Neuroligins constitute a family of proteins thought to mediate cell-to-cell interactions between neurons. Neuroligins function as ligands for the neurexin family of cell surface receptors. Homo sapiens KIAA1480 . More recently it was cloned by Philibert et al. with some aa differences and with two alternative forms HNL3 HNLS3S. ChrX q21.1. In 2 brothers with autism, one with typical autism and the other with Asperger syndrome, Jamain et al. (2003) identified a mutation R451C in the human-NLGN3 gene. arg451 in NLGN3, arg386 in BCHE, and arg395 in ACHE are conserved in mammalian species. In cellular transfection studies, De Jaco et al. (2006) inserted mutations homologous to the NLGN3 R451C mutation in BCHE and ACHE cDNAs and found that these mutations resulted in endoplasmic reticulum retention of the 2 proteins, similar to that observed with the NLGN3 R451C mutant protein. Tabuchi et al. (2007) introduced the R451C substitution in neuroligin-3 into mice. R451C mutant mice showed impaired social interactions but enhanced spatial learning abilities. Unexpectedly these behavioral changes were accompanied by an increase in inhibitory synaptic transmission with no apparent effect on excitatory synapses. Deletion of neuroligin-3, in contrast, did not cause such changes, indicating that the R451C substitution represents a gain-of-function mutation. Tabuchi et al. (2007) concluded that increased inhibitory synaptic transmission may contribute to human autism spectrum disorders and that the R451C knockin mice may be a useful model for studying autism-related behaviors. Recently Venkatesh et al. showed that neuronal activity promotes glioma growth through Neuroligin-3 secretion Recently new findings support the neuroligin pathway in autism. In particular the R451C mutant mice (R451C_mouse-3neur identical to human mutation R451C_human-NLGN3) showed impaired social interactions but enhanced spatial learning abilities. Tabuchi et al. Comments in Garber et al., Crawley et al.
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MWLRLGPPSLSLSPKPTVGRSLCLTLWFLSLALRASTQAPAPTVNTHFGK LRGARVPLPSEILGPVDQYLGVPYAAPPIGEKRFLPPEPPPSWSGIRNAT HFPPVCPQNIHTAVPEVMLPVWFTANLDIVATYIQEPNEDCLYLNVYVPT EDVKRISKECARKPNKKICRKGGSGAKKQGEDLADNDGDEDEDIRDSGAK PVMVYIHGGSYMEGTGNMIDGSILASYGNVIVITLNYRVGVLGFLSTGDQ AAKGNYGLLDQIQALRWVSENIAFFGGDPRRITVFGSGIGASCVSLLTLS HHSEGLFQRAIIQSGSALSSWAVNYQPVKYTSLLADKVGCNVLDTVDMVD CLRQKSAKELVEQDIQPARYHVAFGPVIDGDVIPDDPEILMEQGEFLNYD IMLGVNQGEGLKFVEGVVDPEDGVSGTDFDYSVSNFVDNLYGYPEGKDTL RETIKFMYTDWADRDNPETRRKTLVALFTDHQWVEPSVVTADLHARYGSP TYFYAFYHHCQSLMKPAWSDAAHGDEVPYVFGVPMVGPTDLFPCNFSKND VMLSAVVMTYWTNFAKTGDPNKPVPQDTKFIHTKANRFEEVAWSKYNPRD QLYLHIGLKPRVRDHYRATKVAFWKHLVPHLYNLHDMFHYTSTTTKVPPP DTTHSSHITRRPNGKTWSTKRPAISPAYSNENAQGSWNGDQDAGPLLVEN PRDYSTELSVTIAVGASLLFLNVLAFAALYYRKDKRRQEPLRQPSPQRGA GAPELGAAPEEELAALQLGPTHHECEAGPPHDTLRLTALPDYTLTLRRSP DDIPLMTPNTITMIPNSLVGLQTLHPYNTFAAGFNSTGLPHSHSTTRV
References
31 moreTitle: NLGN3 Upregulates Expression of ADAM10 to Promote the Cleavage of NLGN3 via Activating the LYN Pathway in Human Gliomas Dang NN, Li XB, Zhang M, Han C, Fan XY, Huang SH Ref: Front Cell Developmental Biology, 9:662763, 2021 : PubMed
The neuron derived synaptic adhesion molecular neuroligin-3 (NLGN3) plays an important role in glioma growth. While the role of autocrine NLGN3 in glioma has not been well-studied. The expression of NLGN3 in glioma was detected using immunohistochemistry. We further explored its function and regulatory mechanism in U251 and U87 cells with high expression of NLGN3. Knockdown of endogenous NLGN3 significantly reduced the proliferation, migration, and invasion of glioma cells and down-regulated the activity of the PI3K-AKT, ERK1/2, and LYN signaling pathways. In comparison, overexpression of NLGN3 yielded opposite results. Our results further demonstrate that LYN functions as a feedback mechanism to promote NLGN3 cleavage. This feedback regulation was achieved by upregulating the ADAM10 sheddase responsible for NLGN3 cleavage. Inhibition of ADAM10 suppressed the proliferation, migration, and invasion of glioma cells; oppositely, the expression of ADAM10 was correlated with a higher likelihood of lower grade glioma (LGG) in the brain. Our study demonstrates that glioma-derived NLGN3 promotes glioma progression by upregulating activity of LYN and ADAM10, which in turn promote NLGN3 cleavage to form a positive feedback loop. This pathway may open a potential therapeutic window for the treatment of human glioma.
