locus related to this paper: drome-CG11309

Title : Gene Model Annotations for Drosophila melanogaster: The Rule-Benders - Crosby_2015_G3.(Bethesda)_5_1737
Author(s) : Crosby MA , Gramates LS , Dos Santos G , Matthews BB , St Pierre SE , Zhou P , Schroeder AJ , Falls K , Emmert DB , Russo SM , Gelbart WM
Ref : G3 (Bethesda) , 5 :1737 , 2015
Abstract : In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads.
ESTHER : Crosby_2015_G3.(Bethesda)_5_1737
PubMedSearch : Crosby_2015_G3.(Bethesda)_5_1737
PubMedID: 26109356
Gene_locus related to this paper: drome-CG11309

Title : Genome sequence of Aedes aegypti, a major arbovirus vector - Nene_2007_Science_316_1718
Author(s) : Nene V , Wortman JR , Lawson D , Haas B , Kodira C , Tu ZJ , Loftus B , Xi Z , Megy K , Grabherr M , Ren Q , Zdobnov EM , Lobo NF , Campbell KS , Brown SE , Bonaldo MF , Zhu J , Sinkins SP , Hogenkamp DG , Amedeo P , Arensburger P , Atkinson PW , Bidwell S , Biedler J , Birney E , Bruggner RV , Costas J , Coy MR , Crabtree J , Crawford M , Debruyn B , Decaprio D , Eiglmeier K , Eisenstadt E , El-Dorry H , Gelbart WM , Gomes SL , Hammond M , Hannick LI , Hogan JR , Holmes MH , Jaffe D , Johnston JS , Kennedy RC , Koo H , Kravitz S , Kriventseva EV , Kulp D , LaButti K , Lee E , Li S , Lovin DD , Mao C , Mauceli E , Menck CF , Miller JR , Montgomery P , Mori A , Nascimento AL , Naveira HF , Nusbaum C , O'Leary S , Orvis J , Pertea M , Quesneville H , Reidenbach KR , Rogers YH , Roth CW , Schneider JR , Schatz M , Shumway M , Stanke M , Stinson EO , Tubio JM , Vanzee JP , Verjovski-Almeida S , Werner D , White O , Wyder S , Zeng Q , Zhao Q , Zhao Y , Hill CA , Raikhel AS , Soares MB , Knudson DL , Lee NH , Galagan J , Salzberg SL , Paulsen IT , Dimopoulos G , Collins FH , Birren B , Fraser-Liggett CM , Severson DW
Ref : Science , 316 :1718 , 2007
Abstract : We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
ESTHER : Nene_2007_Science_316_1718
PubMedSearch : Nene_2007_Science_316_1718
PubMedID: 17510324
Gene_locus related to this paper: aedae-ACHE , aedae-ACHE1 , aedae-glita , aedae-q0iea6 , aedae-q0iev6 , aedae-q0ifn6 , aedae-q0ifn8 , aedae-q0ifn9 , aedae-q0ifp0 , aedae-q0ig41 , aedae-q1dgl0 , aedae-q1dh03 , aedae-q1dh19 , aedae-q1hqe6 , aedae-Q8ITU8 , aedae-Q8MMJ6 , aedae-Q8T9V6 , aedae-q16e91 , aedae-q16f04 , aedae-q16f25 , aedae-q16f26 , aedae-q16f28 , aedae-q16f29 , aedae-q16f30 , aedae-q16gq5 , aedae-q16iq5 , aedae-q16je0 , aedae-q16je1 , aedae-q16je2 , aedae-q16ks8 , aedae-q16lf2 , aedae-q16lv6 , aedae-q16m61 , aedae-q16mc1 , aedae-q16mc6 , aedae-q16mc7 , aedae-q16md1 , aedae-q16ms7 , aedae-q16nk5 , aedae-q16rl5 , aedae-q16rz9 , aedae-q16si8 , aedae-q16t49 , aedae-q16wf1 , aedae-q16x18 , aedae-q16xp8 , aedae-q16xu6 , aedae-q16xw5 , aedae-q16xw6 , aedae-q16y04 , aedae-q16y05 , aedae-q16y06 , aedae-q16y07 , aedae-q16y39 , aedae-q16y40 , aedae-q16yg4 , aedae-q16z03 , aedae-q17aa7 , aedae-q17av1 , aedae-q17av2 , aedae-q17av3 , aedae-q17av4 , aedae-q17b28 , aedae-q17b29 , aedae-q17b30 , aedae-q17b31 , aedae-q17b32 , aedae-q17bm3 , aedae-q17bm4 , aedae-q17bv7 , aedae-q17c44 , aedae-q17cz1 , aedae-q17d32 , aedae-q17g39 , aedae-q17g40 , aedae-q17g41 , aedae-q17g42 , aedae-q17g43 , aedae-q17g44 , aedae-q17gb8 , aedae-q17gr3 , aedae-q17if7 , aedae-q17if9 , aedae-q17ig1 , aedae-q17ig2 , aedae-q17is4 , aedae-q17l09 , aedae-q17m26 , aedae-q17mg9 , aedae-q17mv4 , aedae-q17mv5 , aedae-q17mv6 , aedae-q17mv7 , aedae-q17mw8 , aedae-q17mw9 , aedae-q17nw5 , aedae-q17nx5 , aedae-q17pa4 , aedae-q17q69 , aedae-q170k7 , aedae-q171y4 , aedae-q172e0 , aedae-q176i8 , aedae-q176j0 , aedae-q177k1 , aedae-q177k2 , aedae-q177l9 , aedae-j9hic3 , aedae-q179r9 , aedae-u483 , aedae-j9hj23 , aedae-q17d68 , aedae-q177c7 , aedae-q0ifp1 , aedae-a0a1s4fx83 , aedae-a0a1s4g2m0 , aedae-q1hr49

Title : Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster - Zdobnov_2002_Science_298_149
Author(s) : Zdobnov EM , von Mering C , Letunic I , Torrents D , Suyama M , Copley RR , Christophides GK , Thomasova D , Holt RA , Subramanian GM , Mueller HM , Dimopoulos G , Law JH , Wells MA , Birney E , Charlab R , Halpern AL , Kokoza E , Kraft CL , Lai Z , Lewis S , Louis C , Barillas-Mury C , Nusskern D , Rubin GM , Salzberg SL , Sutton GG , Topalis P , Wides R , Wincker P , Yandell M , Collins FH , Ribeiro J , Gelbart WM , Kafatos FC , Bork P
Ref : Science , 298 :149 , 2002
Abstract : Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small "microsyntenic" clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.
ESTHER : Zdobnov_2002_Science_298_149
PubMedSearch : Zdobnov_2002_Science_298_149
PubMedID: 12364792

Title : Annotation of the Drosophila melanogaster euchromatic genome: a systematic review - Misra_2002_Genome.Biol_3_RESEARCH0083
Author(s) : Misra S , Crosby MA , Mungall CJ , Matthews BB , Campbell KS , Hradecky P , Huang Y , Kaminker JS , Millburn GH , Prochnik SE , Smith CD , Tupy JL , Whitfied EJ , Bayraktaroglu L , Berman BP , Bettencourt BR , Celniker SE , de Grey AD , Drysdale RA , Harris NL , Richter J , Russo S , Schroeder AJ , Shu SQ , Stapleton M , Yamada C , Ashburner M , Gelbart WM , Rubin GM , Lewis SE
Ref : Genome Biol , 3 :RESEARCH0083 , 2002
Abstract : BACKGROUND: The recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.
RESULTS: Although the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes.
CONCLUSIONS: Identification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.
