That increasing microplastics (MPs, <5 mm) eventually end up in the sediment which may become a growing menace to diverse benthic lives is worthy of attention. In this experiment, three edible mollusks including one deposit-feeding gastropod (Bullacta exarate) and two filter-feeding bivalves (Cyclina sinensis and Mactra veneriformis) were exposed to polystyrene microplastic (PS-MP) for 7 days and depurated for 3 days. PS-MP numbers in the digestive system and non-digestive system, digestive enzymes, oxidative stress indexes, and a neurotoxicity index of three mollusks were determined at day 0, 3, 7, 8 and 10. After seven-day exposure, the PS-MP were found in all three mollusks' digestive and non-digestive systems. And PS-MP in M. veneriformis (9.57 +/- 2.19 items/individual) was significantly higher than those in C. sinensis (3.00 +/- 2.16 items/individual) and B. exarate (0.83 +/- 1.07 items/individual) at day 7. Three-day depuration could remove most of the PS-MP in the mollusks, and higher PS-MP clearance rates were found in filter-feeding C. sinensis (77.78 %) and M. veneriformis (82.59 %) compared to surface deposit-feeding B. exarate (50.00 %). The digestive enzymes of B. exarate significantly reacted to PS-MP exposure, while oxidative responses were found in C. sinensis. After three-day depuration, the changes of digestive enzymes and the oxidative states were fixed, but neurotoxicity induced by PS-MP was not recoverable. Besides, it is noteworthy that changes of digestive enzymes and acetylcholinesterase are related to feeding patterns.
        
Title: The stereoselective toxicity of dinotefuran to Daphnia magna: A systematic assessment from reproduction, behavior, oxidative stress and digestive function Zhang H, Ren X, Liu T, Zhao Y, Gan Y, Zheng L Ref: Chemosphere, 327:138489, 2023 : PubMed
Dinotefuran is a promising neonicotinoid insecticide with chiral structure. In the present study, the stereoselective toxicity of dinotefuran to Daphnia magna (D. magna) was studied. The present result showed that S-dinotefuran inhibited the reproduction of D. magna at 5.0 mg/L. However, both R-dinotefuran and S-dinotefuran had no genotoxicity to D. magna. Additionally, neither R-dinotefuran nor S-dinotefuran had negative influences on the motor behavior of D. magna. However, S-dinotefuran inhibited the feeding behavior of D. magna at 5.0 mg/L. Both R-dinotefuran and S-dinotefuran induced oxidative stress effect in D. magna after exposure. R-dinotefuran significantly activated the activities of superoxide dismutase (SOD) and glutathione S-transferase (GST), while S-dinotefuran showed the opposite effect. S-dinotefuran had more obvious activation effect on the acetylcholinesterase (AchE) activity and trypsin activity compared to R-dinotefuran. The transcriptome sequencing results showed that S-dinotefuran induced more DEGs in D. magna, and affected the normal function of ribosome. The DEGs were mainly related to the synthesis and metabolism of biomacromolecules, indicating the binding mode between dinotefuran enantiomer and biomacromolecules were different. Additionally, the present result indicated that the digestive enzyme activity and digestive gene expression levels in D. magna were greatly enhanced to cope with the inhibition of S-dinotefuran on the feeding.
Medium- and long-chain structured lipids (MLSLs) rich in docosahexaenoic acid (DHA) were obtained in shorter reaction time by acidolysis of single-cell oil (DHASCO) from Schizochytrium sp. with caprylic acid (CA) using a lipase bioimprinted with fatty acids as a catalyst. The conditions for preparation of the bioimprinted lipase for the acidolysis reaction were firstly optimized and the activity of the obtained lipase was 2.17 times higher than that of the non-bioimprinted. The bioimprinted lipase was then used as a catalyst and the reaction conditions were optimized. Under the optimal conditions, the equilibrium could be achieved in 4 h, and the total and sn-1,3 CA contents in the product were 29.18% and 42.34%, respectively, and the total and sn-2 DHA contents were 46.26% and 70.12%, respectively. Such MLSLs rich in sn-1,3 CA and sn-2 DHA are beneficial for DHA absorption, and thus have potential for use in infant formula.
        
