Homo sapiens (Human) Neuroligin-4, Y-linked precursor (Neuroligin Y) KIAA0951
Comment
A new entry neuroligin Y4 neuroligin Y on chromosome Y Yq11.221 is created, it replace the entry human-42neur. Neuroligin4 is neuroligin X on chromosome X A6NMU8 Homo sapiens (Human) Neuroligin 4, Y-linked, isoform CRA_c
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MLRPQGLLWLPLLFTSVCVMLNSNVLLWITALAIKFTLIDSQAQYPVVNT NYGKIQGLRTPLPSEILGPVEQYLGVPYASPPTGERRFQPPESPSSWTGI RNATQFSAVCPQHLDERFLLHDMLPIWFTTSLDTLMTYVQDQNEDCLYLN IYVPMEDDIHEQNSKKPVMVYIHGGSYMEGTGNMIDGSILASYGNVIVIT INYRLGILGFLSTGDQAAKGNYGLLDQIQALRWIEENVGAFGGDPKRVTI FGSGAGASCVSLLTLSHYSEGLFQKAIIQSGTALSSWAVNYQPAKYTRIL ADKVGCNMLDTTDMVECLKNKNYKELIQQTITPATYHIAFGPVIDGDVIP DDPQILMEQGEFLNYDIMLGVNQGEGLKFVDGIVDNEDGVTPNDFDFSVS NFVDNLYGYPEGKDTLRETIKFMYTDWADKENPETRRKTLVALFTDHQWV APAVATADLHAQYGSPTYFYAFYHHCQSEMKPSWADSAHGDEVPYVFGIP MIGPTELFSCNFSKNDVMLSAVVMTYWTNFAKTGDPNQPVPQDTKFIHTK PNRFEEVAWSKYNPKDQLYLHIGLKPRVRDHYRATKVAFWLELVPHLHNL NEIFQYVSTTTKVPPPDMTSFPYGTRRSPAKIWPTTKRPAITPANNPKHS KDPHKTGPEDTTVLIETKRDYSTELSVTIAVGASLLFLNILAFAALYYKK DKRRHETHRHPSPQRNTTNDITHIQNEEIMSLQMKQLEHDHECESLQAHD TLRLTCPPDYTLTLRRSPDDIPFMTPNTITMIPNTLMGMQPLHTFKTFSG GQNSTNLPHGHSTTRV
References
7 moreTitle: Y chromosome gene copy number and lack of autism phenotype in a male with an isodicentric Y chromosome and absent NLGN4Y expression Ross JL, Bloy L, Roberts TPL, Miller J, Xing C, Silverman LA, Zinn AR Ref: American Journal of Medicine Genet B Neuropsychiatr Genet, 180:471, 2019 : PubMed
We describe a unique male with a dicentric Y chromosome whose phenotype was compared to that of males with 47,XYY (XYY). The male Y-chromosome aneuploidy XYY is associated with physical, behavioral/cognitive phenotypes, and autism spectrum disorders. We hypothesize that increased risk for these phenotypes is caused by increased copy number/overexpression of Y-encoded genes. Specifically, an extra copy of the neuroligin gene NLGN4Y might elevate the risk of autism in boys with XYY. We present a unique male with the karyotype 46,X,idic(Y)(q11.22), which includes duplication of the Y short arm and proximal long arm and deletion of the distal long arm, evaluated his physical, behavioral/cognitive, and neuroimaging/magnetoencephalography (MEG) phenotypes, and measured blood RNA expression of Y genes. The proband had tall stature and cognitive function within the typical range, without autism features. His blood RNA showed twofold increase in expression of Yp genes versus XY controls, and absent expression of deleted Yq genes, including NLGN4Y. The M100 latencies were similar to findings in typically developing males. In summary, the proband had overexpression of a subset of Yp genes, absent NLGN4Y expression, without ASD findings or XYY-MEG latency findings. These results are consistent with a role for NLGN4Y overexpression in the etiology of behavioral phenotypes associated with XYY. Further investigation of NLGN4Y as an ASD risk gene in XYY is warranted. The genotype and phenotype(s) of this subject may also provide insight into how Y chromosome genes contribute to normal male development and the male predominance in ASD.
