Homo sapiens (Human) PREPL Prolylendopeptidase-like KIAA0436
Comment
PREPL is localized in the cytosol and shows homology with prolyl endopeptidase (PREP; 600400) and oligopeptidase B (EC 3.4.21.83). Jaeken et al. (2006) found that substitution of the predicted catalytic residues (ser470, asp556, and his601) by alanines resulted in loss of reactivity with a serine hydrolase-specific probe. In sharp contrast to PREP and oligopeptidase B, which require both amino- and carboxy-terminal sequences for activity, PREPL activity appeared to depend only on the carboxy-terminal domain. Jaeken et al. (2006) concluded that PREPL is a novel oligopeptidase with unique structural and functional characteristics. Trembl Q96DW7 is only a portion of this protein unknown (protein for mgc:21932)
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
2p21del_human-PREPL : A recessive contiguous gene deletion of chromosome 2p16 associated with cystinuria and a mitochondrial disease DelA_human-PREPL : Deletion of PREPL, a gene encoding a putative serine oligopeptidase, in patients with hypotonia-cystinuria syndrome DelB_human-PREPL : Deletion of PREPL, a gene encoding a putative serine oligopeptidase, in patients with hypotonia-cystinuria syndrome DelC_human-PREPL : Deletion of PREPL, a gene encoding a putative serine oligopeptidase, in patients with hypotonia-cystinuria syndrome DelD_human-PREPL : Deletion of PREPL, a gene encoding a putative serine oligopeptidase, in patients with hypotonia-cystinuria syndrome DelE_human-PREPL : Global distribution of the most prevalent deletions causing hypotonia-cystinuria syndrome DelF_human-PREPL : Deletion of C2orf34, PREPL and SLC3A1 causes atypical hypotonia-cystinuria syndrome DelG_human-PREPL : Deletion of PREPL, a gene encoding a putative serine oligopeptidase, in patients with hypotonia-cystinuria syndrome DelH_human-PREPL : Two novel deletions in hypotonia-cystinuria syndrome DelI_human-PREPL : Two novel deletions in hypotonia-cystinuria syndrome
1 structure: 7OBM: Crystal structure of the human Prolyl Endopeptidase-Like protein short form (residues 90-727) No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA AGLACGDTCSPLRASGSPACLHWFVSRAGLILSICDLQPVKQENEKPLPE NMDAFEKVRTKLETQPQEEYEIINVEVKHGGFVYYQEGCCLVRSKDEEAD NDNYEVLFNLEELKLDQPFIDCIRVAPDEKYVAAKIRTEDSEASTCVIIK LSDQPVMEASFPNVSSFEWVKDEEDEDVLFYTFQRNLRCHDVYRATFGDN KRNERFYTEKDPSYFVFLYLTKDSRFLTINIMNKTTSEVWLIDGLSPWDP PVLIQKRIHGVLYYVEHRDDELYILTNVGEPTEFKLMRTAADTPAIMNWD LFFTMKRNTKVIDLDMFKDHCVLFLKHSNLLYVNVIGLADDSVRSLKLPP WACGFIMDTNSDPKNCPFQLCSPIRPPKYYTYKFAEGKLFEETGHEDPIT KTSRVLRLEAKSKDGKLVPMTVFHKTDSEDLQKKPLLVHVYGAYGMDLKM NFRPERRVLVDDGWILAYCHVRGGGELGLQWHADGRLTKKLNGLADLEAC IKTLHGQGFSQPSLTTLTAFSAGGVLAGALCNSNPELVRAVTLEAPFLDV LNTMMDTTLPLTLEELEEWGNPSSDEKHKNYIKRYCPYQNIKPQHYPSIH ITAYENDERVPLKGIVSYTEKLKEAIAEHAKDTGEGYQTPNIILDIQPGG NHVIEDSHKKITAQIKFLYEELGLDSTSVFEDLKKYLKF
References
18 moreTitle: PREPL, a prolyl endopeptidase-like enzyme by name only?--Lessons from patients Boonen K, Regal L, Jaeken J, Creemers JW Ref: CNS Neurol Disord Drug Targets, 10:355, 2011 : PubMed
Deletion of the Prolyl Endopeptidase-like (PREPL) gene has been described in three contiguous gene deletion syndromes at the 2p21 locus and current developments in high resolution microarrays and whole genome sequencing will no doubt soon result in the identification of isolated PREPL deficiency. But by comparing the differences in phenotypes with the number of genes deleted, the contribution of PREPL deficiency can already be deduced. Homozygous or compound heterozygous loss of PREPL is predicted to cause neonatal hypotonia and severe feeding problems. Failure to thrive usually persists for several