Title: Phthalate Esters Metabolic Strain Gordonia sp. GZ-YC7, a Potential Soil Degrader for High Concentration Di-(2-ethylhexyl) Phthalate Hu T, Yang C, Hou Z, Liu T, Mei X, Zheng L, Zhong W Ref: Microorganisms, 10:, 2022 : PubMed
As commonly used chemical plasticizers in plastic products, phthalate esters have become a serious ubiquitous environmental pollutant, such as in soil of plastic film mulch culture. Microbial degradation or transformation was regarded as a suitable strategy to solve the phthalate esters pollution. Thus, a new phthalate esters degrading strain Gordonia sp. GZ-YC7 was isolated in this study, which exhibited the highest di-(2-ethylhexyl) phthalate degradation efficiency under 1000 mg/L and the strongest tolerance to 4000 mg/L. The comparative genomic analysis results showed that there exist diverse esterases for various phthalate esters such as di-(2-ethylhexyl) phthalate and dibutyl phthalate in Gordonia sp. GZ-YC7. This genome characteristic possibly contributes to its broad substrate spectrum, high degrading efficiency, and high tolerance to phthalate esters. Gordonia sp. GZ-YC7 has potential for the bioremediation of phthalate esters in polluted soil environments.
INTRODUCTION: Acute pancreatitis (AP) is an inflammatory disease with very poor outcomes. However, the order of induction and coordinated interactions of systemic inflammatory response syndrome (SIRS) and compensatory anti-inflammatory response syndrome (CARS) and the potential mechanisms in AP are still unclear. METHODS: An integrative analysis was performed based on transcripts of blood from patients with different severity levels of AP (GSE194331), as well as impaired lung (GSE151572), liver (GSE151927) and pancreas (GSE65146) samples from an AP experimental model to identify inflammatory signals and immune response-associated susceptibility genes. An AP animal model was established in wild-type (WT) mice and Tlr2-deficient mice by repeated intraperitoneal injection of cerulein. Serum lipase and amylase, pancreas impairment and neutrophil infiltration were evaluated to assess the effects of Tlr2 in vivo. RESULTS: The numbers of anti-inflammatory response-related cells, such as M2 macrophages (P = 3.2 x 10(-3)), were increased with worsening AP progression, while the numbers of pro-inflammatory response-related cells, such as neutrophils (P = 3.0 x 10(-8)), also increased. Then, 10 immune-related AP susceptibility genes (SOSC3, ITGAM, CAMP, FPR1, IL1R1, TLR2, S100A8/9, HK3 and MMP9) were identified. Finally, compared with WT mice, Tlr2-deficient mice exhibited not only significantly reduced serum lipase and amylase levels after cerulein induction but also alleviated pancreatic inflammation and neutrophil accumulation. DISCUSSION: In summary, we discovered SIRS and CARS were stimulated in parallel, not activated consecutively. In addition, among the novel susceptibility genes, TLR2might be a novel therapeutic target that mediates dysregulation of inflammatory responses during AP progression.
        
Title: The Chemical Composition Characteristics and Health Risk Assessment of Cooking Fume Condensates from Residential Kitchens in Different Regions of China Liu Q, Zhang X, Yang Y, Tang Q, Zheng L, Lou H, Chen H, Yang Q Ref: Foods, 12:, 2022 : PubMed
The aim of this study was to explore the similarities and differences of volatile organic pollutants (VOCs) in cooking fumes (COF) of residential buildings in different regions of China, as well as to evaluate their potential health risks. COF condensates were collected from 10 representative cities in China and analyzed by a GC-MS method. Their effects on alpha-glucosidase, acetylcholinesterase (AchE), and lactate dehydrogenase (LDH) activities were then detected to evaluate potential health risks. A total of 174 kinds of VOCs, including aldehydes, esters, hydrocarbons, alcohols, and carboxylic acid, were identified. There were 59 identical compounds in the northern and southern regions, and 56 common compounds in spicy and non-spicy regions. Health risk assessment results showed that COF condensate could inhibit the activity of alpha-glucosidase to varying degrees (61.73-129.25%), suggesting that it had a potential risk of causing hypoglycemia. Daily and 3 and 6 month intakes of COF in minors, adults, and the elderly had both activated and inhibited effects on AchE. The activated effect in the southern and spicy areas was higher than that in northern and non-spicy areas, revealing that different regions and dietary habits had different effects on the risk of neurological diseases caused by changes in AchE activity. For minors, adults, and the elderly, COF had different degrees of activation of LDH at different exposure times and regions. Activation in the northern and non-spicy areas was higher than that in southern and spicy areas, suggesting that the health risks caused by changes in LDH activity levels were significantly increased.
        