ESTHER : Misra_2002_Genome.Biol_3_RESEARCH0083
PubMedSearch : Misra_2002_Genome.Biol_3_RESEARCH0083
PubMedID: 12537572
Gene_locus related to this paper: drome-a1z6g9 , drome-abhd2 , drome-ACHE , drome-CG8058 , drome-CG8093 , drome-CG8233 , drome-CG8425 , drome-CG9059 , drome-CG9186 , drome-CG9542 , drome-CG10982 , drome-CG11309 , drome-CG11406 , drome-CG11598 , drome-CG17097 , drome-glita , drome-KRAKEN , drome-nrtac , drome-OME , drome-q7k274 , drome-q9vux3

Title : The genome sequence of Drosophila melanogaster - Adams_2000_Science_287_2185
Author(s) : Adams MD , Celniker SE , Holt RA , Evans CA , Gocayne JD , Amanatides PG , Scherer SE , Li PW , Hoskins RA , Galle RF , George RA , Lewis SE , Richards S , Ashburner M , Henderson SN , Sutton GG , Wortman JR , Yandell MD , Zhang Q , Chen LX , Brandon RC , Rogers YH , Blazej RG , Champe M , Pfeiffer BD , Wan KH , Doyle C , Baxter EG , Helt G , Nelson CR , Gabor GL , Abril JF , Agbayani A , An HJ , Andrews-Pfannkoch C , Baldwin D , Ballew RM , Basu A , Baxendale J , Bayraktaroglu L , Beasley EM , Beeson KY , Benos PV , Berman BP , Bhandari D , Bolshakov S , Borkova D , Botchan MR , Bouck J , Brokstein P , Brottier P , Burtis KC , Busam DA , Butler H , Cadieu E , Center A , Chandra I , Cherry JM , Cawley S , Dahlke C , Davenport LB , Davies P , de Pablos B , Delcher A , Deng Z , Mays AD , Dew I , Dietz SM , Dodson K , Doup LE , Downes M , Dugan-Rocha S , Dunkov BC , Dunn P , Durbin KJ , Evangelista CC , Ferraz C , Ferriera S , Fleischmann W , Fosler C , Gabrielian AE , Garg NS , Gelbart WM , Glasser K , Glodek A , Gong F , Gorrell JH , Gu Z , Guan P , Harris M , Harris NL , Harvey D , Heiman TJ , Hernandez JR , Houck J , Hostin D , Houston KA , Howland TJ , Wei MH , Ibegwam C , Jalali M , Kalush F , Karpen GH , Ke Z , Kennison JA , Ketchum KA , Kimmel BE , Kodira CD , Kraft C , Kravitz S , Kulp D , Lai Z , Lasko P , Lei Y , Levitsky AA , Li J , Li Z , Liang Y , Lin X , Liu X , Mattei B , McIntosh TC , McLeod MP , McPherson D , Merkulov G , Milshina NV , Mobarry C , Morris J , Moshrefi A , Mount SM , Moy M , Murphy B , Murphy L , Muzny DM , Nelson DL , Nelson DR , Nelson KA , Nixon K , Nusskern DR , Pacleb JM , Palazzolo M , Pittman GS , Pan S , Pollard J , Puri V , Reese MG , Reinert K , Remington K , Saunders RD , Scheeler F , Shen H , Shue BC , Siden-Kiamos I , Simpson M , Skupski MP , Smith T , Spier E , Spradling AC , Stapleton M , Strong R , Sun E , Svirskas R , Tector C , Turner R , Venter E , Wang AH , Wang X , Wang ZY , Wassarman DA , Weinstock GM , Weissenbach J , Williams SM , WoodageT , Worley KC , Wu D , Yang S , Yao QA , Ye J , Yeh RF , Zaveri JS , Zhan M , Zhang G , Zhao Q , Zheng L , Zheng XH , Zhong FN , Zhong W , Zhou X , Zhu S , Zhu X , Smith HO , Gibbs RA , Myers EW , Rubin GM , Venter JC
Ref : Science , 287 :2185 , 2000
Abstract : The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.