years, followed by a period of hyperphagia and excessive weight gain. Growth retardation is usually observed, which responds well to growth hormone therapy. In addition, minor facial dysmorphism, nasal speech, viscous saliva, hypergonadotropic hypogonadism and learning problems are frequently observed. How PREPL deficiency causes these clinical manifestations remains unknown. PREPL is highly expressed in brain and based on gene coexpression network architecture it has been placed in a group enriched with markers of neurons and synaptic proteins. PREPL is predicted to be a serine oligopeptidase based on its homology with prolyl endopeptidase (PREP) and the presence of an active catalytic triad. However, until now no substrates have been found. Recent observations that PREP has non-catalytic functions in the cytoplasm through interactions with its amino- terminal propeller domain, suggests that of PREPL may also have biological functions independent of its predicted peptidase activity. This raises the possibility that PREP and PREPL are homologous, not just by name but also by nature.
In 11 patients with a recessive congenital disorder, which we refer to as "the hypotonia-cystinuria syndrome," microdeletion of part of the SLC3A1 and PREPL genes on chromosome 2p21 was found. Patients present with generalized hypotonia at birth, nephrolithiasis, growth hormone deficiency, minor facial dysmorphism, and failure to thrive, followed by hyperphagia and rapid weight gain in late childhood. Since loss-of-function mutations in SLC3A1 are known to cause isolated cystinuria type I, and since the expression of the flanking genes, C2orf34 and PPM1B, was normal, the extended phenotype can be attributed to the deletion of PREPL. PREPL is localized in the cytosol and shows homology with prolyl endopeptidase and oligopeptidase B. Substitution of the predicted catalytic residues (Ser470, Asp556, and His601) by alanines resulted in loss of reactivity with a serine hydrolase-specific probe. In sharp contrast to prolyl oligopeptidase and oligopeptidase B, which require both aminoterminal and carboxyterminal sequences for activity, PREPL activity appears to depend only on the carboxyterminal domain. Taken together, these results suggest that PREPL is a novel oligopeptidase, with unique structural and functional characteristics, involved in hypotonia-cystinuria syndrome.
        
Title: The PREPL A protein, a new member of the prolyl oligopeptidase family, lacking catalytic activity Szeltner Z, Alshafee I, Juhasz T, Parvari R, Polgar L Ref: Cell Mol Life Sciences, 62:2376, 2005 : PubMed
The PREPL (previously called KIAA0436) gene encodes a putative serine peptidase from the prolyl oligopeptidase family. A chromosomal deletion involving the PREPL gene leads to a severe syndrome with multiple symptoms. Homology with oligopeptidase B suggested that the enzyme cleaves after an arginine or lysine residue. Several PREPL splice variants have been identified, and a 638-residue variant (PREPL A) was expressed in Escherichia coli and purified. Its secondary structure was similar to that of oligopeptidase B, but differential-scanning calorimetry indicated a higher conformational stability. Dimerization may account for the enhanced stability. Unexpectedly, the PREPL A protein did not cleave peptide substrates containing a P1 basic residue, but did slowly hydrolyse an activated ester substrate, and reacted with diisopropyl fluorophosphate. These results indicated that the catalytic serine is a reactive residue. However, the negligible hydrolytic activity suggests that the function of PREPL A is different from that of the other members of the prolyl oligopeptidase family.