Title: Tanshinone IIA regulates glycogen synthase kinase-3beta-related signaling pathway and ameliorates memory impairment in APP/PS1 transgenic mice Peng X, Chen L, Wang Z, He Y, Ruganzu JB, Guo H, Zhang X, Ji S, Zheng L, Yang W Ref: European Journal of Pharmacology, :174772, 2022 : PubMed
Our previous findings indicated that tanshinone IIA (tan IIA), a natural component extracted from the root and rhizome of danshen, significantly attenuated beta-amyloid accumulation, neuroinflammation, and endoplasmic reticulum stress, as well as improved learning and memory deficits in APP/PS1 transgenic mouse model of Alzheimer's disease (AD). However, whether tan IIA can ameliorate tau pathology and the underlying mechanism in APP/PS1 mice remains unclear. In the current study, tan IIA (15 mg/kg and 30 mg/kg) or saline was intraperitoneally administered to the 5-month-old APP/PS1 mice once daily for 4 weeks. The open-field test, novel object recognition test, Y-maze test, and Morris water maze test were performed to assess the cognitive function. Nissl staining, immunohistochemistry, TUNEL, and western blotting were conducted to explore tau hyperphosphorylation, neuronal injury, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt)/glycogen synthase kinase-3beta (GSK-3beta) signaling pathway. The activity of GSK-3beta, acetylcholinesterase (AChE), choline acetyltransferase (ChAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), and the level of malondialdehyde (MDA) were measured using commercial kits. Our results revealed that tan IIA treatment significantly ameliorated behavioral deficits and improved spatial learning and memory ability of APP/PS1 mice. Additionally, tan IIA markedly attenuated tau hyperphosphorylation and prevented neuronal loss and apoptosis in the parietal cortex and hippocampus. Simultaneously, tan IIA reversed cholinergic dysfunction and reduced oxidative stress. Furthermore, tan IIA activated the PI3K/Akt signaling pathway and suppressed GSK-3beta. Taken together, the above findings suggested that tan IIA improves cognitive decline and tau pathology may through modulation of PI3K/Akt/GSK-3beta signaling pathway.
The investigations on the generation, separation, and interfacial-redox-reaction processes of the photoinduced carriers are of paramount importance for realizing efficient photoelectrochemical (PEC) detection. However, the sluggish interfacial reactions of the photogenerated carriers, combined with the need for appropriate photoactive layers for sensing, remain challenges for the construction of advanced PEC platforms. Here, as a proof of concept, well-defined Fe single-atom catalysts (Fe SACs) were integrated on the surface of semiconductors, which amplified the PEC signals via boosting oxygen reduction reaction. Besides, Fe SACs were evidenced with efficient peroxidase-like activity, which depresses the PEC signals through the Fe SACs-mediated enzymatic precipitation reaction. Harnessing the oxygen reduction property and peroxidase-like activity of Fe SACs, a robust PEC sensing platform was successfully constructed for the sensitive detection of acetylcholinesterase activity and organophosphorus pesticides, providing guidelines for the employment of SACs for sensitive PEC analysis.
Ustilaginoidea virens, causing rice false smut (RFS) is an economically important ascomycetous fungal pathogen distributed in rice-growing regions worldwide. Here, we identified a novel transcription factor UvCGBP1 (Cutinase G-box binding protein) from this fungus, which is unique to ascomycetes. Deletion of UvCGBP1 affected development and virulence of U. virens. A total of 865 downstream target genes of UvCGBP1 was identified using ChIP-seq and the most significant KEGG enriched functional pathway was the MAPK signaling pathway. Approximately 36% of target genes contain the AGGGG (G-box) motif in their promoter. Among the targets, deletion of UvCGBP1 affected transcriptional and translational levels of UvPmk1 and UvSlt2, both of which were important in virulence. ChIP-qPCR, yeast one-hybrid and EMSA confirmed that UvCGBP1 can bind the promoter of UvPmk1 or UvSlt2. Overexpression of UvPmk1 in the deltaUvCGBP1-33 mutant restored partially its virulence and hyphae growth, indicating that UvCGBP1 could function via the MAPK pathway to regulate fungal virulence. Taken together, this study uncovered a novel regulatory mechanism of fungal virulence linking the MAPK pathway mediated by a G-box binding transcription factor, UvCGBP1.
Background: 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl) -benzenesulfonamide (PTUPB), a dual cyclooxygenase-2 (COX-2)/soluble epoxide hydrolase (sEH) inhibitor, was found to alleviate renal, pulmonary fibrosis and liver injury. However, few is known about the effect of PTUPB on liver cirrhosis. In this study, we aimed to explore the role of PTUPB in liver cirrhosis and portal hypertension (PHT). Method: Rat liver cirrhosis model was established via subcutaneous injection of carbon tetrachloride (CCl(4)) for 16 weeks. The experimental group received oral administration of PTUPB (10 mg/kg) for 4 weeks. We subsequently analyzed portal pressure (PP), liver fibrosis, inflammation, angiogenesis, and intra- or extrahepatic vascular remodeling. Additionally, network pharmacology was used to investigate the possible mechanisms of PTUPB in live fibrosis. Results: CCl(4) exposure induced liver fibrosis, inflammation, angiogenesis, vascular remodeling and PHT, and PTUPB alleviated these changes. PTUPB decreased PP from 17.50 +/- 4.65 to 6.37 +/- 1.40 mmHg, reduced collagen deposition and profibrotic factor. PTUPB alleviated the inflammation and bile duct proliferation, as indicated by decrease in serum interleukin-6 (IL-6), liver cytokeratin 19 (CK-19), transaminase, and macrophage infiltration. PTUPB also restored vessel wall thickness of superior mesenteric arteries (SMA) and inhibited intra- or extrahepatic angiogenesis and vascular remodeling via vascular endothelial growth factor (VEGF), von Willebrand factor (vWF), etc. Moreover, PTUPB induced sinusoidal vasodilation by upregulating endothelial nitric oxide synthase (eNOS) and GTP-cyclohydrolase 1 (GCH1). In enrichment analysis, PTUPB engaged in multiple biological functions related to cirrhosis, including blood pressure, tissue remodeling, immunological inflammation, macrophage activation, and fibroblast proliferation. Additionally, PTUPB suppressed hepatic expression of sEH, COX-2, and transforming growth factor-beta (TGF-beta). Conclusion: 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl)- benzenesulfonamide ameliorated liver fibrosis and PHT by inhibiting fibrotic deposition, inflammation, angiogenesis, sinusoidal, and SMA remodeling. The molecular mechanism may be mediated via the downregulation of the sEH/COX-2/TGF-beta.
        