Multiple independent mutations in neuroligin genes were identified in patients with familial autism, including the R451C substitution in neuroligin-3 (NL3). Previous studies showed that NL3(R451C) knock-in mice exhibited modestly impaired social behaviors, enhanced water maze learning abilities, and increased synaptic inhibition in the somatosensory cortex, and they suggested that the behavioral changes in these mice may be caused by a general shift of synaptic transmission to inhibition. Here, we confirm that NL3(R451C) mutant mice behaviorally exhibit social interaction deficits and electrophysiologically display increased synaptic inhibition in the somatosensory cortex. Unexpectedly, however, we find that the NL3(R451C) mutation produced a strikingly different phenotype in the hippocampus. Specifically, in the hippocampal CA1 region, the NL3(R451C) mutation caused an approximately 1.5-fold increase in AMPA receptor-mediated excitatory synaptic transmission, dramatically altered the kinetics of NMDA receptor-mediated synaptic responses, induced an approximately twofold up-regulation of NMDA receptors containing NR2B subunits, and enhanced long-term potentiation almost twofold. NL3 KO mice did not exhibit any of these changes. Quantitative light microscopy and EM revealed that the NL3(R451C) mutation increased dendritic branching and altered the structure of synapses in the stratum radiatum of the hippocampus. Thus, in NL3(R451C) mutant mice, a single point mutation in a synaptic cell adhesion molecule causes context-dependent changes in synaptic transmission; these changes are consistent with the broad impact of this mutation on murine and human behaviors, suggesting that NL3 controls excitatory and inhibitory synapse properties in a region- and circuit-specific manner.
As a part of our cDNA project for deducing the coding sequence of unidentified human genes, we newly determined the sequences of 100 cDNA clones from a set of size-fractionated human brain cDNA libraries, and predicted the coding sequences of the corresponding genes, named KIAA0919 to KIAA1018. The sequencing of these clones revealed that the average sizes of the inserts and corresponding open reading frames were 4.9 kb and 2.6 kb (882 amino acid residues), respectively. A computer search of the sequences against the public databases indicated that predicted coding sequences of 87 genes contained sequences similar to known genes, 53% of which (46 genes) were categorized as proteins relating to cell signaling/communication, cell structure/motility and nucleic acid management. The chromosomal locations of the genes were determined by using human-rodent hybrid panels unless their mapping data were already available in the public databases. The expression profiles of all the genes among 10 human tissues, 8 brain regions (amygdala, corpus callosum, cerebellum, caudate nucleus, hippocampus, substania nigra, subthalamic nucleus, and thalamus), spinal cord, fetal brain and fetal liver were also examined by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.
Autism spectrum disorder (ASD; autism) is a prevalent neurodevelopmental disorder associated with changes in gut-brain axis communication. Gastrointestinal (GI) symptoms are experienced by a large proportion of individuals diagnosed with autism. Several mutations associated with autism modify cellular communication via neuronal synapses. It has been suggested that modifications to the enteric nervous system, an intrinsic nervous system of the GI tract, could contribute to GI dysfunction. Changes in gut motility, permeability, and the mucosal barrier as well as shifts in the large population of microbes inhabiting the GI tract could contribute to GI symptoms. Preclinical research has demonstrated that mice expressing the well-studied R451C missense mutation in Nlgn3 gene, which encodes cell adhesion protein neuroligin-3 at neuronal synapses, exhibit GI dysfunction. Specifically, NL3(R451C) mice show altered colonic motility and faster small intestinal transit. As well as dysmotility, macrophages located within the gut-associated lymphoid tissue of the NL3(R451C) mouse caecum show altered morphology, suggesting that neuro-inflammation pathways are modified in this model. Interestingly, NL3(R451C) mice maintained in a shared environment demonstrate fecal microbial dysbiosis indicating a role for the nervous system in regulating gut microbial populations. To better understand host-microbe interactions, further clarification and comparison of clinical and animal model profiles of dysbiosis should be obtained, which in turn will provide better insights into the efforts taken to design personalized microbial therapies. In addition to changes in neurophysiological measures, the mucosal component of the GI barrier may contribute to GI dysfunction more broadly in individuals diagnosed with a wide range of neurological disorders. As the study of GI dysfunction advances to encompass multiple components of the gut-brain-microbiota axis, findings will help understand future directions such as microbiome engineering and optimisation of the mucosal barrier for health.