The aggregation of alpha-synuclein (alpha-Syn) is a characteristic of Parkinson's disease (PD). alpha-Syn oligomerization/aggregation is accelerated by the serine peptidase, prolyl oligopeptidase (POP). Factors that affect POP conformation, including most of its inhibitors and an impairing mutation in its active site, influence the acceleration of alpha-Syn aggregation resulting from the interaction of these proteins. It is noteworthy, however, that alpha-Syn is not cleaved by POP. Prolyl endopeptidase-like (PREPL) protein is structurally related to the serine peptidases belonging to the POP family. Based on the alpha-Syn-POP studies and knowing that PREPL may contribute to the regulation of synaptic vesicle exocytosis, when this protein can encounter alpha-Syn, we investigated the alpha-Syn-PREPL interaction. The binding of these two human proteins was observed with an apparent affinity constant of about 5.7 muM and, as in the alpha-Syn assays with POP, the presence of PREPL accelerated the oligomerization/aggregation events, with no alpha-Syn cleavage. Furthermore, despite this lack of hydrolytic cleavage, the serine peptidase active site inhibitor phenylmethylsulfonyl fluoride (PMSF) abolished the enhancement of the alpha-Syn aggregation by PREPL. Therefore, given the attention to POP inhibitors as potential drugs to treat synucleinopathies, the present data point to PREPL as another potential target to be explored for this purpose.
PurposePREPL deficiency causes neonatal hypotonia, ptosis, neonatal feeding difficulties, childhood obesity, xerostomia, and growth hormone deficiency. Different recessive contiguous gene deletion syndromes involving PREPL and a variable combination of SLC3A1 (hypotonia-cystinuria syndrome), CAMKMT (atypical hypotonia-cystinuria syndrome), and PPM1B (2p21 deletion syndrome) have been described. In isolated PREPL deficiency, previously described only once, the absence of cystinuria complicates the diagnosis. Therefore, we developed a PREPL blood assay and further delineated the phenotype.MethodsClinical features of new subjects with PREPL deficiency were recorded. The presence of PREPL in lymphocytes and its reactivity with an activity-based probe were evaluated by western blot.ResultsFive subjects with isolated PREPL deficiency, three with hypotonia-cystinuria syndrome, and two with atypical hypotonia-cystinuria syndrome had nine novel alleles. Their IQs ranged from 64 to 112. Adult neuromuscular signs included ptosis, nasal dysarthria, facial weakness, and variable proximal and neck flexor weakness. Autonomic features are prevalent. PREPL protein and reactivity were absent in lymphocytes from subjects with PREPL deficiency, but normal in the clinically similar Prader-Willi syndrome.ConclusionPREPL deficiency causes neuromuscular, autonomic, cognitive, endocrine, and dysmorphic clinical features. PREPL is not deficient in Prader-Willi syndrome. The novel blood test should facilitate the confirmation of PREPL deficiency.
Genetic studies of rare diseases can identify genes of unknown function that strongly impact human physiology. Prolyl endopeptidase-like (PREPL) is an uncharacterized member of the prolyl peptidase family that was discovered because of its deletion in humans with hypotonia-cystinuria syndrome (HCS). HCS is characterized by a number of physiological changes including diminished growth and neonatal hypotonia or low muscle tone. HCS patients have deletions in other genes as well, making it difficult to tease apart the specific role of PREPL. Here, we develop a PREPL null (PREPL(-/-)) mouse model to address the physiological role of this enzyme. Deletion of exon 11 from the Prepl gene, which encodes key catalytic amino acids, leads to a loss of PREPL protein as well as lower Prepl mRNA levels. PREPL(-/-) mice have a pronounced growth phenotype, being significantly shorter and lighter than their wild type (PREPL(+/+)) counterparts. A righting assay revealed that PREPL(-/-) pups took significantly longer than PREPL(+/+) pups to right themselves when placed on their backs. This deficit indicates that PREPL(-/-) mice suffer from neonatal hypotonia. According to these results, PREPL regulates growth and neonatal hypotonia in mice, which supports the idea that PREPL causes diminished growth and neonatal hypotonia in humans with HCS. These animals provide a valuable asset in deciphering the underlying biochemical, cellular and physiological pathways that link PREPL to HCS, and this may eventually lead to new insights in the treatment of this disease.