Title: Enzymatic Synthesis of beta-Sitosterol Laurate by Candida rugosa Lipase AY30 in the Water/AOT/Isooctane Reverse Micelle Chen S, Li J, Fu Z, Wei G, Li H, Zhang B, Zheng L, Deng Z Ref: Appl Biochem Biotechnol, :, 2020 : PubMed
Phytosterols are regarded as compounds able to reduce total and low-density lipoprotein cholesterol in the blood, and their esterified derivatives could help to improve the effectiveness of this function. In the present study, the water/sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/isooctane reverse micelle (RM) system was set up as a reaction medium for Candida rugosa lipase AY30 (CRL AY30) to synthesize beta-sitosterol laurate (beta-SLE). The product was identified by TLC, FT-IR, and HPLC-APCI-QqQ-MS/MS and quantified by HPLC. Through stepwise optimization, it was found that CRL AY30 had the highest activity in the water/AOT/isooctane RM system where 50 mM PBS with a pH of 7.5 was adopted as water core to carry CRL AY30, and the proportion of [CRL AY30] (mg/mL), [water] (mM), and [AOT] (mM) was set in 3:375:25, respectively, in isooctane. After screened with single-factor experiments, the esterification reaction conditions in the CRL AY30-water/AOT/isooctane RM system were further optimized by the response surface method as follows: the mole ratio of beta-sitosterol to lauric acid of 1:3.5 (25 mM beta-sitosterol), the enzyme load of 18% (w/w total reactants), the reaction temperature of 47 degrees C, and the reaction time of 48 h. As a result, the maximum esterification rate was up to 88.12 +/- 0.79%.
        
Title: Insecticidal activity of triterpenoids and volatile oil from the stems of Tetraena mongolica Wu Z, Wei W, Cheng K, Zheng L, Ma C, Wang Y Ref: Pestic Biochem Physiol, 166:104551, 2020 : PubMed
Tetraena mongolica Maxim is a species of Zygophyllaceae endemic to China. Because few insect pests affect its growth and flowering, we speculated that this plant produces defensive chemicals that are insect repellents or antifeedants. The effects of different fractions from crude stem and leaf extracts on Pieris rapae were examined. The results confirmed that the ethyl acetate (EtOAc) fraction from the stems had insecticidal potential. Five compounds were isolated from the EtOAc fraction: a volatile oil [bis(2-ethylhexyl) benzene-1,2-dicarboxylate (1)], three triterpenoids 2E-3beta-(3,4-dihydroxycinnamoyl)-erythrodiol (2), 2Z-3beta-(3,4-dihydroxycinnamoyl)-erythrodiol (3), and 2E-3beta-(3,4-dihydroxyphenyl)-2-propenoate (4)], and one steroid [beta-sitosterol (5)]. Compounds 1-5 exhibited different degrees of insecticidal activity, including antifeedant and growth-inhibition effects. Compounds 1-5 inhibited the activity of carboxylesterase (CarE) and acetylcholinesterase (AChE) to different degrees. Compound 1 had the strongest antifeedant and growth-inhibition effects, and significantly inhibited the activity of CarE and AChE. Our results indicate that compounds 1-4 are the major bioactive insecticidal constituents of Tetraena mongolica. This work should facilitate the development and application of plant-derived botanical pesticides.
        
Title: Rational enhancement of enzyme-catalyzed enantioselective reaction by construction of recombinant enzymes based on additive strategy Han Y, Zhou X, Zheng L Ref: Bioprocess Biosyst Eng, 42:1739, 2019 : PubMed
A rational enhancement of kinetic resolution process for producing (S)-N-(2-ethyl-6-methylphenyl) alanine from racemic methyl ester using lipase B from Candida antarctica (CalB) was investigated. With the benefit results that lipase CalB-catalyzed reactions can be effectively regulated using amino acids (such as histidine and lysine) as additives, CalBs modified (mCalBs) by n-histidines at the N terminal and n-lysines at the C terminal were constructed and expressed. The results show that both soluble and precipitated mCalBs can effectively catalyze the hydrolysis reaction without adding any extra additives. The enantioselective ratio (E value) of soluble and precipitated mCalBs could be improved from 12.1 to 20.3, which were higher than that (E value was only 10.2) of commercial Novozym 435 (immobilized CalB). The study indicated that the amino acid-rich molecules introduced on lipase CalB can produce positive effects on enantioselectivity of enzyme. It provides unusual ideas for reasonable regulation of enzyme-catalyzed reactions.
        