        
Title: Expression and structural analysis of human neuroligin 2 and neuroligin 3 implicated in autism spectrum disorders Zhang Z, Hou M, Ou H, Wang D, Li Z, Zhang H, Lu J Ref: Front Endocrinol (Lausanne), 13:1067529, 2022 : PubMed
The development of autism spectrum disorders (ASDs) involves both environmental factors such as maternal diabetes and genetic factors such as neuroligins (NLGNs). NLGN2 and NLGN3 are two members of NLGNs with distinct distributions and functions in synapse development and plasticity. The relationship between maternal diabetes and NLGNs, and the distinct working mechanisms of different NLGNs currently remain unclear. Here, we first analyzed the expression levels of NLGN2 and NLGN3 in a streptozotocin-induced ASD mouse model and different brain regions to reveal their differences and similarities. Then, cryogenic electron microscopy (cryo-EM) structures of human NLGN2 and NLGN3 were determined. The overall structures are similar to their homologs in previous reports. However, structural comparisons revealed the relative rotations of two protomers in the homodimers of NLGN2 and NLGN3. Taken together with the previously reported NLGN2-MDGA1 complex, we speculate that the distinct assembly adopted by NLGN2 and NLGN3 may affect their interactions with MDGAs. Our results provide structural insights into the potential distinct mechanisms of NLGN2 and NLGN3 implicated in the development of ASD.
        
Title: Mice with an autism-associated R451C mutation in neuroligin-3 show a cautious but accurate response style in touchscreen attention tasks Burrows EL, May C, Hill T, Churliov L, Johnson KA, Hannan AJ Ref: Genes Brain Behav, :e12757, 2021 : PubMed
One of the earliest identifiable features of Autism Spectrum Disorder (ASD) is altered attention. Mice expressing the ASD-associated R451C mutation in synaptic adhesion protein neuroligin-3 (NL3) exhibit impaired reciprocal social interactions and repetitive and restrictive behaviors. The role of this mutation in attentional abnormalities has not been established. We assessed attention in male NL3(R451C) mice using two well-established tasks in touchscreen chambers. In the 5-choice serial reaction task (5CSRT), rodents were trained to attend to light stimuli that appear in any one of 5 locations. While no differences between NL3(R451C) and WT mice were seen in accuracy or omissions, slower response times and quicker reward collection latencies were seen across all training and probe trials. In the rodent continuous-performance test (rCPT), animals were required to discriminate, and identify a visual target pattern over multiple distractor stimuli. NL3(R451C) mice displayed enhanced ability to attend to stimuli when task-load was low during training and baseline but lost this advantage when difficulty was increased by altering task parameters in probe trials. NL3(R451C) mice made less responses to the distractor stimuli, exhibiting lower false alarm rates during all training stages and in probe trials. Slower response times and quicker reward latencies were consistently seen in NL3(R451C) mice in the rCPT. Slower response times are a major cognitive phenotype reported in ASD patients and are indicative of slower processing speed. Enhanced attention has been shown in a subset of ASD patients and we have demonstrated this phenotype also exists in the NL3(R451C) mouse model.
        
Title: NLGN3 Upregulates Expression of ADAM10 to Promote the Cleavage of NLGN3 via Activating the LYN Pathway in Human Gliomas Dang NN, Li XB, Zhang M, Han C, Fan XY, Huang SH Ref: Front Cell Developmental Biology, 9:662763, 2021 : PubMed
The neuron derived synaptic adhesion molecular neuroligin-3 (NLGN3) plays an important role in glioma growth. While the role of autocrine NLGN3 in glioma has not been well-studied. The expression of NLGN3 in glioma was detected using immunohistochemistry. We further explored its function and regulatory mechanism in U251 and U87 cells with high expression of NLGN3. Knockdown of endogenous NLGN3 significantly reduced the proliferation, migration, and invasion of glioma cells and down-regulated the activity of the PI3K-AKT, ERK1/2, and LYN signaling pathways. In comparison, overexpression of NLGN3 yielded opposite results. Our results further demonstrate that LYN functions as a feedback mechanism to promote NLGN3 cleavage. This feedback regulation was achieved by upregulating the ADAM10 sheddase responsible for NLGN3 cleavage. Inhibition of ADAM10 suppressed the proliferation, migration, and invasion of glioma cells; oppositely, the expression of ADAM10 was correlated with a higher likelihood of lower grade glioma (LGG) in the brain. Our study demonstrates that glioma-derived NLGN3 promotes glioma progression by upregulating activity of LYN and ADAM10, which in turn promote NLGN3 cleavage to form a positive feedback loop. This pathway may open a potential therapeutic window for the treatment of human glioma.
Autism is a complex neurodevelopmental disorder, the prevalence of which has increased drastically in India in recent years. Neuroligin is a type I transmembrane protein that plays a crucial role in synaptogenesis. Alterations in synaptic genes are most commonly implicated in autism and other cognitive disorders. The present study investigated the neuroligin 3 gene in the Indian autistic population by sequencing and in silico pathogenicity prediction of molecular changes. In total, 108 clinically described individuals with autism were included from the North Karnataka region of India, along with 150 age-, sex-, and ethnicity-matched healthy controls. Genomic DNA was extracted from peripheral blood, and exonic regions were sequenced. The functional and structural effects of variants of the neuroligin 3 protein were predicted. One coding sequence variant (a missense variant) and four non-coding variants (two 5'-untranslated region [UTR] variants and two 3'-UTR variants) were recorded. The novel missense variant was found in 25% of the autistic population. The C/C genotype of c.551T>C was significantly more common in autistic children than in controls (p = 0.001), and a significantly increased risk of autism (24.7-fold) was associated with this genotype (p = 0.001). The missense variant showed pathogenic effects and high evolutionary conservation over the functions of the neuroligin 3 protein. In the present study, we reported a novel missense variant, V184A, which causes abnormal neuroligin 3 and was found with high frequency in the Indian autistic population. Therefore, neuroligin is a candidate gene for future molecular investigations and functional analysis in the Indian autistic population.