OBJECTIVE: To investigate the genetic and physiologic basis of the neuromuscular symptoms of hypotonia-cystinuria syndrome (HCS) and isolated PREPL deficiency, and their response to therapy. METHODS: We performed molecular genetic, histochemical, immunoblot, and ultrastructural studies, investigated neuromuscular transmission in vitro in a patient with isolated PREPL deficiency, and evaluated the effect of pyridostigmine in this patient and in 3 patients with the HCS. RESULTS: HCS is caused by recessive deletions involving the SLC3A1 and PREPL genes. The major clinical features of HCS are type A cystinuria, growth hormone deficiency, muscle weakness, ptosis, and feeding problems. The proband with isolated PREPL deficiency had myasthenic symptoms since birth and a positive edrophonium test but no cystinuria. She and 1 of 3 patients with HCS responded transiently to pyridostigmine during infancy. The proband harbors a paternally inherited nonsense mutation in PREPL and a maternally inherited deletion involving both PREPL and SLC3A1; therefore, the PREPL deficiency determines the phenotype. We detected no PREPL expression in the patient's muscle and endplates. Electrophysiology studies revealed decreased quantal content of the endplate potential and reduced amplitude of the miniature endplate potential without endplate acetylcholine receptor deficiency or altered endplate geometry. CONCLUSION: Isolated PREPL deficiency is a novel monogenic disorder that causes a congenital myasthenic syndrome with pre- and postsynaptic features and growth hormone deficiency. The myasthenic symptoms in PREPL deficiency with or without cystinuria may respond to pyridostigmine in early life. We attribute the myasthenia to abrogated interaction of PREPL with adaptor protein 1.
The biochemical properties and subcellular localization of prolyl endopeptidase (PREP) in brain are well characterized and its implications in the realization of cognitive processes and in the pathogenesis of neurodegenerative disorders are a matter of intensive investigation. In contrast, very little is known about its homolog, the PREP-like protein (PREPL). In order to obtain initial hints about the involvement of PREPL in physiological processes, a differential proteomic screen was performed with human skin fibroblasts from controls and patients with PREPL deficiency (hypotonia-cystinuria syndrome). The majority of affected proteins represented cytoskeletal proteins, including caldesmon, tropomyosin alpha3 chain, lamin A, beta-actin, gamma-actin, vimentin and zyxin. Therefore, the analysis of PREPL subcellular localization by confocal laser scanning and electron microscopy in mouse neurons was focused on the cytoskeleton. The co-localization of PREPL with cytoskeletal marker proteins such as beta-actin and microtubulin-associated protein-2 was observed, in addition to the presence of PREPL within Golgi apparatus and growth cones. In the mouse brain, PREPL is neuronally expressed and highly abundant in neocortex, substantia nigra and locus coeruleus. This mirrors to some extent the distribution pattern of PREP and points toward redundant functions of both proteins. In the human neocortex, PREPL immunostaining was found in the cytoplasm and in neuropil, in particular of layer V pyramidal neurons. This staining was reduced in the neocortex of Alzheimer's disease (AD) patients. Moreover, in AD brains, PREPL immunoreactivity was observed in the nucleus and in varicose neuritic processes. Our data indicate physiological functions of PREPL associated with the cytoskeleton, which may be affected under conditions of cytoskeletal degeneration.