Title: Is Lower Plasma Cholinesterase Activity Really a Candidate Biomarker for Postoperative Delirium After Noncardiac Surgery? Shao LJ, Xue FS, Guo RJ, Zheng L Ref: Psychosomatics, 60:533, 2019 : PubMed
Title: Soluble epoxide hydrolase inhibition with t-TUCB alleviates liver fibrosis and portal pressure in carbon tetrachloride-induced cirrhosis in rats Zhang CH, Zheng L, Gui L, Lin JY, Zhu YM, Deng WS, Luo M Ref: Clin Res Hepatol Gastroenterol, 42:118, 2018 : PubMed
BACKGROUND/AIMS: Fibrosis and increased intrahepatic vascular resistance are the hallmarks of chronic inflammatory disorders of the liver and cirrhosis. Inhibitors of the enzyme soluble epoxide hydrolase reduce fibrosis in several disease models. The present study aimed at investigating the effects of soluble epoxyhydrolase inhibition with t-TUCB in tetrachloride-induced cirrhosis in rats. METHODS: The models were established by CCl4 (2ml/kg) given subcutaneously for 14 weeks. t-TUCB was concomitantly administered from the tenth week of modelling time. After the models were successfully built, the rats were anesthetized with sodium phenobarbital and portal pressure was determined in the groups. After that, the rats were killed and part of liver tissues were taken for histological analysis. In addition, the levels of intrahepatic inflammatory message factors were measured using real-time polymerase chain reaction (PCR) analysis. The remaining liver samples were processed for assessment of oxidative stress. RESULTS: t-TUCB administration significantly attenuated portal pressure relative to CCl4-only rats. This improvement was associated with decreased deposition of collagen in liver, which was supported by reduced mRNA expression of alpha-smooth muscle actin (alpha-SMA), Collagen I, Collagen III, transforming growth factor (TGF)-beta and tissue inhibitor of metalloproteinase-1 (TIMP-1) and increased matrix metalloproteinase-1, -13 (MMP-1, -13) mRNA expression. In addition, t-TUCB decreased the levels of proinflammatory cytokines, including IL-1beta, IL-6, IL-10, tumor necrosis factor-alpha (TNF-alpha) and NF-kappaB, within cirrhotic hepatic tissue. Meanwhile, oxidative stress was also alleviated following inhibition of sEH in CCl4-induced models, as evidenced by down-regulated levels of malondialdehyde (MDA) and up-regulated levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). CONCLUSION: The soluble epoxyhydrolase inhibitor, t-TUCB alleviates liver fibrosis and portal hypertension through attenuation of inflammatory response and oxidative stress in tetrachloride induced cirrhosis.
        
Title: Inhibition of soluble epoxide hydrolase lowers portal hypertension in cirrhotic rats by ameliorating endothelial dysfunction and liver fibrosis Deng W, Zhu Y, Lin J, Zheng L, Zhang C, Luo M Ref: Prostaglandins Other Lipid Mediat, 131:67, 2017 : PubMed
Epoxyeicostrienoic acids (EETs) are arachidonic acid derived meditators which are catalyzed by soluble epoxide hydrolase (sEH) to less active dihydroeicostrienoics acids (DHETS). The aim of our study is to investigate the effects of sEH inhibition on hepatic and systemic hemodynamics, hepatic endothelial dysfunction, and hepatic fibrosis in CCl4 cirrhotic rats. The sEH inhibitor,trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]cyclohexyloxy}benzoic acid (t-TUCB) was administered to stabilize hepatic EETs by gavage at a dose of 1mg/kg/d. Our results showed that hepatic sEH expression was markedly increased in portal hypertension, and led to a lower ratio of EETs/DHETs which was effectively reversed by t-TUCB administration. t-TUCB significantly decreased portal pressure without significant changes in systemic hemodynamics, which was associated with the attenuation of intrahepatic vascular resistance (IHVR) and liver fibrosis. t-TUCB ameliorated endothelial dysfunction, increased hepatic endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production. In addition, t-TUCB significantly reduced alpha-Smooth Muscle Actin (alpha-SMA) expression and liver fibrosis, which was associated with a decrease in NF-kappaB signaling. Taken together, inhibition of sEH reduces portal pressure, liver fibrosis and attenuates hepatic endothelial dysfunction in cirrhotic rats. Our results indicate that sEH inhbitors may be useful in the treatment of portal hypertension in patients with cirrhosis.
BACKGROUND: Lipoprotein lipase (LPL) deficiency is an autosomal recessive genetic disorder characterized by extreme hypertriglyceridemia, with no cure presently available. The purpose of this study was to test the possibility of using cell therapy to alleviate LPL deficiency. METHODS: The LPL coding sequence was cloned into the MSCV retrovirus vector, after which MSCV-hLPL and MSCV (empty construct without LPL coding sequence) virion suspensions were made using the calcium chloride method. A muscle cell line (C2C12), kidney cell line (HEK293T) and pre-adipocyte cell line (3 T3-L1) were transfected with the virus in order to express recombinant LPL in vitro. Finally, each transfected cell line was injected subcutaneously into nude mice to identify the cell type which could secret recombinant LPL in vivo. Control cells were transfected with the MSCV empty vector. LPL activity was analyzed using a radioimmunoassay. RESULTS: After virus infection, the LPL activity at the cell surface of each cell type was significantly higher than in the control cells, which indicates that all three cell types can be used to generate functional LPL. The transfected cells were injected subcutaneously into nude mice, and the LPL activity of the nearby muscle tissue at the injection site in mice injected with 3 T3-L1 cells was more than 5 times higher at the injection sites than at non-injected control sites. The other two types of cells did not show this trend. CONCLUSION: The subcutaneous injection of adipocytes overexpressing LPL can improve the LPL activity of the adjacent tissue of nude mice. This is a ground-breaking preliminary study for the treatment of LPL deficiency, and lays a good foundation for using cell therapy to correct LPL deficiency.
        