Neuroligin is a postsynaptic cell-adhesion molecule that is involved in synapse formation and maturation by interacting with presynaptic neurexin. Mutations in neuroligin genes, including the arginine to cystein substitution at the 451st amino acid residue (R451C) of neuroligin-3 (NLGN3), have been identified in patients with autism spectrum disorder (ASD). Functional magnetic resonance imaging and examination of post-mortem brain in ASD patients implicate alteration of cerebellar morphology and Purkinje cell (PC) loss. In the present study, we examined possible association between the R451C mutation in NLGN3 and synaptic development and function in the mouse cerebellum. In NLGN3-R451C mutant mice, the expression of NLGN3 protein in the cerebellum was reduced to about 10% of the level of wild-type mice. Elimination of redundant climbing fiber (CF) to PC synapses was impaired from postnatal day 10-15 (P10-15) in NLGN3-R451C mutant mice, but majority of PCs became mono-innervated as in wild-type mice after P16. In NLGN3-R451C mutant mice, selective strengthening of a single CF relative to the other CFs in each PC was impaired from P16, which persisted into juvenile stage. Furthermore, the inhibition to excitation (I/E) balance of synaptic inputs to PCs was elevated, and calcium transients in the soma induced by strong and weak CF inputs were reduced in NLGN3-R451C mutant mice. These results suggest that a single point mutation in NLGN3 significantly influences the synapse development and refinement in cerebellar circuitry, which might be related to the pathogenesis of ASD.
The intrinsic nervous system of the gut interacts with the gut-associated lymphoid tissue (GALT) via bidirectional neuroimmune interactions. The caecum is an understudied region of the gastrointestinal (GI) tract that houses a large supply of microbes and is involved in generating immune responses. The caecal patch is a lymphoid aggregate located within the caecum that regulates microbial content and immune responses. People with Autism Spectrum Disorder (ASD; autism) experience serious GI dysfunction, including inflammatory disorders, more frequently than the general population. Autism is a highly prevalent neurodevelopmental disorder defined by the presence of repetitive behavior or restricted interests, language impairment, and social deficits. Mutations in genes encoding synaptic adhesion proteins such as the R451C missense mutation in neuroligin-3 (NL3) are associated with autism and impair synaptic transmission. We previously reported that NL3(R451C) mice, a well-established model of autism, have altered enteric neurons and GI dysfunction; however, whether the autism-associated R451C mutation alters the caecal enteric nervous system and immune function is unknown. We assessed for gross anatomical changes in the caecum and quantified the proportions of caecal submucosal and myenteric neurons in wild-type and NL3(R451C) mice using immunofluorescence. In the caecal patch, we assessed total cellular density as well as the density and morphology of Iba-1 labeled macrophages to identify whether the R451C mutation affects neuro-immune interactions. NL3(R451C) mice have significantly reduced caecal weight compared to wild-type mice, irrespective of background strain. Caecal weight is also reduced in mice lacking Neuroligin-3. NL3(R451C) caecal ganglia contain more neurons overall and increased numbers of Nitric Oxide (NO) producing neurons (labeled by Nitric Oxide Synthase; NOS) per ganglion in both the submucosal and myenteric plexus. Overall caecal patch cell density was unchanged however NL3(R451C) mice have an increased density of Iba-1 labeled enteric macrophages. Macrophages in NL3(R451C) were smaller and more spherical in morphology. Here, we identify changes in both the nervous system and immune system caused by an autism-associated mutation in Nlgn3 encoding the postsynaptic cell adhesion protein, Neuroligin-3. These findings provide further insights into the potential modulation of neural and immune pathways.
Gastrointestinal (GI) problems constitute an important comorbidity in many patients with autism. Multiple mutations in the neuroligin family of synaptic adhesion molecules are implicated in autism, however whether they are expressed and impact GI function via changes in the enteric nervous system is unknown. We report the GI symptoms of two brothers with autism and an R451C mutation in Nlgn3 encoding the synaptic adhesion protein, neuroligin-3. We confirm the presence of an array of synaptic genes in the murine GI tract and investigate the impact of impaired synaptic protein expression in mice carrying the human neuroligin-3 R451C missense mutation (NL3(R451C) ). Assessing in vivo gut dysfunction, we report faster small intestinal transit in NL3(R451C) compared to wild-type mice. Using an ex vivo colonic motility assay, we show increased sensitivity to GABAA receptor modulation in NL3(R451C) mice, a well-established Central Nervous System (CNS) feature associated with this mutation. We further show increased numbers of small intestine myenteric neurons in NL3(R451C) mice. Although we observed altered sensitivity to GABAA receptor modulators in the colon, there was no change in colonic neuronal numbers including the number of GABA-immunoreactive myenteric neurons. We further identified altered fecal microbial communities in NL3(R451C) mice. These results suggest that the R451C mutation affects small intestinal and colonic function and alter neuronal numbers in the small intestine as well as impact fecal microbes. Our findings identify a novel GI phenotype associated with the R451C mutation and highlight NL3(R451C) mice as a useful preclinical model of GI dysfunction in autism. Autism Res 2019, 12: 1043-1056. (c) 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: People with autism commonly experience gastrointestinal problems, however the cause is unknown. We report gut symptoms in patients with the autism-associated R451C mutation encoding the neuroligin-3 protein. We show that many of the genes implicated in autism are expressed in mouse gut. The neuroligin-3 R451C mutation alters the enteric nervous system, causes gastrointestinal dysfunction, and disrupts gut microbe populations in mice. Gut dysfunction in autism could be due to mutations that affect neuronal communication.