        
Title: Trans-Golgi network morphology and sorting is regulated by prolyl-oligopeptidase-like protein PREPL and the AP-1 complex subunit 1A Radhakrishnan K, Baltes J, Creemers JW, Schu P Ref: Journal of Cell Science, 126:1155, 2013 : PubMed
The AP-1 complex recycles between membranes and the cytoplasm and dissociates from membranes during clathrin-coated-vesicle uncoating, but also independently of vesicular transport. The micro1A N-terminal 70 amino acids are involved in regulating AP-1 recycling. In a yeast two-hybrid library screen we identified the cytoplasmic prolyl-oligopeptidase-like protein PREPL as an interaction partner of this domain. PREPL overexpression leads to reduced AP-1 membrane binding, whereas reduced PREPL expression increases membrane binding and impairs AP-1 recycling. Altered AP-1 membrane binding in PREPL-deficient cells mirrors the membrane binding of the mutant AP-1* complex, which is not able to bind PREPL. Colocalisation of PREPL with residual membrane-bound AP-1 can be demonstrated. Patient cell lines deficient in PREPL have an expanded trans-Golgi network, which could be rescued by PREPL expression. These data demonstrate PREPL as an AP-1 effector that takes part in the regulation of AP-1 membrane binding. PREPL is highly expressed in brain and at lower levels in muscle and kidney. Its deficiency causes hypotonia and growth hormone hyposecretion, supporting essential PREPL functions in AP-1-dependent secretory pathways.
Hypotonia-cystinuria syndrome (HCS) is an autosomal recessive disorder caused by combined deletions of SLC3A1 and PREPL. Clinical features include cystinuria, neonatal hypotonia with spontaneous improvement, poor feeding in neonates, hyperphagia in childhood, growth hormone deficiency, and variable cognitive problems. Only 14 families with 6 different deletions have been reported. Patients are often initially misdiagnosed, while correct diagnosis enables therapeutic interventions. We report two novel deletions, further characterizing the clinical and molecular genetics spectrum of HCS.
        
Title: PREPL, a prolyl endopeptidase-like enzyme by name only?--Lessons from patients Boonen K, Regal L, Jaeken J, Creemers JW Ref: CNS Neurol Disord Drug Targets, 10:355, 2011 : PubMed
Deletion of the Prolyl Endopeptidase-like (PREPL) gene has been described in three contiguous gene deletion syndromes at the 2p21 locus and current developments in high resolution microarrays and whole genome sequencing will no doubt soon result in the identification of isolated PREPL deficiency. But by comparing the differences in phenotypes with the number of genes deleted, the contribution of PREPL deficiency can already be deduced. Homozygous or compound heterozygous loss of PREPL is predicted to cause neonatal hypotonia and severe feeding problems. Failure to thrive usually persists for several years, followed by a period of hyperphagia and excessive weight gain. Growth retardation is usually observed, which responds well to growth hormone therapy. In addition, minor facial dysmorphism, nasal speech, viscous saliva, hypergonadotropic hypogonadism and learning problems are frequently observed. How PREPL deficiency causes these clinical manifestations remains unknown. PREPL is highly expressed in brain and based on gene coexpression network architecture it has been placed in a group enriched with markers of neurons and synaptic proteins. PREPL is predicted to be a serine oligopeptidase based on its homology with prolyl endopeptidase (PREP) and the presence of an active catalytic triad. However, until now no substrates have been found. Recent observations that PREP has non-catalytic functions in the cytoplasm through interactions with its amino- terminal propeller domain, suggests that of PREPL may also have biological functions independent of its predicted peptidase activity. This raises the possibility that PREP and PREPL are homologous, not just by name but also by nature.
