Miller JR

References (5)

Title : Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species - Pearce_2017_BMC.Biol_15_63
Author(s) : Pearce SL , Clarke DF , East PD , Elfekih S , Gordon KHJ , Jermiin LS , McGaughran A , Oakeshott JG , Papanicolaou A , Perera OP , Rane RV , Richards S , Tay WT , Walsh TK , Anderson A , Anderson CJ , Asgari S , Board PG , Bretschneider A , Campbell PM , Chertemps T , Christeller JT , Coppin CW , Downes SJ , Duan G , Farnsworth CA , Good RT , Han LB , Han YC , Hatje K , Horne I , Huang YP , Hughes DST , Jacquin-Joly E , James W , Jhangiani S , Kollmar M , Kuwar SS , Li S , Liu NY , Maibeche MT , Miller JR , Montagne N , Perry T , Qu J , Song SV , Sutton GG , Vogel H , Walenz BP , Xu W , Zhang HJ , Zou Z , Batterham P , Edwards OR , Feyereisen R , Gibbs RA , Heckel DG , McGrath A , Robin C , Scherer SE , Worley KC , Wu YD
Ref : BMC Biol , 15 :63 , 2017
Abstract : BACKGROUND: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. RESULTS: We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. CONCLUSIONS: The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera's invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant.
ESTHER : Pearce_2017_BMC.Biol_15_63
PubMedSearch : Pearce_2017_BMC.Biol_15_63
PubMedID: 28756777
Gene_locus related to this paper: helam-a0a2w1bn75 , helam-a0a2w1bp69 , helam-a0a2w1bvf3

Title : The bonobo genome compared with the chimpanzee and human genomes - Prufer_2012_Nature_486_527
Author(s) : Prufer K , Munch K , Hellmann I , Akagi K , Miller JR , Walenz B , Koren S , Sutton G , Kodira C , Winer R , Knight JR , Mullikin JC , Meader SJ , Ponting CP , Lunter G , Higashino S , Hobolth A , Dutheil J , Karakoc E , Alkan C , Sajjadian S , Catacchio CR , Ventura M , Marques-Bonet T , Eichler EE , Andre C , Atencia R , Mugisha L , Junhold J , Patterson N , Siebauer M , Good JM , Fischer A , Ptak SE , Lachmann M , Symer DE , Mailund T , Schierup MH , Andres AM , Kelso J , Paabo S
Ref : Nature , 486 :527 , 2012
Abstract : Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.
ESTHER : Prufer_2012_Nature_486_527
PubMedSearch : Prufer_2012_Nature_486_527
PubMedID: 22722832
Gene_locus related to this paper: panpa-a0a2r8z5s1 , panpa-a0a2r8zh05 , panpa-a0a2r9a219 , panpa-a0a2r9cp60 , panpa-a0a2r8zm37 , panpa-a0a2r8ztc4 , panpa-a0a2r9b1a7 , panpa-a0a2r9bxk5 , panpa-a0a2r8zr38 , panpa-a0a2r8zvr0 , panpa-a0a2r9bln0 , panpa-a0a2r9acy6 , panpa-a0a2r8ztx2 , panpa-a0a2r9clu7 , panpa-a0a2r9c6z8 , panpa-a0a2r9cay0 , panpa-a0a2r9aqi9 , panpa-a0a2r9aqr5 , panpa-a0a2r9bpf0 , panpa-a0a2r9cj39