        
Title: Mutations in neuroligin-3 in male mice impact behavioral flexibility but not relational memory in a touchscreen test of visual transitive inference Norris RHC, Churilov L, Hannan AJ, Nithianantharajah J Ref: Mol Autism, 10:42, 2019 : PubMed
Cognitive dysfunction including disrupted behavioral flexibility is central to neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). A cognitive measure that assesses relational memory, and the ability to flexibly assimilate and transfer learned information is transitive inference. Transitive inference is highly conserved across vertebrates and disrupted in cognitive disorders. Here, we examined how mutations in the synaptic cell-adhesion molecule neuroligin-3 (Nlgn3) that have been documented in ASD impact relational memory and behavioral flexibility. We first refined a rodent touchscreen assay to measure visual transitive inference, then assessed two mouse models of Nlgn3 dysfunction (Nlgn3 (-/y) and Nlgn3 (R451C)). Deep analysis of touchscreen behavioral data at a trial level established we could measure trajectories in flexible responding and changes in processing speed as cognitive load increased. We show that gene mutations in Nlgn3 do not disrupt relational memory, but significantly impact flexible responding. Our study presents the first analysis of reaction times in a rodent transitive inference test, highlighting response latencies from the touchscreen system are useful indicators of processing demands or decision-making processes. These findings expand our understanding of how dysfunction of key components of synaptic signaling complexes impact distinct cognitive processes disrupted in neurodevelopmental disorders, and advance our approaches for dissecting rodent behavioral assays to provide greater insights into clinically relevant cognitive symptoms.
The X-linked NLGN3 gene, encoding a postsynaptic cell adhesion molecule, was involved in a nonsyndromic monogenic form of autism spectrum disorder (ASD) by the description of one unique missense variant, p.Arg451Cys (Jamain et al. 2003). We investigated here the pathogenicity of additional missense variants identified in two multiplex families with intellectual disability (ID) and ASD: c.1789C>T, p.Arg597Trp, previously reported by our group (Redin et al. 2014) and present in three affected cousins and c.1540C>T, p.Pro514Ser, identified in two affected brothers. Overexpression experiments in HEK293 and HeLa cell lines revealed that both variants affect the level of the mature NLGN3 protein, its localization at the plasma membrane and its presence as a cleaved form in the extracellular environment, even more drastically than what was reported for the initial p.Arg451Cys mutation. The variants also induced an unfolded protein response, probably due to the retention of immature NLGN3 proteins in the endoplasmic reticulum. In comparison, the c.1894A>G, p.Ala632Thr and c.1022T>C, p.Val341Ala variants, present in males from the general population, have no effect. Our report of two missense variants affecting the normal localization of NLGN3 in a total of five affected individuals reinforces the involvement of the NLGN3 gene in a neurodevelopmental disorder characterized by ID and ASD.
        
Title: The neurobiological bases of autism spectrum disorders: the R451C-neuroligin 3 mutation hampers the expression of long-term synaptic depression in the dorsal striatum Martella G, Meringolo M, Trobiani L, De Jaco A, Pisani A, Bonsi P Ref: European Journal of Neuroscience, 47:701, 2018 : PubMed
Autism spectrum disorders (ASDs) comprise a heterogeneous group of disorders with a complex genetic etiology. Current theories on the pathogenesis of ASDs suggest that they might arise from an aberrant synaptic transmission affecting specific brain circuits and synapses. The striatum, which is part of the basal ganglia circuit, is one of the brain regions involved in ASDs. Mouse models of ASDs have provided evidence for an imbalance between excitatory and inhibitory neurotransmission. Here, we investigated the expression of long-term synaptic plasticity at corticostriatal glutamatergic synapses in the dorsal striatum of the R451C-NL3 phenotypic mouse model of autism. This mouse model carries the human R451C mutation in the neuroligin 3 (NL3) gene that has been associated with highly penetrant autism in a Swedish family. The R451C-NL3 mouse has been shown to exhibit autistic-like behaviors and alterations of synaptic transmission in different brain areas. However, excitatory glutamatergic transmission and its long-term plasticity have not been investigated in the dorsal striatum so far. Our results indicate that the expression of long-term synaptic depression (LTD) at corticostriatal glutamatergic synapses in the dorsal striatum is impaired by the R451C-NL3 mutation. A partial rescue of LTD was obtained by exogenous activation of cannabinoid CB1 receptors or enhancement of the endocannabinoid tone, suggesting that an altered cannabinoid drive might underlie the deficit of synaptic plasticity in the dorsal striatum of R451C-NL3 mice.
Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.
Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.