Peptidases play vital roles in physiology through the biosynthesis, degradation, and regulation of peptides. Prolyl endopeptidase-like (PREPL) is a newly described member of the prolyl peptidase family, with significant homology to mammalian prolyl endopeptidase and the bacterial peptidase oligopeptidase B. The biochemistry and biology of PREPL are of fundamental interest due to this enzyme's homology to the biomedically important prolyl peptidases and its localization in the central nervous system. Furthermore, genetic studies of patients suffering from hypotonia-cystinuria syndrome (HCS) have revealed a deletion of a portion of the genome that includes the PREPL gene. HCS symptoms thought to be caused by lack of PREPL include neuromuscular and mild cognitive deficits. A number of complementary approaches, ranging from biochemistry to genetics, will be required to understand the biochemical, cellular, physiological, and pathological mechanisms regulated by PREPL. We are particularly interested in investigating physiological substrates and pathways controlled by PREPL. Here, we use a fluorescence polarization activity-based protein profiling (fluopol-ABPP) assay to discover selective small-molecule inhibitors of PREPL. Fluopol-ABPP is a substrate-free approach that is ideally suited for studying serine hydrolases for which no substrates are known, such as PREPL. After screening over 300,000 compounds using fluopol-ABPP, we employed a number of secondary assays to confirm assay hits and characterize a group of 3-oxo-1-phenyl-2,3,5,6,7,8-hexahydroisoquinoline-4-carbonitrile and 1-alkyl-3-oxo-3,5,6,7-tetrahydro-2H-cyclopenta[c]pyridine-4-carbonitrile PREPL inhibitors that are able to block PREPL activity in cells. Moreover, when administered to mice, 1-isobutyl-3-oxo-3,5,6,7-tetrahydro-2H-cyclopenta[c]pyridine-4-carbonitrile distributes to the brain, indicating that it may be useful for in vivo studies. The application of fluopol-ABPP has led to the first reported PREPL inhibitors, and these inhibitors will be of great value in studying the biochemistry of PREPL and in eventually understanding the link between PREPL and HCS.
BACKGROUND: Hypotonia-cystinuria syndrome (HCS) and 2p21 deletion syndrome are two recessive contiguous gene deletion syndromes associated with cystinuria type I. The deletions differ in size and the number of genes involved. In HCS patients, only SLC3A1 and PREPL are disrupted. In the 2p21 deletion syndrome, two additional genes (C2orf34 and PPM1B) are lost. OBJECTIVE: Clinical and molecular analysis of two siblings who presented with an atypical HCS phenotype. METHODS: Molecular analysis of the SLC3A1/PREPL locus was performed in the patients using quantitative polymerase chain reaction (PCR) methods. RESULTS: HCS in both siblings was confirmed with the deletion screen of the SLC3A1/PREPL locus. Fine mapping of the breakpoint revealed a deletion of 77.4 kb, including three genes: SLC3A1, PREPL and C2orf34. Features not present in classical HCS were a mild/moderate mental retardation and a respiratory chain complex IV deficiency documented in patient 2. CONCLUSIONS: We report the first patients with a deletion of SLC3A1, PREPL and C2orf34. They present with a phenotype intermediate between HCS and 2p21 deletion syndrome. These patients facilitate the elucidation of the contribution of each gene to the phenotype in the different 2p21 deletion syndromes.
We report the synthesis and in vitro activity of a series of novel pyrrolidinyl pyridones and pyrazinones as potent inhibitors of prolyl oligopeptidase (POP). Within this series, compound 39 was co-crystallized within the catalytic site of a human chimeric POP protein which provided a more detailed understanding of how these inhibitors interacted with the key residues within the catalytic pocket.
Cystinuria type I is an autosomal recessive disorder with an exclusively renal phenotype caused by inactivating mutations in SLC3A1. Recently 3 similar but distinct syndromes associated with cystinuria type I have been described: 2p21 deletion syndrome, Hypotonia-Cystinuria Syndrome (HCS) and atypical HCS. Genetic analysis indicated that these are recessive contiguous gene deletion syndromes which differ in the number of genes affected. Patients with HCS are missing both alleles of SLC3A1 and PREPL. In atypical HCS an additional gene (C2orf34) is deleted, and finally, in the 2p21 deletion syndrome the open reading frame of PPM1B is also disrupted. With the exception of SLC3A1, the gene products have not been fully characterized. The severity of the different syndromes reflects the number of genes which are deleted. HCS, a relatively mild syndrome, is characterised by cystinuria type I, generalised hypotonia at birth, growth retardation and minor facial dysmorphic features. On the other end of the spectrum is the 2p21 deletion syndrome, a severe syndrome with a number of additional features including a moderate to severe psychomotor retardation and a decrease in activity of the respiratory chain complexes I, III, IV and V. Finally, atypical HCS displays an intermediate phenotype comparable with classical HCS but associated with mild to moderate mental retardation and a decrease in activity of only the respiratory chain complex IV. This review will focus on the phenotypic similarities and differences observed in these syndromes. Furthermore, we speculate on the function of the gene products, based on the available data.