Title: Neuroprotective Effects of Acetylcholinesterase Inhibitory Peptides from Anchovy (Coilia mystus) against Glutamate-Induced Toxicity in PC12 Cells Zhao T, Su G, Wang S, Zhang Q, Zhang J, Zheng L, Sun B, Zhao M Ref: Journal of Agricultural and Food Chemistry, 65:11192, 2017 : PubMed
Ameliorations of cholinergic system dysfunction and oxidative stress in neurodegenerative diseases were main approaches to improve memory disorder. Our previous investigation showed that anchovy protein hydrolysate (APH) could attenuate scopolamine-induced memory deficits in mice by regulating acetylcholinesterase (AChE) activity. Therefore, peptides with AChE inhibitory activity in APH were explored and identified in this study, and their possible neuroprotective mechanisms on glutamate induced apoptosis in PC12 were also elucidated. Two peptides with strong AChE inhibitory capacity were identified as Pro-Ala-Tyr-Cys-Ser (PAYCS) and Cys-Val-Gly-Ser-Tyr (CVGSY) by ultraperformance liquid chromatography coupled with tandem mass spectrometry. The AChE inhibitory was 23.68 +/- 0.97% and 6.08 +/- 0.41%, respectively. Treatment with PAYCS and CVGSY could significantly (p < 0.05) increase cells viability, reduce lactate dehydrogenase release, reactive oxygen species (ROS) production, malondialdehyde content, and the ratio of Bax/Bcl-2 of glutamate-induced apoptosis PC12 cells (82.78 +/- 6.58 and 109.94 +/- 7.16% of control, respectively) as well as increase superoxide dismutase and GSH-px activities. In addition, both the peptides could inhibit Ca(2+) influx but have no effects on mitochondrial membrane potential. Results indicated that AChE inhibitory peptides (PAYCS and CVGSY) possibly protected the PC12 cells against glutamate-induced apoptosis via inhibiting ROS production and Ca(2+) influx. PAYCS and CVGSY might be considered as nutraceuticals for alleviating memory deficits.
        
Title: Structure, cytotoxic activity and mechanism of protoilludane sesquiterpene aryl esters from the mycelium of Armillaria mellea Li Z, Wang Y, Jiang B, Li W, Zheng L, Yang X, Bao Y, Sun L, Huang Y, Li Y Ref: J Ethnopharmacol, 184:119, 2016 : PubMed
ETHNOPHARMACOLOGICAL RELEVANCE: Armillaria mellea (Vahl. ex. Fr.) Karst is an important traditional Chinese medicine used in dispelling wind and removing obstruction in the meridians, and strengthening tendons and bones. Armillaria mellea has been recorded in the book Caobenshiyi which was written by ancestor for the function of suppressing hyderactive liver for calming endogenous wind medicine. The aim of this study is to investigate the cytotoxic activity for liver cell lines (normal and cancerous) of protoilludane sesquiterpene aryl esters from the mycelium of A. mellea. MATERIALS AND METHODS: A systemic fractionation of the mycelium extracts of A. mellea and relative activity mechanisms were studied. RESULTS: Two new protoilludane sesquiterpene aryl esters named 5'-methoxy-armillasin (1) and 5-hydroxyl-armillarivin (2) were isolated. In addition, eight known protoilludane sesquiterpene aryl esters armillaridin (3), armillartin (4), armillarin (5), melleolide B (6), armillarilin (7), armillasin (8), armillarigin (9) and melleolide (10) were also isolated from the mycelium of A. mellea. The relative configurations of the two new compounds were confirmed by NOESY spectra. Among ten protoilludane sesquiterpene aryl esters, compounds 2, 3, 4, 7, 8, 9 and 10 were active constituents with highly cytotoxic activity against HepG2 cells (4.95-37.65microg/mL). We reported here for the time, that compound 10 (melleolide) showed anti-tumor ability on hepatoma cell. The relative mechanism was assessed on HepG2 cells. CONCLUSIONS: Among all the ten protoilludane sesquiterpene aryl esters, melleolide (10) showed the best cytotoxic activity for HepG2 cells (4.95microg/mL) and lower activity for L02 cells (16.05microg/mL). Mechanism study showed that melleolide decreased the viability of the cancer cells with varying levels of cleaved-caspase 3, caspase 8, caspase 9, Bax and Ki67 expression. On the other hand, melleolide induced HepG2 cell cycle arrest at the G2/M phase.
        
Title: First Novozym 435 lipase-catalyzed Morita-Baylis-Hillman reaction in the presence of amides Tian X, Zhang S, Zheng L Ref: Enzyme Microb Technol, 84:32, 2016 : PubMed
The first Novozym 435 lipase-catalyzed Morita-Baylis-Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and beta-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time.
        
Title: Draft Genome Sequence of Rhodobacteraceae Strain PD-2, an Algicidal Bacterium with a Quorum-Sensing System, Isolated from the Marine Microalga Prorocentrum donghaiense Zheng L, Cui Z, Xu L, Sun C, Powell RJ, Hill RT Ref: Genome Announc, 3:, 2015 : PubMed
Rhodobacteraceae strain PD-2 was isolated from the marine microalga Prorocentrum donghaiense. It has algicidal activity toward its host and could produce N-acylhomoserine lactone signals. Here, we present the draft genome of strain PD-2, which contains 5,227,214 bp with an average GC content of 66.19%. There were 4,864 encoding gene sequences and two clusters of luxI and luxR homologues identified.
        