BACKGROUND: Intellectual disability (ID) is characterised by an extreme genetic heterogeneity. Several hundred genes have been associated to monogenic forms of ID, considerably complicating molecular diagnostics. Trio-exome sequencing was recently proposed as a diagnostic approach, yet remains costly for a general implementation. METHODS: We report the alternative strategy of targeted high-throughput sequencing of 217 genes in which mutations had been reported in patients with ID or autism as the major clinical concern. We analysed 106 patients with ID of unknown aetiology following array-CGH analysis and other genetic investigations. Ninety per cent of these patients were males, and 75% sporadic cases. RESULTS: We identified 26 causative mutations: 16 in X-linked genes (ATRX, CUL4B, DMD, FMR1, HCFC1, IL1RAPL1, IQSEC2, KDM5C, MAOA, MECP2, SLC9A6, SLC16A2, PHF8) and 10 de novo in autosomal-dominant genes (DYRK1A, GRIN1, MED13L, TCF4, RAI1, SHANK3, SLC2A1, SYNGAP1). We also detected four possibly causative mutations (eg, in NLGN3) requiring further investigations. We present detailed reasoning for assigning causality for each mutation, and associated patients' clinical information. Some genes were hit more than once in our cohort, suggesting they correspond to more frequent ID-associated conditions (KDM5C, MECP2, DYRK1A, TCF4). We highlight some unexpected genotype to phenotype correlations, with causative mutations being identified in genes associated to defined syndromes in patients deviating from the classic phenotype (DMD, TCF4, MECP2). We also bring additional supportive (HCFC1, MED13L) or unsupportive (SHROOM4, SRPX2) evidences for the implication of previous candidate genes or mutations in cognitive disorders. CONCLUSIONS: With a diagnostic yield of 25% targeted sequencing appears relevant as a first intention test for the diagnosis of ID, but importantly will also contribute to a better understanding regarding the specific contribution of the many genes implicated in ID and autism.
Multiple independent mutations in neuroligin genes were identified in patients with familial autism, including the R451C substitution in neuroligin-3 (NL3). Previous studies showed that NL3(R451C) knock-in mice exhibited modestly impaired social behaviors, enhanced water maze learning abilities, and increased synaptic inhibition in the somatosensory cortex, and they suggested that the behavioral changes in these mice may be caused by a general shift of synaptic transmission to inhibition. Here, we confirm that NL3(R451C) mutant mice behaviorally exhibit social interaction deficits and electrophysiologically display increased synaptic inhibition in the somatosensory cortex. Unexpectedly, however, we find that the NL3(R451C) mutation produced a strikingly different phenotype in the hippocampus. Specifically, in the hippocampal CA1 region, the NL3(R451C) mutation caused an approximately 1.5-fold increase in AMPA receptor-mediated excitatory synaptic transmission, dramatically altered the kinetics of NMDA receptor-mediated synaptic responses, induced an approximately twofold up-regulation of NMDA receptors containing NR2B subunits, and enhanced long-term potentiation almost twofold. NL3 KO mice did not exhibit any of these changes. Quantitative light microscopy and EM revealed that the NL3(R451C) mutation increased dendritic branching and altered the structure of synapses in the stratum radiatum of the hippocampus. Thus, in NL3(R451C) mutant mice, a single point mutation in a synaptic cell adhesion molecule causes context-dependent changes in synaptic transmission; these changes are consistent with the broad impact of this mutation on murine and human behaviors, suggesting that NL3 controls excitatory and inhibitory synapse properties in a region- and circuit-specific manner.
Neuroligins constitute a family of transmembrane proteins localized at the postsynaptic side of both excitatory and inhibitory synapses of the central nervous system. They are involved in synaptic function and maturation and recent studies have linked mutations in specific human Neuroligins to mental retardation and autism. We isolated the human Neuroligin homologs in Danio rerio. Next, we studied their gene structures and we reconstructed the evolution of the Neuroligin genes across vertebrate phyla. Using reverse-transcriptase polymerase chain reaction, we analyzed the expression and alternative splicing pattern of each gene during zebrafish embryonic development and in different adult organs. By in situ hybridization, we analyzed the temporal and spatial expression pattern during embryonic development and larval stages and we found that zebrafish Neuroligins are expressed throughout the nervous system. Globally, our results indicate that, during evolution, specific subfunctionalization events occurred within paralogous members of this gene family in zebrafish.
        
Title: Transsynaptic modulation of the synaptic vesicle cycle by cell-adhesion molecules Gottmann K Ref: Journal of Neuroscience Research, 86:223, 2008 : PubMed
Delicate control of the synaptic vesicle cycle is required to meet the demands imposed on synaptic transmission by the brain's complex information processing. In addition to intensively analyzed intrinsic regulation, extrinsic modulation of the vesicle cycle by the postsynaptic target neuron has become evident. Recent studies have demonstrated that several families of synaptic cell-adhesion molecules play a significant role in transsynaptic retrograde signaling. Different adhesion systems appear to specifically target distinct steps of the synaptic vesicle cycle. Signaling via classical cadherins regulates the recruitment of synaptic vesicles to the active zone. The neurexin/neuroligin system has been shown to modulate presynaptic release probability. In addition, reverse signaling via the EphB/ephrinB system plays an important role in the activity-dependent induction of long-term potentiation of presynaptic transmitter release. Moreover, the first hints of involvement of cell-adhesion molecules in vesicle endocytosis have been published. A general hypothesis is that specific adhesion systems might use different but parallel transsynaptic signaling pathways able to selectively modulate each step of the synaptic vesicle cycle in a tightly coordinated manner.