        
Title: Constructing Bayesian networks by integrating gene expression and copy number data identifies NLGN4Y as a novel regulator of prostate cancer progression Gong Y, Wang L, Chippada-Venkata U, Dai X, Oh WK, Zhu J Ref: Oncotarget, 7:68688, 2016 : PubMed
To understand the heterogeneity of prostate cancer (PCa) and identify novel underlying drivers, we constructed integrative molecular Bayesian networks (IMBNs) for PCa by integrating gene expression and copy number alteration data from published datasets. After demonstrating such IMBNs with superior network accuracy, we identified multiple sub-networks within IMBNs related to biochemical recurrence (BCR) of PCa and inferred the corresponding key drivers. The key drivers regulated a set of common effectors including genes preferentially expressed in neuronal cells. NLGN4Y-a protein involved in synaptic adhesion in neurons-was ranked as the top gene closely linked to key drivers of myogenesis subnetworks. Lower expression of NLGN4Y was associated with higher grade PCa and an increased risk of BCR. We show that restoration of the protein expression of NLGN4Y in PC-3 cells leads to decreased cell proliferation, migration and inflammatory cytokine expression. Our results suggest that NLGN4Y is an important negative regulator in prostate cancer progression. More importantly, it highlights the value of IMBNs in generating biologically and clinically relevant hypotheses about prostate cancer that can be validated by independent studies.
        
Title: Behavioral phenotypes in males with XYY and possible role of increased NLGN4Y expression in autism features Ross JL, Tartaglia N, Merry DE, Dalva M, Zinn AR Ref: Genes Brain Behav, 14:137, 2015 : PubMed
The male sex chromosome disorder, 47,XYY syndrome (XYY), is associated with increased risk for social-emotional difficulties, attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). We hypothesize that increased Y chromosome gene copy number in XYY leads to overexpression of Y-linked genes related to brain development and function, thereby increasing risk for these phenotypes. We measured expression in blood of two Y genes NLGN4Y and RPS4Y in 26 boys with XYY and 11 male controls and evaluated whether NLGN4Y expression correlates with anxiety, ADHD, depression and autistic behaviors (from questionnaires) in boys with XYY. The XYY cohort had increased risk of ASD behaviors on the social responsiveness scale (SRS) and increased attention deficits on the Conners' DSM-IV inattention and hyperactive scales. In contrast, there was no increase in reported symptoms of anxiety or depression by the XYY group. Peripheral expression of two Y genes in boys with XYY vs. typically developing controls was increased twofold in the XYY group. Results from the SRS total and autistic mannerisms scales, but not from the attention, anxiety or depression measures, correlated with peripheral expression of NLGN4Y in boys with XYY. Males with XYY have social phenotypes that include increased risk for autism-related behaviors and ADHD. Expression of NLGN4Y, a gene that may be involved in synaptic function, is increased in boys with XYY, and the level of expression correlates with overall social responsiveness and autism symptoms. Thus, further investigation of NLGN4Y as a plausible ASD risk gene in XYY is warranted.
        
7 lessTitle: Y chromosome gene copy number and lack of autism phenotype in a male with an isodicentric Y chromosome and absent NLGN4Y expression Ross JL, Bloy L, Roberts TPL, Miller J, Xing C, Silverman LA, Zinn AR Ref: American Journal of Medicine Genet B Neuropsychiatr Genet, 180:471, 2019 : PubMed
We describe a unique male with a dicentric Y chromosome whose phenotype was compared to that of males with 47,XYY (XYY). The male Y-chromosome aneuploidy XYY is associated with physical, behavioral/cognitive phenotypes, and autism spectrum disorders. We hypothesize that increased risk for these phenotypes is caused by increased copy number/overexpression of Y-encoded genes. Specifically, an extra copy of the neuroligin gene NLGN4Y might elevate the risk of autism in boys with XYY. We present a unique male with the karyotype 46,X,idic(Y)(q11.22), which includes duplication of the Y short arm and proximal long arm and deletion of the distal long arm, evaluated his physical, behavioral/cognitive, and neuroimaging/magnetoencephalography (MEG) phenotypes, and measured blood RNA expression of Y genes. The proband had tall stature and cognitive function within the typical range, without autism features. His blood RNA showed twofold increase in expression of Yp genes versus XY controls, and absent expression of deleted Yq genes, including NLGN4Y. The M100 latencies were similar to findings in typically developing males. In summary, the proband had overexpression of a subset of Yp genes, absent NLGN4Y expression, without ASD findings or XYY-MEG latency findings. These results are consistent with a role for NLGN4Y overexpression in the etiology of behavioral phenotypes associated with XYY. Further investigation of NLGN4Y as an ASD risk gene in XYY is warranted. The genotype and phenotype(s) of this subject may also provide insight into how Y chromosome genes contribute to normal male development and the male predominance in ASD.