Title : Genome sequence of Aedes aegypti, a major arbovirus vector - Nene_2007_Science_316_1718
Author(s) : Nene V , Wortman JR , Lawson D , Haas B , Kodira C , Tu ZJ , Loftus B , Xi Z , Megy K , Grabherr M , Ren Q , Zdobnov EM , Lobo NF , Campbell KS , Brown SE , Bonaldo MF , Zhu J , Sinkins SP , Hogenkamp DG , Amedeo P , Arensburger P , Atkinson PW , Bidwell S , Biedler J , Birney E , Bruggner RV , Costas J , Coy MR , Crabtree J , Crawford M , Debruyn B , Decaprio D , Eiglmeier K , Eisenstadt E , El-Dorry H , Gelbart WM , Gomes SL , Hammond M , Hannick LI , Hogan JR , Holmes MH , Jaffe D , Johnston JS , Kennedy RC , Koo H , Kravitz S , Kriventseva EV , Kulp D , LaButti K , Lee E , Li S , Lovin DD , Mao C , Mauceli E , Menck CF , Miller JR , Montgomery P , Mori A , Nascimento AL , Naveira HF , Nusbaum C , O'Leary S , Orvis J , Pertea M , Quesneville H , Reidenbach KR , Rogers YH , Roth CW , Schneider JR , Schatz M , Shumway M , Stanke M , Stinson EO , Tubio JM , Vanzee JP , Verjovski-Almeida S , Werner D , White O , Wyder S , Zeng Q , Zhao Q , Zhao Y , Hill CA , Raikhel AS , Soares MB , Knudson DL , Lee NH , Galagan J , Salzberg SL , Paulsen IT , Dimopoulos G , Collins FH , Birren B , Fraser-Liggett CM , Severson DW
Ref : Science , 316 :1718 , 2007
Abstract : We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
ESTHER : Nene_2007_Science_316_1718
PubMedSearch : Nene_2007_Science_316_1718
PubMedID: 17510324
Gene_locus related to this paper: aedae-ACHE , aedae-ACHE1 , aedae-glita , aedae-q0iea6 , aedae-q0iev6 , aedae-q0ifn6 , aedae-q0ifn8 , aedae-q0ifn9 , aedae-q0ifp0 , aedae-q0ig41 , aedae-q1dgl0 , aedae-q1dh03 , aedae-q1dh19 , aedae-q1hqe6 , aedae-Q8ITU8 , aedae-Q8MMJ6 , aedae-Q8T9V6 , aedae-q16e91 , aedae-q16f04 , aedae-q16f25 , aedae-q16f26 , aedae-q16f28 , aedae-q16f29 , aedae-q16f30 , aedae-q16gq5 , aedae-q16iq5 , aedae-q16je0 , aedae-q16je1 , aedae-q16je2 , aedae-q16ks8 , aedae-q16lf2 , aedae-q16lv6 , aedae-q16m61 , aedae-q16mc1 , aedae-q16mc6 , aedae-q16mc7 , aedae-q16md1 , aedae-q16ms7 , aedae-q16nk5 , aedae-q16rl5 , aedae-q16rz9 , aedae-q16si8 , aedae-q16t49 , aedae-q16wf1 , aedae-q16x18 , aedae-q16xp8 , aedae-q16xu6 , aedae-q16xw5 , aedae-q16xw6 , aedae-q16y04 , aedae-q16y05 , aedae-q16y06 , aedae-q16y07 , aedae-q16y39 , aedae-q16y40 , aedae-q16yg4 , aedae-q16z03 , aedae-q17aa7 , aedae-q17av1 , aedae-q17av2 , aedae-q17av3 , aedae-q17av4 , aedae-q17b28 , aedae-q17b29 , aedae-q17b30 , aedae-q17b31 , aedae-q17b32 , aedae-q17bm3 , aedae-q17bm4 , aedae-q17bv7 , aedae-q17c44 , aedae-q17cz1 , aedae-q17d32 , aedae-q17g39 , aedae-q17g40 , aedae-q17g41 , aedae-q17g42 , aedae-q17g43 , aedae-q17g44 , aedae-q17gb8 , aedae-q17gr3 , aedae-q17if7 , aedae-q17if9 , aedae-q17ig1 , aedae-q17ig2 , aedae-q17is4 , aedae-q17l09 , aedae-q17m26 , aedae-q17mg9 , aedae-q17mv4 , aedae-q17mv5 , aedae-q17mv6 , aedae-q17mv7 , aedae-q17mw8 , aedae-q17mw9 , aedae-q17nw5 , aedae-q17nx5 , aedae-q17pa4 , aedae-q17q69 , aedae-q170k7 , aedae-q171y4 , aedae-q172e0 , aedae-q176i8 , aedae-q176j0 , aedae-q177k1 , aedae-q177k2 , aedae-q177l9 , aedae-j9hic3 , aedae-q179r9 , aedae-u483 , aedae-j9hj23 , aedae-q17d68 , aedae-q177c7 , aedae-q0ifp1 , aedae-a0a1s4fx83 , aedae-a0a1s4g2m0 , aedae-q1hr49