Synaptogenesis requires formation of trans-synaptic complexes between neuronal cell-adhesion receptors. Heterophilic receptor pairs, such as neurexin Ibeta and neuroligin, can mediate distinct intracellular signals and form different cytoplasmic scaffolds in the pre- and post-synaptic neuron, and may be particularly important for synaptogenesis. However, the functions of neurexin and neuroligin depend on their distribution in the synapse. Neuroligin has been experimentally assigned to the post-synaptic membrane, while the localization of neurexin remains unclear. To study the subcellular distribution of neurexin Ibeta and neuroligin in mature cerebrocortical synapses, we have developed a novel method for the physical separation of junctional membranes and their direct analysis by western blotting. Using urea and dithiothreitol, we disrupted trans-synaptic protein links, without dissolving the lipid phase, and fractionated the pre- and post-synaptic membranes. The purity of these fractions was validated by electron microscopy and western blotting using multiple synaptic markers. A quantitative analysis has confirmed that neuroligin is localized strictly in the post-synaptic membrane. We have also demonstrated that neurexin Ibeta is largely (96%) pre-synaptic. Thus, neurexin Ibeta and neuroligin normally form trans-synaptic complexes and can transduce bidirectional signals.
        
Title: Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses Budreck EC, Scheiffele P Ref: European Journal of Neuroscience, 26:1738, 2007 : PubMed
Synaptic adhesion molecules are thought to play a critical role in the formation, function and plasticity of neuronal networks. Neuroligins (NL1-4) are a family of presumptive postsynaptic cell adhesion molecules. NL1 and NL2 isoforms are concentrated at glutamatergic and GABAergic synapses, respectively, but the cellular expression and synaptic localization of the endogenous NL3 and NL4 isoforms are unknown. We generated a panel of NL isoform-specific antibodies and examined the expression, developmental regulation and synaptic specificity of NL3. We found that NL3 was enriched in brain, where NL3 protein levels increased during postnatal development, coinciding with the peak of synaptogenesis. Subcellular fractionation revealed a concentration of NL3 in synaptic plasma membranes and postsynaptic densities. In cultured hippocampal neurons, endogenous NL3 was highly expressed and was localized at both glutamatergic and GABAergic synapses. Clustering of NL3 in hippocampal neurons by neurexin-expressing cells resulted in coaggregation of NL3 with glutamatergic and GABAergic scaffolding proteins. Finally, individual synapses contained colocalized NL2 and NL3 proteins, and coimmunoprecipitation studies revealed the presence of NL1-NL3 and NL2-NL3 complexes in brain extracts. These findings suggest that rodent NL3 is a synaptic adhesion molecule that is a shared component of glutamatergic and GABAergic synapses.
Neuroligins are postsynaptic cell-adhesion proteins that associate with their presynaptic partners, the neurexins. Using small-angle X-ray scattering, we determined the shapes of the extracellular region of several neuroligin isoforms in solution. We conclude that the neuroligins dimerize via the characteristic four-helix bundle observed in cholinesterases, and that the connecting sequence between the globular lobes of the dimer and the cell membrane is elongated, projecting away from the dimer interface. X-ray scattering and neutron contrast variation data show that two neurexin monomers, separated by 107 A, bind at symmetric locations on opposite sides of the long axis of the neuroligin dimer. Using these data, we developed structural models that delineate the spatial arrangements of different neuroligin domains and their partnering molecules. As mutations of neurexin and neuroligin genes appear to be linked to autism, these models provide a structural framework for understanding altered recognition by these proteins in neurodevelopmental disorders.
        
Title: Neurexin-neuroligin signaling in synapse development Craig AM, Kang Y Ref: Current Opinion in Neurobiology, 17:43, 2007 : PubMed
Neurexins and neuroligins are emerging as central organizing molecules for excitatory glutamatergic and inhibitory GABAergic synapses in mammalian brain. They function as cell adhesion molecules, bridging the synaptic cleft. Remarkably, each partner can trigger formation of a hemisynapse: neuroligins trigger presynaptic differentiation and neurexins trigger postsynaptic differentiation. Recent protein interaction assays and cell culture studies indicate a selectivity of function conferred by alternative splicing in both partners. An insert at site 4 of beta-neurexins selectively promotes GABAergic synaptic function, whereas an insert at site B of neuroligin 1 selectively promotes glutamatergic synaptic function. Initial knockdown and knockout studies indicate that neurexins and neuroligins have an essential role in synaptic transmission, particularly at GABAergic synapses, but further studies are needed to assess the in vivo functions of these complex protein families.
Title: Adhesion molecules in the nervous system: structural insights into function and diversity Shapiro L, Love J, Colman DR Ref: Annual Review of Neuroscience, 30:451, 2007 : PubMed
The unparalleled complexity of intercellular connections in the nervous system presents requirements for high levels of both specificity and diversity for the proteins that mediate cell adhesion. Here we describe recent advances toward understanding the molecular mechanisms that underlie adhesive binding, specificity, and diversity for several well-characterized families of adhesion molecules in the nervous system. Although many families of adhesion proteins, including cadherins and immunoglobulin superfamily members, are utilized in neural and nonneural contexts, nervous system-specific diversification mechanisms, such as precisely regulated alternative splicing, provide an important means to enable their function in the complex context of the nervous system.
