Lipoprotein lipase (LPL) is a key enzyme of lipid metabolism that hydrolyses triglycerides, providing free fatty acids for cells and affecting the maturation of circulating lipoproteins. The enzyme is thought to play a role in the development of obesity and atherosclerosis. LPL hydrolyse triglycerides of circulating chylomicrons and very low density lipoproteins (VLDL). Binding to heparin sulfate proteogylcans at the cell surface is vital to the function. The apolipoprotein, APOC2, acts as a coactivator of LPL activity in the presence of lipids on the luminal surface of vascular endothelium. LPL interacts with accessory protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1). Defects in LPL are a cause of familial chylomicronemia syndrome (or type I hyperlipoproteinemia) and also of a form of deficiency characterised by hypertriglyceridemia. Familial chylomicronemia is a recessive disorder usually manifesting in childhood. On a normal diet, patients often present with abdominal pain, hepatosplenomegaly, lipemia retinalis, eruptive xanthomata, and massive hypertriglyceridemia, sometimes complicated with acute pancreatitis. Endothelial lipase (encoded by the LIPG gene) regulates the circulating level of high density lipoprotein cholesterol (HDL-C). It can also form a molecular bridge between endothelial cells and lipoproteins or circulating macrophages through interaction with heparan sulfate proteoglycans. This nonenzymatic action can increase cellular lipoprotein uptake and monocyte adhesion and contribute to atherosclerosis. LPL is a secreted glycoprotein that contains five disulfide bonds and requires an endoplasmic reticulum (ER) protein, lipase maturation factor 1 (LMF1), to successfully fold and traffic out of the ER to the Golgi. LPL is sorted into vesicles in an inactive state: helical LPL oligomer. LPL secretion is mediated by Syndecan-1 (SDC1), a heparan sulfate proteoglycan (HSPG). Stored LPL can be secreted into the interstitial space, where it interacts with HSPGs that bind to the multiple heparin binding sites on each LPL molecule . LPL is next bound by glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) and transported into the capillary, where it acts on chylomicrons and very-low-density lipoproteins (VLDLs) to hydrolyze packaged triglycerides and release FFAs. The angiopoietin-like (ANGPTL) family of proteins inhibit LPL in different tissues.
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
2.1kbdel_human-LPL : Homozygous deletion of exon 9 causes lipoprotein lipase deficiency: possible intron-Alu recombination 2kbdup_human-LPL : The molecular biology of hypertriglyceridemia: characterization of mutations in patients with lipoprotein lipase deficiency. (Abstract) 3bpdelInt1_human-LPL : Two novel mutations in the lipoprotein lipase gene in a family with marked hypertriglyceridemia in heterozygous carriers. Potential interaction with the polymorphic marker D1S104 on chromosome 1q21-q23 6kbdel_human-LPL : The molecular biology of hypertriglyceridemia: characterization of mutations in patients with lipoprotein lipase deficiency. (Abstract) A185T_human-LPL : Familial lipoprotein lipase (LPL) deficiency: a catalogue of LPL gene mutations identified in 20 patients from the UK, Sweden, and Italy A203T_human-LPL : Lipoprotein lipaseBethesda: a single amino acid substitution (Ala-176----Thr) leads to abnormal heparin binding and loss of enzymic activity A248fsX3_human-LPL : Prevalence, geographical distribution and genealogical investigations of mutation 188 of lipoprotein lipase gene in the French Canadian population of Quebec A288T_human-LPL : High frequency of mutations in the human lipoprotein lipase gene in pregnancy-induced chylomicronemia: possible association with apolipoprotein E2 isoform A361T_human-LPL : A missense mutation (Ala334-->Thr) in exon 7 of the lipoprotein lipase gene in a case with type I hyperlipidemia A427T_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia A97FfsX52_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia A97fsX49_human-LPL : Assessment of French patients with LPL deficiency for French Canadian mutations A98T_human-LPL : A novel lipoprotein lipase gene missense mutation in Chinese patients with severe hypertriglyceridemia and pancreatitis C243S_human-LPL : Two naturally occurring mutations at the first and second bases of codon aspartic acid 156 in the proposed catalytic triad of human lipoprotein lipase. In vivo evidence that aspartic acid 156 is essential for catalysis C266W_human-LPL : Type I hyperlipoproteinemia due to a novel loss of function mutation of lipoprotein lipase, Cys(239)-->Trp, associated with recurrent severe pancreatitis C266X_human-LPL : A newly identified heterozygous lipoprotein lipase gene mutation (Cys239-->stop/TGC972-->TGA; LPLobama) in a patient with primary type IV hyperlipoproteinemia C291X_human-LPL : Mutations in