ESTHER : Adams_2000_Science_287_2185
PubMedSearch : Adams_2000_Science_287_2185
PubMedID: 10731132
Gene_locus related to this paper: drome-1vite , drome-2vite , drome-3vite , drome-a1z6g9 , drome-abhd2 , drome-ACHE , drome-b6idz4 , drome-BEM46 , drome-CG5707 , drome-CG5704 , drome-CG1309 , drome-CG1882 , drome-CG1986 , drome-CG2059 , drome-CG2493 , drome-CG2528 , drome-CG2772 , drome-CG3160 , drome-CG3344 , drome-CG3523 , drome-CG3524 , drome-CG3734 , drome-CG3739 , drome-CG3744 , drome-CG3841 , drome-CG4267 , drome-CG4382 , drome-CG4390 , drome-CG4572 , drome-CG4582 , drome-CG4851 , drome-CG4979 , drome-CG5068 , drome-CG5162 , drome-CG5355 , drome-CG5377 , drome-CG5397 , drome-CG5412 , drome-CG5665 , drome-CG5932 , drome-CG5966 , drome-CG6018 , drome-CG6113 , drome-CG6271 , drome-CG6283 , drome-CG6295 , drome-CG6296 , drome-CG6414 , drome-CG6431 , drome-CG6472 , drome-CG6567 , drome-CG6675 , drome-CG6753 , drome-CG6847 , drome-CG7329 , drome-CG7367 , drome-CG7529 , drome-CG7632 , drome-CG8058 , drome-CG8093 , drome-CG8233 , drome-CG8424 , drome-CG8425 , drome-CG9059 , drome-CG9186 , drome-CG9287 , drome-CG9289 , drome-CG9542 , drome-CG9858 , drome-CG9953 , drome-CG9966 , drome-CG10116 , drome-CG10163 , drome-CG10175 , drome-CG10339 , drome-CG10357 , drome-CG10982 , drome-CG11034 , drome-CG11055 , drome-CG11309 , drome-CG11319 , drome-CG11406 , drome-CG11598 , drome-CG11600 , drome-CG11608 , drome-CG11626 , drome-CG11935 , drome-CG12108 , drome-CG12869 , drome-CG13282 , drome-CG13562 , drome-CG13772 , drome-CG14034 , drome-nlg3 , drome-CG14717 , drome-CG15101 , drome-CG15102 , drome-CG15106 , drome-CG15111 , drome-CG15820 , drome-CG15821 , drome-CG15879 , drome-CG17097 , drome-CG17099 , drome-CG17101 , drome-CG17191 , drome-CG17192 , drome-CG17292 , drome-CG18258 , drome-CG18284 , drome-CG18301 , drome-CG18302 , drome-CG18493 , drome-CG18530 , drome-CG18641 , drome-CG18815 , drome-CG31089 , drome-CG31091 , drome-CG32333 , drome-CG32483 , drome-CG33174 , drome-dnlg1 , drome-este4 , drome-este6 , drome-GH02384 , drome-GH02439 , drome-glita , drome-KRAKEN , drome-lip1 , drome-LIP2 , drome-lip3 , drome-MESK2 , drome-nrtac , drome-OME , drome-q7k274 , drome-Q9VJN0 , drome-Q8IP31 , drome-q9vux3

Title : Molecular and recombinational mapping of mutations in the Ace locus of Drosophila melanogaster - Nagoshi_1987_Genetics_117_487
Author(s) : Nagoshi RN , Gelbart WM
Ref : Genetics , 117 :487 , 1987
Abstract : The Ace locus in Drosophila melanogaster is known to be the structural gene for acetylcholinesterase. Ace is located in a region of chromosome arm 3R which has been subjected to intensive genetic and molecular analysis. Previous deletion mapping studies have identified a 40-kb region within which the Ace gene resides. This report focuses on the further localization of Ace within this 40-kb interval. Within this region, selective fine structure recombinational analysis was employed to localize three recessive Ace lethals relative to unselected restriction site variations. These three mutations fall into a segment of 7 kb within the Ace interval. Fine structure recombinational analysis was also used to confirm that the Ace phenotype of one deletion, Df(3R)AceHD1, co-segregated with the molecular deletion. This deletion does not fully remove Ace activity, but it behaves as a recessive Ace lethal. Df(3R)AceHD1 is the most distal Ace lesion identified and indicates that the Ace locus must extend at least 16 kb. Several poly(A)transcripts are detectable in the region defined by the Ace lesions. The position and extent of the Ace locus, as well as the types of transcripts found, is consistent with the recent findings which identified Torpedo-AChE homologous cDNA sequences in this region.
ESTHER : Nagoshi_1987_Genetics_117_487
PubMedSearch : Nagoshi_1987_Genetics_117_487
PubMedID: 2826288