We conducted a direct test of an immunological explanation of the finding that gay men have a greater number of older brothers than do heterosexual men. This explanation posits that some mothers develop antibodies against a Y-linked protein important in male brain development, and that this effect becomes increasingly likely with each male gestation, altering brain structures underlying sexual orientation in their later-born sons. Immune assays targeting two Y-linked proteins important in brain development-protocadherin 11 Y-linked (PCDH11Y) and neuroligin 4 Y-linked (NLGN4Y; isoforms 1 and 2)-were developed. Plasma from mothers of sons, about half of whom had a gay son, along with additional controls (women with no sons, men) was analyzed for male protein-specific antibodies. Results indicated women had significantly higher anti-NLGN4Y levels than men. In addition, after statistically controlling for number of pregnancies, mothers of gay sons, particularly those with older brothers, had significantly higher anti-NLGN4Y levels than did the control samples of women, including mothers of heterosexual sons. The results suggest an association between a maternal immune response to NLGN4Y and subsequent sexual orientation in male offspring.
        
Title: Constructing Bayesian networks by integrating gene expression and copy number data identifies NLGN4Y as a novel regulator of prostate cancer progression Gong Y, Wang L, Chippada-Venkata U, Dai X, Oh WK, Zhu J Ref: Oncotarget, 7:68688, 2016 : PubMed
To understand the heterogeneity of prostate cancer (PCa) and identify novel underlying drivers, we constructed integrative molecular Bayesian networks (IMBNs) for PCa by integrating gene expression and copy number alteration data from published datasets. After demonstrating such IMBNs with superior network accuracy, we identified multiple sub-networks within IMBNs related to biochemical recurrence (BCR) of PCa and inferred the corresponding key drivers. The key drivers regulated a set of common effectors including genes preferentially expressed in neuronal cells. NLGN4Y-a protein involved in synaptic adhesion in neurons-was ranked as the top gene closely linked to key drivers of myogenesis subnetworks. Lower expression of NLGN4Y was associated with higher grade PCa and an increased risk of BCR. We show that restoration of the protein expression of NLGN4Y in PC-3 cells leads to decreased cell proliferation, migration and inflammatory cytokine expression. Our results suggest that NLGN4Y is an important negative regulator in prostate cancer progression. More importantly, it highlights the value of IMBNs in generating biologically and clinically relevant hypotheses about prostate cancer that can be validated by independent studies.
        
Title: Behavioral phenotypes in males with XYY and possible role of increased NLGN4Y expression in autism features Ross JL, Tartaglia N, Merry DE, Dalva M, Zinn AR Ref: Genes Brain Behav, 14:137, 2015 : PubMed
The male sex chromosome disorder, 47,XYY syndrome (XYY), is associated with increased risk for social-emotional difficulties, attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). We hypothesize that increased Y chromosome gene copy number in XYY leads to overexpression of Y-linked genes related to brain development and function, thereby increasing risk for these phenotypes. We measured expression in blood of two Y genes NLGN4Y and RPS4Y in 26 boys with XYY and 11 male controls and evaluated whether NLGN4Y expression correlates with anxiety, ADHD, depression and autistic behaviors (from questionnaires) in boys with XYY. The XYY cohort had increased risk of ASD behaviors on the social responsiveness scale (SRS) and increased attention deficits on the Conners' DSM-IV inattention and hyperactive scales. In contrast, there was no increase in reported symptoms of anxiety or depression by the XYY group. Peripheral expression of two Y genes in boys with XYY vs. typically developing controls was increased twofold in the XYY group. Results from the SRS total and autistic mannerisms scales, but not from the attention, anxiety or depression measures, correlated with peripheral expression of NLGN4Y in boys with XYY. Males with XYY have social phenotypes that include increased risk for autism-related behaviors and ADHD. Expression of NLGN4Y, a gene that may be involved in synaptic function, is increased in boys with XYY, and the level of expression correlates with overall social responsiveness and autism symptoms. Thus, further investigation of NLGN4Y as a plausible ASD risk gene in XYY is warranted.