Title : A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome - Mural_2002_Science_296_1661
Author(s) : Mural RJ , Adams MD , Myers EW , Smith HO , Miklos GL , Wides R , Halpern A , Li PW , Sutton GG , Nadeau J , Salzberg SL , Holt RA , Kodira CD , Lu F , Chen L , Deng Z , Evangelista CC , Gan W , Heiman TJ , Li J , Li Z , Merkulov GV , Milshina NV , Naik AK , Qi R , Shue BC , Wang A , Wang J , Wang X , Yan X , Ye J , Yooseph S , Zhao Q , Zheng L , Zhu SC , Biddick K , Bolanos R , Delcher AL , Dew IM , Fasulo D , Flanigan MJ , Huson DH , Kravitz SA , Miller JR , Mobarry CM , Reinert K , Remington KA , Zhang Q , Zheng XH , Nusskern DR , Lai Z , Lei Y , Zhong W , Yao A , Guan P , Ji RR , Gu Z , Wang ZY , Zhong F , Xiao C , Chiang CC , Yandell M , Wortman JR , Amanatides PG , Hladun SL , Pratts EC , Johnson JE , Dodson KL , Woodford KJ , Evans CA , Gropman B , Rusch DB , Venter E , Wang M , Smith TJ , Houck JT , Tompkins DE , Haynes C , Jacob D , Chin SH , Allen DR , Dahlke CE , Sanders R , Li K , Liu X , Levitsky AA , Majoros WH , Chen Q , Xia AC , Lopez JR , Donnelly MT , Newman MH , Glodek A , Kraft CL , Nodell M , Ali F , An HJ , Baldwin-Pitts D , Beeson KY , Cai S , Carnes M , Carver A , Caulk PM , Center A , Chen YH , Cheng ML , Coyne MD , Crowder M , Danaher S , Davenport LB , Desilets R , Dietz SM , Doup L , Dullaghan P , Ferriera S , Fosler CR , Gire HC , Gluecksmann A , Gocayne JD , Gray J , Hart B , Haynes J , Hoover J , Howland T , Ibegwam C , Jalali M , Johns D , Kline L , Ma DS , MacCawley S , Magoon A , Mann F , May D , McIntosh TC , Mehta S , Moy L , Moy MC , Murphy BJ , Murphy SD , Nelson KA , Nuri Z , Parker KA , Prudhomme AC , Puri VN , Qureshi H , Raley JC , Reardon MS , Regier MA , Rogers YH , Romblad DL , Schutz J , Scott JL , Scott R , Sitter CD , Smallwood M , Sprague AC , Stewart E , Strong RV , Suh E , Sylvester K , Thomas R , Tint NN , Tsonis C , Wang G , Williams MS , Williams SM , Windsor SM , Wolfe K , Wu MM , Zaveri J , Chaturvedi K , Gabrielian AE , Ke Z , Sun J , Subramanian G , Venter JC , Pfannkoch CM , Barnstead M , Stephenson LD
Ref : Science , 296 :1661 , 2002
Abstract : The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure and protein-coding potential of Mmu 16 with that of the homologous segments of the human genome identifies regions of conserved synteny with human chromosomes (Hsa) 3, 8, 12, 16, 21, and 22. Gene content and order are highly conserved between Mmu 16 and the syntenic blocks of the human genome. Of the 731 predicted genes on Mmu 16, 509 align with orthologs on the corresponding portions of the human genome, 44 are likely paralogous to these genes, and 164 genes have homologs elsewhere in the human genome; there are 14 genes for which we could find no human counterpart.
ESTHER : Mural_2002_Science_296_1661
PubMedSearch : Mural_2002_Science_296_1661
PubMedID: 12040188
Gene_locus related to this paper: mouse-ABH15 , mouse-Ces3b , mouse-Ces4a , mouse-dpp4 , mouse-FAP , mouse-Lipg , mouse-Q8C1A9 , mouse-rbbp9 , mouse-SERHL , mouse-SPG21 , mouse-w4vsp6

Title : In vitro and in vivo pharmacological characterization of N6-cyclopentyl-9-methyladenine (N-0840): a selective, orally active A1 adenosine receptor antagonist - Barrett_1993_J.Pharmacol.Exp.Ther_265_227
Author(s) : Barrett RJ , May JM , Martin PL , Miller JR
Ref : Journal of Pharmacology & Experimental Therapeutics , 265 :227 , 1993
Abstract : The pharmacological and biochemical profile of N6-cyclopentyl-9-methyladenine (N-0840) was elucidated in vitro and in vivo. In radioligand binding assays, N-0840 had 14- to 400-fold greater affinity for A1 than A2 adenosine receptors and did not inhibit radioligand binding to alpha-1, alpha-2, beta, 5-hydroxytryptamine 1a, muscarinic, D1 or D2 receptors at concentrations < or = 10,000 nM. In guinea pig tissues, N-0840 competitively antagonized A1 receptor-mediated, 5'-N-ethylcarboxamidoadenosine-induced negative inotropism (paced left atria, KB = 0.83 microM), chronotropism (spontaneously beating right atria, KB = 0.91 microM) and dromotropism (Langendorff heart; KB = 0.72 microM). However, at concentrations up to 100 microM, N-0840 did not antagonize A2 adenosine receptor-mediated, 5'-N-ethylcarboxamidoadenosine-induced relaxations of the guinea pig aorta. N-0840 was a poor inhibitor of total cyclic nucleotide phosphodiesterase activity and of adenosine uptake (IC50 > 200 microM), and it did not inhibit adenosine deaminase activity. In anesthetized rats, N-0840 selectively antagonized A1 adenosine receptor-mediated bradycardia, but generally failed to affect A2 adenosine receptor-mediated vasodilation in the in situ perfused hindquarters (A2/A1 selectivity: > or = 33-fold). The duration of action of N-0840 ranged from 1 min (after 3 mumol/kg i.v.) to 8 hr (after 100 mumol/kg p.o.). N-0840 (< or = 100 mumol/kg i.v.; < or = 1,000 mumol/kg p.o.) had little or no effect on blood pressure or heart rate and produced no adverse drug reactions.(ABSTRACT TRUNCATED AT 250 WORDS)
ESTHER : Barrett_1993_J.Pharmacol.Exp.Ther_265_227
PubMedSearch : Barrett_1993_J.Pharmacol.Exp.Ther_265_227
PubMedID: 8386236