Autism spectrum disorders (ASDs) are characterized by impairments in social behaviors that are sometimes coupled to specialized cognitive abilities. A small percentage of ASD patients carry mutations in genes encoding neuroligins, which are postsynaptic cell-adhesion molecules. We introduced one of these mutations into mice: the Arg451-->Cys451 (R451C) substitution in neuroligin-3. R451C mutant mice showed impaired social interactions but enhanced spatial learning abilities. Unexpectedly, these behavioral changes were accompanied by an increase in inhibitory synaptic transmission with no apparent effect on excitatory synapses. Deletion of neuroligin-3, in contrast, did not cause such changes, indicating that the R451C substitution represents a gain-of-function mutation. These data suggest that increased inhibitory synaptic transmission may contribute to human ASDs and that the R451C knockin mice may be a useful model for studying autism-related behaviors.
Recently, neuroligins (NLs)3 and 4X have received much attention as autism-related genes. Here, we identified syntrophin-gamma2 (SNTG2) as a de novo binding partner of NL3. SNTG2 also bound to NL4X and NL4Y. Interestingly, the binding was influenced by autism-related mutations, implying that the impaired interaction between NLs and SNTG2 contributes to the etiology of autism.
The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.
Neuroligins are cell-adhesion molecules located at the postsynaptic side of the synapse. Neuroligins interact with beta-neurexins and this interaction is involved in the formation of functional synapses. Mutations in two X-linked neuroligin genes, NLGN3 and NLGN4, have recently been implicated in pathogenesis of autism. The neuroligin gene family consists of five members (NLGN1 at 3q26, NLGN2 at 17p13, NLGN3 at Xq13, NLGN4 at Xp22, and NLGN4Y at Yq11), of which NLGN1 and NLGN3 are located within the best loci observed in our previous genome-wide scan for autism in the Finnish sample. Here, we report a detailed molecular genetic analysis of NLGN1, NLGN3, NLGN4, and NLNG4Y in the Finnish autism sample. Mutation analysis of 30 probands selected from families producing linkage evidence for Xq13 and/or 3q26 loci revealed several polymorphisms, but none of these seemed to be functional. Family-based association analysis in 100 families with autism spectrum disorders yielded only modest associations at NLGN1 (rs1488545, P=0.002), NLGN3 (DXS7132, P=0.014), and NLGN4 (DXS996, P=0.031). We conclude that neuroligin mutations most probably represent rare causes of autism and that it is unlikely that the allelic variants in these genes would be major risk factors for autism.
Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.
A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
The neuroligins are a family of proteins that are thought to mediate cell to cell interactions between neurons. During the sequencing at an Xq13 locus associated with a mental retardation syndrome in some studies, we discovered a portion of the human orthologue of the rat neuroligin-3 gene. We now report the structure and the expression of that gene. The gene spans approximately 30kb and contains eight exons. Unlike the rat gene, it codes for at least two mRNAs and at least one of which is expressed outside the CNS. Interestingly, the putative promoter for the gene overlaps the last exon of the neighboring HOPA gene and is located less than 1kb from an OPA element in which a polymorphism associated with mental retardation is found. These findings suggest a possible role for the neuroligin gene in mental retardation and that the role of the gene in humans may differ from its role in rats.
As a part of our cDNA project for deducing the coding sequence of unidentified human genes, we newly determined the sequences of 100 cDNA clones from a set of size-fractionated human brain cDNA libraries, and predicted the coding sequences of the corresponding genes, named KIAA0919 to KIAA1018. The sequencing of these clones revealed that the average sizes of the inserts and corresponding open reading frames were 4.9 kb and 2.6 kb (882 amino acid residues), respectively. A computer search of the sequences against the public databases indicated that predicted coding sequences of 87 genes contained sequences similar to known genes, 53% of which (46 genes) were categorized as proteins relating to cell signaling/communication, cell structure/motility and nucleic acid management. The chromosomal locations of the genes were determined by using human-rodent hybrid panels unless their mapping data were already available in the public databases. The expression profiles of all the genes among 10 human tissues, 8 brain regions (amygdala, corpus callosum, cerebellum, caudate nucleus, hippocampus, substania nigra, subthalamic nucleus, and thalamus), spinal cord, fetal brain and fetal liver were also examined by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.
PSD-95 is a component of postsynaptic densities in central synapses. It contains three PDZ domains that localize N-methyl-D-aspartate receptor subunit 2 (NMDA2 receptor) and K+ channels to synapses. In mouse forebrain, PSD-95 bound to the cytoplasmic COOH-termini of neuroligins, which are neuronal cell adhesion molecules that interact with beta-neurexins and form intercellular junctions. Neuroligins bind to the third PDZ domain of PSD-95, whereas NMDA2 receptors and K+ channels interact with the first and second PDZ domains. Thus different PDZ domains of PSD-95 are specialized for distinct functions. PSD-95 may recruit ion channels and neurotransmitter receptors to intercellular junctions formed between neurons by neuroligins and beta-neurexins.