Title: Genome Sequence of the Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Strain Marinobacter nanhaiticus D15-8WT Cui Z, Gao W, Li Q, Xu G, Zheng L Ref: Genome Announc, 1:, 2013 : PubMed
Marinobacter nanhaiticus strain D15-8W(T) was isolated from a phenanthrene-degrading consortium, enriched from sediment of the South China Sea. Here, we present the draft genome of strain D15-8W(T), which contains 5,358,309 bp with a G+C content of 58.53% and contains 4,829 protein-coding genes and 47 tRNA genes.
Thorough analysis of translational endophenotypes is needed to improve therapeutic development in schizophrenia. Abnormal sensory gating, one such endophenotype, is associated with reduced expression of the alpha7 nicotinic receptor. However, typical gating measures such as the P50 evoked response are often low-pass filtered, and it is unclear how alpha7 expression affects gating at higher frequencies. Therefore, this study used time-frequency analysis to compare sensory gating at the beta and gamma frequencies between human patients and healthy controls as well as between alpha7 heterozygote mutant mice and wild-type. Gating of total beta (15-26Hz) and gamma (30-50Hz) power during paired clicks was assessed from mouse in vivo hippocampal CA3 recordings. Gating was also assessed in schizophrenia patients and healthy controls using electroencephalography. Relative to wild-type, alpha7 heterozygote mice showed impaired gating of total beta and gamma power. Similarly, relative to controls, patients showed impaired gating of total beta and gamma power. Poor beta gating was associated with negative symptoms. These results demonstrate that schizophrenia patients and alpha7 heterozygote mice show similar deficits in gating high frequency power. Time-frequency analysis of beta and gamma gating may thus be a translational method of assessing the genetic basis of gating deficits in schizophrenia.
OBJECTIVE: The structural, cytoarchitectural and functional brain abnormalities reported in patients with mental disorders may be due to aberrant neuronal migration influenced by cell adhesion molecules. MDGA1, like Ig-containing cell adhesion molecules, has several cell adhesion molecule-like domains. Moreover, Kahler et al. (2008) reported that the MDGA1 gene was a schizophrenia susceptibility gene in Scandinavian population. To further investigate whether the MDGA1 gene is a shared risk factor of schizophrenia, bipolar disorder and major depressive disorder in Chinese Han population, we conducted this study. METHODS: We recruited 1135 unrelated schizophrenia patients, 1135 unrelated bipolar disorder patients, 1135 unrelated major depressive disorder patients and 1135 unrelated controls of Chinese Han origin. A total of eleven common SNPs were genotyped using TaqMan(R) technology. RESULTS: The genotype frequency of rs11759115 differed significantly between schizophrenia patients and controls. The C-C haplotype of rs11759115-rs7769372 was also positively associated with schizophrenia (permutated p=0.046). Rs1883901 was found to be positively associated with bipolar disorder (allele: permutated p=0.0085; genotype: permutated p=0.0009; OR=1.31 [95%CI=1.12-1.52]). The A-G-G haplotype of rs1883901-rs10807187-rs9462343 was also positively associated with bipolar disorder with a global p value of 0.0391 after permutations. No individual SNP or haplotype was associated with major depressive disorder after permutations. CONCLUSION: The MDGA1 gene may confer risk to schizophrenia and bipolar disorder in Chinese Han population.
        
Title: Poster: Acute administration of cotinine to DBA/2 mice increases conditioning amplitude in the sensory inhibition model Stevens KE, Zheng L Ref: Biochemical Pharmacology, 82:1039, 2011 : PubMed
In an effort to examine liver injury, immune response, and other physiological effects in mice caused by intragastric administration of nanoparticulate anatase titanium dioxide (5nm), we assessed T lymphocytes, B lymphocyte and NK lymphocyte counts, hematological indices, biochemical parameters of liver functions, and histopathological changes in nanoparticulate titanium dioxide -treated mice. Indeed, mice treated with higher dose nanoparticulate titanium dioxide displayed a reduction in body weight, an increase in coefficients of the liver and histopathological changes in the liver. Specifically, in these nanoparticulate titanium dioxide -treated mice, interleukin-2 activity, white blood cells, red blood cells, haemoglobin, mean corpuscular haemoglobin concentration, thrombocytes, reticulocytes, T lymphocytes (CD3(+), CD4(+), CD8(+)), NK lymphocytes, B lymphocytes, and the ratio of CD4 to CD8 of mice were decreased, whereas NO level, mean corpuscular volume, mean corpuscular haemoglobin, red (cell) distribution width, platelets, hematocrit, mean platelet volume of mice were increased. Furthermore, liver functions were also disrupted, as evidenced by the enhanced activities of alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, lactate dehydrogenase and cholinesterase, an increase of the total protein, and the reduction of ratio of albumin to globulin, the total bilirubin, triglycerides, and the total cholesterol levels. These results suggested that the liver function damage observed in mice treated with higher dose nanoparticulate titanium dioxide is likely associated with the damage of haemostasis blood system and immune response. However, low dose nanoparticulate anatase TiO(2) has little influences on haemostasis blood system and immune response in mice.
        