Frameshift and missense mutations in the X-linked neuroligin 4 (NLGN4, MIM# 300427) and neuroligin 3 (NLGN3, MIM# 300336) genes have been identified in patients with autism, Asperger syndrome and mental retardation. We hypothesize that sequence variants in NLGN4Y are associated with autism or mental retardation. The coding sequences and splice junctions of the NLGN4Y gene were analyzed in 335 male samples (290 with autism and 45 with mental retardation). A total of 1.1 Mb of genomic DNA was sequenced. One missense variant, p.I679V, was identified in a patient with autism, as well as his father with learning disabilities. The I679 residue is highly conserved in three members of the neuroligin family. The absence of p.I679V in 2986 control Y chromosomes and the high similarity of NLGN4 and NLGN4Y are consistent with the hypothesis that p.I679V contributes to the etiology of autism. The presence of only one structural variant in our population of 335 males with autism/mental retardation, the unavailability of significant family cosegregation and an absence of functional assays are, however, important limitations of this study.
Neuroligins are cell-adhesion molecules located at the postsynaptic side of the synapse. Neuroligins interact with beta-neurexins and this interaction is involved in the formation of functional synapses. Mutations in two X-linked neuroligin genes, NLGN3 and NLGN4, have recently been implicated in pathogenesis of autism. The neuroligin gene family consists of five members (NLGN1 at 3q26, NLGN2 at 17p13, NLGN3 at Xq13, NLGN4 at Xp22, and NLGN4Y at Yq11), of which NLGN1 and NLGN3 are located within the best loci observed in our previous genome-wide scan for autism in the Finnish sample. Here, we report a detailed molecular genetic analysis of NLGN1, NLGN3, NLGN4, and NLNG4Y in the Finnish autism sample. Mutation analysis of 30 probands selected from families producing linkage evidence for Xq13 and/or 3q26 loci revealed several polymorphisms, but none of these seemed to be functional. Family-based association analysis in 100 families with autism spectrum disorders yielded only modest associations at NLGN1 (rs1488545, P=0.002), NLGN3 (DXS7132, P=0.014), and NLGN4 (DXS996, P=0.031). We conclude that neuroligin mutations most probably represent rare causes of autism and that it is unlikely that the allelic variants in these genes would be major risk factors for autism.
Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.
The male-specific region of the Y chromosome, the MSY, differentiates the sexes and comprises 95% of the chromosome's length. Here, we report that the MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerate and ampliconic. These classes contain all 156 known transcription units, which include 78 protein-coding genes that collectively encode 27 distinct proteins. The X-transposed sequences exhibit 99% identity to the X chromosome. The X-degenerate sequences are remnants of ancient autosomes from which the modern X and Y chromosomes evolved. The ampliconic class includes large regions (about 30% of the MSY euchromatin) where sequence pairs show greater than 99.9% identity, which is maintained by frequent gene conversion (non-reciprocal transfer). The most prominent features here are eight massive palindromes, at least six of which contain testis genes.
A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
As a part of our cDNA project for deducing the coding sequence of unidentified human genes, we newly determined the sequences of 100 cDNA clones from a set of size-fractionated human brain cDNA libraries, and predicted the coding sequences of the corresponding genes, named KIAA0919 to KIAA1018. The sequencing of these clones revealed that the average sizes of the inserts and corresponding open reading frames were 4.9 kb and 2.6 kb (882 amino acid residues), respectively. A computer search of the sequences against the public databases indicated that predicted coding sequences of 87 genes contained sequences similar to known genes, 53% of which (46 genes) were categorized as proteins relating to cell signaling/communication, cell structure/motility and nucleic acid management. The chromosomal locations of the genes were determined by using human-rodent hybrid panels unless their mapping data were already available in the public databases. The expression profiles of all the genes among 10 human tissues, 8 brain regions (amygdala, corpus callosum, cerebellum, caudate nucleus, hippocampus, substania nigra, subthalamic nucleus, and thalamus), spinal cord, fetal brain and fetal liver were also examined by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.