Hypotonia-cystinuria syndrome (HCS) is a recessive disorder caused by microdeletions of SLC3A1 and PREPL on chromosome 2p21. Patients present with generalized hypotonia at birth, failure to thrive, growth retardation and cystinuria type I. While the initially described HCS families live in small regions in Belgium and France, we have now identified HCS alleles in patients and carriers from the Netherlands, Italy, Canada and United States of America. Surprisingly, among the nine deletions detected in those patients, only one novel deletion was found. Furthermore, one previously described deletion was found six times, another twice. Finally, we have investigated the frequency of both deletions using a random Belgian cohort. Given the global occurrence, HCS should be considered in the differential diagnosis of neonatal hypotonia.
In 11 patients with a recessive congenital disorder, which we refer to as "the hypotonia-cystinuria syndrome," microdeletion of part of the SLC3A1 and PREPL genes on chromosome 2p21 was found. Patients present with generalized hypotonia at birth, nephrolithiasis, growth hormone deficiency, minor facial dysmorphism, and failure to thrive, followed by hyperphagia and rapid weight gain in late childhood. Since loss-of-function mutations in SLC3A1 are known to cause isolated cystinuria type I, and since the expression of the flanking genes, C2orf34 and PPM1B, was normal, the extended phenotype can be attributed to the deletion of PREPL. PREPL is localized in the cytosol and shows homology with prolyl endopeptidase and oligopeptidase B. Substitution of the predicted catalytic residues (Ser470, Asp556, and His601) by alanines resulted in loss of reactivity with a serine hydrolase-specific probe. In sharp contrast to prolyl oligopeptidase and oligopeptidase B, which require both aminoterminal and carboxyterminal sequences for activity, PREPL activity appears to depend only on the carboxyterminal domain. Taken together, these results suggest that PREPL is a novel oligopeptidase, with unique structural and functional characteristics, involved in hypotonia-cystinuria syndrome.
The prolyl endopeptidase-like protein PREPL has recently attracted attention because its gene is located within two contiguous gene-deletion syndromes, the 2p21 deletion syndrome and the hypotonia-cystinuria syndrome. Deletion of the gene results in hypotonia at birth, failure to thrive and growth hormone deficiency. PREPL is highly reactive against an activity-based probe, which indicates the presence of an intact catalytic machinery. However, no substrate has been found yet. The unique carboxy-terminus of the catalytic domain might contain the key to the as yet elusive specificity.
Human chromosome 2 is unique to the human lineage in being the product of a head-to-head fusion of two intermediate-sized ancestral chromosomes. Chromosome 4 has received attention primarily related to the search for the Huntington's disease gene, but also for genes associated with Wolf-Hirschhorn syndrome, polycystic kidney disease and a form of muscular dystrophy. Here we present approximately 237 million base pairs of sequence for chromosome 2, and 186 million base pairs for chromosome 4, representing more than 99.6% of their euchromatic sequences. Our initial analyses have identified 1,346 protein-coding genes and 1,239 pseudogenes on chromosome 2, and 796 protein-coding genes and 778 pseudogenes on chromosome 4. Extensive analyses confirm the underlying construction of the sequence, and expand our understanding of the structure and evolution of mammalian chromosomes, including gene deserts, segmental duplications and highly variant regions.