Title: Evaluation of the chitosan/glycerol-beta-phosphate disodium salt hydrogel application in peripheral nerve regeneration Zheng L, Ao Q, Han H, Zhang X, Gong Y Ref: Biomed Mater, 5:35003, 2010 : PubMed
Research efforts have been devoted to evaluating the application of the chitosan (CS)/glycerol-beta-phosphate (GP) disodium salt hydrogel in peripheral nerve regeneration. The gelation time was determined to be 770 s using ultraviolet spectrophotometry. A standard 10 mm long rat sciatic nerve defect model was employed, followed by bridging the proximal and distal stumps with chitosan conduits injected with the Schwann cell-containing hydrogel. Injections of the blank hydrogel, Schwann cell suspension and culture medium were used as controls. Two months later, electrophysiological assessment and fluorogold retrograde tracing showed that compound muscle action potentials (CMAPs) and fluorogold-labeled neurons were only detected in the Schwann cell suspension group and culture medium group. The rats were then killed, and implanted conduits were removed for examination. There were no regenerated nerves found in groups injected with the blank hydrogel or Schwann cell-containing hydrogel, while the other two groups clearly displayed regenerated nerves across the gaps. In the subsequent histological assessment, immunohistochemistry, toluidine blue staining and transmission electron microscopy were performed to evaluate the regenerated nerves. The relative wet weight ratio, Masson trichrome staining and acetylcholinesterase staining were employed for the examination of gastrocnemius muscles in all four groups. The Schwann cell suspension group showed the best results for all these indexes; the culture medium group ranked second and the two hydrogel-injected groups showed the least optimal results. In conclusion, our data revealed that the implanted CS/GP hydrogel actually impeded nerve regeneration, which is inconsistent with former in vitro reports and general supposition. We believe that the application of the CS/GP hydrogel in nerve regeneration requires a further study before a satisfactory result is obtained. In addition, the present study also confirmed that Schwann cell implantation stimulated nerve regeneration.
Cortical cholinergic, glutamatergic and GABAergic terminals become upregulated during early stages of the transgenic amyloid pathology. Abundant evidence suggests that sAPP alpha, the product of the non-amyloidogenic alpha-secretase pathway, is neurotrophic both in vitro and when exogenously applied in vivo. The disintegrin metalloprotease ADAM-10 has been shown to have alpha-secretase activity in vivo. To determine whether sAPP alpha has an endogenous biological influence on cortical presynaptic boutons in vivo, we quantified cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities in either ADAM-10 moderate expressing (ADAM-10 mo) transgenic mice, which moderately overexpress ADAM-10, or age-matched non-transgenic controls. Both early and late ontogenic time points were investigated. ADAM-10 mo transgenic mice display significantly elevated cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities at the early time point (8 months). Only the cholinergic presynaptic bouton density remains significantly elevated in late-staged ADAM-10 mo transgenic animals (18 months). To confirm that the observed elevations were due to increased levels of endogenous murine sAPP alpha, exogenous human sAPP alpha was infused into the cortex of non-transgenic control animals for 1 week. Exogenous infusion of sAPP alpha led to significant elevations in the cholinergic, glutamatergic and GABAergic cortical presynaptic bouton populations. These results are the first to demonstrate an in vivo influence of ADAM-10 on neurotransmitter-specific cortical synaptic plasticity and further confirm the neurotrophic influence of sAPP alpha on cortical synaptogenesis.
        
Title: Template enhanced activity of lipase accommodated in siliceous mesocellular foams Zhang Y, Zhao L, Li J, Zhang H, Zheng L, Cao S, Li C Ref: Biochemical & Biophysical Research Communications, 372:650, 2008 : PubMed
Lipases were adsorbed in siliceous mesocellular foams containing different amounts of residual template in the nanopores. It is found that the hydrolytic activities of the adsorbed lipases are increased with increasing the contents of template in the mesopores. The triacetin hydrolytic activity of the lipase adsorbed in the foam containing 46% of template can be 13 times higher than that of the lipase adsorbed in the foam without template in the nanopores, and its specific activity is about three times higher than that of the free lipase, showing the hyperactivation effect on lipase resulting from the interaction between the lipase and the surfactant in the nanopores. The immobilized lipase cross-linked with glutaraldehyde can retain up to 88% of its original activity after six hydrolysis reaction test. This work provides a new strategy to enhance the activity of immobilized lipase in mesoporous materials.
The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure and protein-coding potential of Mmu 16 with that of the homologous segments of the human genome identifies regions of conserved synteny with human chromosomes (Hsa) 3, 8, 12, 16, 21, and 22. Gene content and order are highly conserved between Mmu 16 and the syntenic blocks of the human genome. Of the 731 predicted genes on Mmu 16, 509 align with orthologs on the corresponding portions of the human genome, 44 are likely paralogous to these genes, and 164 genes have homologs elsewhere in the human genome; there are 14 genes for which we could find no human counterpart.
A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.
In vitro brain slices of the cochlear nucleus have been used for electrophysiological and pharmacological studies. More information is needed about the extent to which the slice resembles in vivo tissue, since this affects the interpretation of results obtained from slices. In this study, some chemical parameters of the dorsal cochlear nucleus (DCN) in rat brain slices were measured and compared to the in vivo state. The activities of malate dehydrogenase and lactate dehydrogenase were reduced in some DCN layers of incubated slices compared to in vivo brain tissue. The activities of choline acetyltransferase and acetylcholinesterase were increased or unchanged in DCN layers of slices. Adenosine triphosphate (ATP) concentrations for in vivo rat DCN were similar to those of cerebellar cortex. Compared with in vivo values, ATP concentrations were decreased in the DCN of brain slices, especially in the deep layer. Vibratome-cut slices had lower ATP levels than chopper-cut slices. Compared with the in vivo data, there were large losses of aspartate, glutamate, glutamine, gamma-aminobutyrate and taurine from incubated slices. These amino acid changes within the slices correlated with the patterns of release from the slices.