The vast majority of small-deletion syndromes are caused by haploinsufficiency of one or several genes and are transmitted as dominant traits. We have previously identified a homozygous deletion of 179,311 bp on chromosome 2p21 as the cause of a unique syndrome, inherited in a recessive mode, consisting of cystinuria, neonatal seizures, hypotonia, severe somatic and developmental delay, facial dysmorphism, and reduced activity of all the respiratory chain enzymatic complexes that are encoded in the mitochondria. We now present the transcription content of this region: Multiple splicing variants of the genes protein phosphatase 1B (formerly 2C) magnesium-dependent, beta isoform (PPM1B), SLC3A1, and KIAA0436 (approved gene symbol PREPL) were identified and their patterns of expression analyzed. The spliced variants are predicted to have additional functions compared to the known variants and their patterns of expression fit the tissues affected by the syndrome. The first exon of an additional gene (C2orf34) is encoded in the deleted region and the gene is not expressed in the patients. In addition several transcripts with very short open reading frames are also encoded in the deletion. The identification of all transcripts encoded in the region deleted in the patients is the first step in the study of the genotype-phenotype correlation of the 2p21 patients.
        
Title: The PREPL A protein, a new member of the prolyl oligopeptidase family, lacking catalytic activity Szeltner Z, Alshafee I, Juhasz T, Parvari R, Polgar L Ref: Cell Mol Life Sciences, 62:2376, 2005 : PubMed
The PREPL (previously called KIAA0436) gene encodes a putative serine peptidase from the prolyl oligopeptidase family. A chromosomal deletion involving the PREPL gene leads to a severe syndrome with multiple symptoms. Homology with oligopeptidase B suggested that the enzyme cleaves after an arginine or lysine residue. Several PREPL splice variants have been identified, and a 638-residue variant (PREPL A) was expressed in Escherichia coli and purified. Its secondary structure was similar to that of oligopeptidase B, but differential-scanning calorimetry indicated a higher conformational stability. Dimerization may account for the enhanced stability. Unexpectedly, the PREPL A protein did not cleave peptide substrates containing a P1 basic residue, but did slowly hydrolyse an activated ester substrate, and reacted with diisopropyl fluorophosphate. These results indicated that the catalytic serine is a reactive residue. However, the negligible hydrolytic activity suggests that the function of PREPL A is different from that of the other members of the prolyl oligopeptidase family.
Deletions ranging from 100 Kb to 1 Mb--too small to be detected under the microscope--may still involve dozens of genes, thus causing microdeletion syndromes. The vast majority of these syndromes are caused by haploinsufficiency of one or several genes and are transmitted as dominant traits. We identified seven patients originating from an extended family and presenting with a unique syndrome, inherited in a recessive mode, consisting of cystinuria, neonatal seizures, hypotonia, severe somatic and developmental delay, facial dysmorphism, and lactic acidemia. Reduced activity of all the respiratory chain enzymatic complexes that are encoded in the mitochondria was found in muscle biopsy specimens of the patients examined. The molecular basis of this disorder is a homozygous deletion of 179,311 bp on chromosome 2p16, which includes the type I cystinuria gene (SLC3A1), the protein phosphatase 2Cbeta gene (PP2Cbeta), an unidentified gene (KIAA0436), and several expressed sequence tags. The extent of the deletion suggests that this unique syndrome is related to the complete absence of these genes' products, one of which may be essential for the synthesis of mitochondrial encoded proteins.
A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
As a part of our project for accumulating sequence information of the coding regions of unidentified human genes, we herein report the sequence features of 78 new cDNA clones isolated from human brain cDNA libraries as those which may code for large proteins. The sequence data showed that the average size of the cDNA inserts and their open reading frames was 6.0 kb and 2.8 kb (925 amino acid residues), respectively, and these clones produced the corresponding sizes of protein products in an in vitro transcription/translation system. Homology search against the public databases indicated that the predicted coding sequences of 68 genes contained sequences similar to known genes, 69% of which (47 genes) were related to cell signaling/communication, nucleic acid management, and cell structure/motility. The expression profiles of these genes in 14 different tissues have been analyzed by the reverse transcription-coupled polymerase chain reaction method, and 8 genes were found to be predominantly expressed in the brain.