the lipoprotein lipase gene as a cause of hypertriglyceridemia and pancreatitis in Taiwan C291Y_human-LPL : Acute hypertriglyceridaemic pancreatitis in a pregnant Indian: a new lipoprotein lipase gene mutation C302S_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia C305R_human-LPL : Mutations in Japanese subjects with primary hyperlipidemia--results from the Research Committee of the Ministry of Health and Welfare of Japan since 1996 C310R_human-LPL : Plasma exchange therapy for familial chylomicronemia syndrome in infant: A case report C310Y_human-LPL : Genotype-phenotype studies of six novel LPL mutations in Chinese patients with hypertriglyceridemia C445Y_human-LPL : A new mutation destroying disulphide bridging in the C-terminal domain of lipoprotein lipase D183G_human-LPL : Catalytic triad residue mutation (Asp156----Gly) causing familial lipoprotein lipase deficiency. Co-inheritance with a nonsense mutation (Ser447----Ter) in a Turkish family D183H_human-LPL : Assessment of French patients with LPL deficiency for French Canadian mutations D183N_human-LPL : Two naturally occurring mutations at the first and second bases of codon aspartic acid 156 in the proposed catalytic triad of human lipoprotein lipase. In vivo evidence that aspartic acid 156 is essential for catalysis D201V_human-LPL : Identification of the first Lebanese mutation in the LPL gene and description of a rapid detection method D207E_human-LPL : Genotype-phenotype studies of six novel LPL mutations in Chinese patients with hypertriglyceridemia D231E_human-LPL : Heterogeneous mutations in the human lipoprotein lipase gene in patients with familial lipoprotein lipase deficiency D277N_human-LPL : A missense mutation (Asp250----Asn) in exon 6 of the human lipoprotein lipase gene causes chylomicronemia in patients of different ancestries D308GfsX3_human-LPL : Rare and common variants in LPL and APOA5 in Thai subjects with severe hypertriglyceridemia: A resequencing approach D36N_human-LPL : Association of lipoprotein lipase D9N polymorphism with myocardial infarction in type 2 diabetes: the genetics, outcomes, and lipids in type 2 diabetes (GOLD) study E143D_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia E190G_human-LPL : A novel missense (E163G) mutation in the catalytic subunit of lipoprotein lipase causes familial chylomicronemia E269K_human-LPL : [Mutation-function analysis in the lipoprotein lipase gene of Chinese patients with hypertriglyceridemic type 2 diabetes] E282X_human-LPL : Incidental finding of severe hypertriglyceridemia in children. Role of multiple rare variants in genes affecting plasma triglyceride E396V_human-LPL : Severe hypertriglyceridemia due to two novel loss-of-function lipoprotein lipase gene mutations (C310R/E396V) in a Chinese family associated with recurrent acute pancreatitis E437K_human-LPL : Compound heterozygosity for a known (D250N) and a novel (E410K) missense mutation in the C-terminal domain of lipoprotein lipase causes familial chylomicronemia E437V_human-LPL : A novel missense mutation in the C-terminal domain of lipoprotein lipase (Glu410-->Val) leads to enzyme inactivation and familial chylomicronemia E448K_human-LPL : A novel Glu421Lys substitution in the lipoprotein lipase gene in pregnancy-induced hypertriglyceridemic pancreatitis E62RfsX27_human-LPL : Assessment of French patients with LPL deficiency for French Canadian mutations F297L_human-LPL : A newly identified lipoprotein lipase (LPL) gene mutation (F270L) in a Japanese patient with familial LPL deficiency G132R_human-LPL : A compound heterozygote for a novel missense mutation (G105R) in exon 3 and a missense mutation (D204E) in exon 5 of the lipoprotein lipase gene in a Japanese infant with hyperchylomicronaemia G166S_human-LPL : Homozygosity for a mutation in the lipoprotein lipase gene (Gly139-->Ser) causes chylomicronaemia in a boy of Spanish descent G169E_human-LPL : Familial chylomicronemia (type I hyperlipoproteinemia) due to a single missense mutation in the lipoprotein lipase gene G181S_human-LPL : Recurrent pancreatitis and chylomicronemia in an extended Dutch kindred is caused by a Gly154-->Ser substitution in lipoprotein lipase G181V_human-LPL : Novel compound heterozygous mutations for lipoprotein lipase deficiency. A G-to-T transversion at the first position of exon 5 causing G154V missense mutation and a 5' splice site mutation of intron 8 G186E_human-LPL : Hyperchylomicronaemia due to lipoprotein lipase deficiency as a cause of false-positive newborn screening for biotinidase deficiency G215E_human-LPL : The lipoprotein lipase Gly188----Glu mutation in South Africans of Indian descent: evidence suggesting common origins and an increased frequency G215R_human-LPL : Assessment of French patients with LPL deficiency for French Canadian mutations G218VfsX34_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia G222E_human-LPL : Missense mutations in exon 5 of the human lipoprotein lipase gene. Inactivation correlates with loss of dimerization G237D_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia G256TfsX26_human-LPL : Identification and characterization of two novel mutations in the LPL gene causing type I hyperlipoproteinemia G351R_human-LPL : Genotype-phenotype relationships in patients with type I hyperlipoproteinemia G436R_human-LPL : Severe hypertriglyceridemia in a patient heterozygous for a lipoprotein lipase gene allele with two novel missense variants G81D_human-LPL : A three month-old infant with severe hyperchylomicronemia: Molecular diagnosis and extracorporeal treatment H154R_human-LPL : Case Report: Next-Generation Sequencing Identified a Novel Pair of Compound-Heterozygous Mutations of LPL Gene Causing Lipoprotein Lipase Deficiency H163R_human-LPL : Molecular basis of familial chylomicronemia: mutations in the lipoprotein lipase and apolipoprotein C-II genes H183Q_human-LPL : Familial lipoprotein lipase (LPL) deficiency: a catalogue of LPL gene mutations identified in 20 patients from the UK, Sweden, and Italy H210D_human-LPL : Two novel mutations in the lipoprotein lipase gene in a family with marked hypertriglyceridemia in heterozygous carriers. Potential interaction with the polymorphic marker D1S104 on chromosome 1q21-q23 H210L_human-LPL : Identification and functional characterization of a novel heterozygous missense variant in the LPL associated with recurrent hypertriglyceridemia-induced acute pancreatitis in pregnancy H229R_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia H268Y_human-LPL : Genotype-phenotype relationships in patients with type I hyperlipoproteinemia H71Q_human-LPL : Genetic variants in the LPL and GPIHBP1 genes, in patients with severe hypertriglyceridaemia, detected with high resolution melting analysis H80R_human-LPL : Genetic variants in the LPL and GPIHBP1 genes, in patients with severe hypertriglyceridaemia, detected with high resolution melting analysis I109T_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia I221T_human-LPL : Identification of two separate allelic mutations in the lipoprotein lipase gene of a patient with the familial hyperchylomicronemia syndrome I232S_human-LPL : Structural and functional consequences of missense mutations in exon 5 of the lipoprotein lipase gene I252T_human-LPL : Ile225Thr loop mutation in the lipoprotein lipase (LPL) gene is a de novo event IVS1+1G>C_human-LPL : A G----C change at the donor splice site of intron 1 causes lipoprotein lipase deficiency in a southern-Italian family IVS1+1G>T+2T>G_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia IVS1-1G>A_human-LPL : Incidental finding of severe hypertriglyceridemia in children. Role of multiple rare variants in genes affecting plasma triglyceride IVS1-1G>C_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia IVS2+1G>A_human-LPL : Heterogeneous mutations in the human lipoprotein lipase gene in patients with familial lipoprotein lipase deficiency IVS2-1G>A_human-LPL : Compound heterozygote for lipoprotein lipase deficiency: Ser----Thr244 and transition in 3' splice site of intron 2 (AG----AA) in the lipoprotein lipase gene IVS3_human-LPL : Detection of three separate DNA polymorphisms in the human lipoprotein lipase gene by gene amplification and restriction endonuclease digestion IVS6_human-LPL : Insulin sensitivity is impaired in heterozygous carriers of lipoprotein lipase deficiency IVS8_495T>G_human-LPL : Lipoprotein lipase gene variation is associated with a paternal history of premature coronary artery disease and fasting and postprandial plasma triglycerides: the European Atherosclerosis Research Study (EARS) K225R_human-LPL : Mutations in Japanese subjects with primary hyperlipidemia--results from the Research Committee of the Ministry of Health and Welfare of Japan since 1996 K434N_human-LPL : Severe hypertriglyceridemia in a patient heterozygous for a lipoprotein lipase gene allele with two novel missense variants L279R_human-LPL : A novel lipoprotein lipase gene missense mutation in Chinese patients with severe hypertriglyceridemia and pancreatitis L279V_human-LPL : A novel lipoprotein lipase gene missense mutation in Chinese patients with severe hypertriglyceridemia and pancreatitis L279VfsX3_human-LPL : Familial lipoprotein lipase (LPL) deficiency: a catalogue of LPL gene mutations identified in 20 patients from the UK, Sweden, and Italy L303F_human-LPL : Novel LPL mutation (L303F) found in a patient associated with coronary artery disease and severe systemic atherosclerosis L313P_human-LPL : Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene L330P_human-LPL : Familial lipoprotein lipase (LPL) deficiency: a catalogue of LPL gene mutations identified in 20 patients from the UK, Sweden, and Italy L392V_human-LPL : A new Italian case of lipoprotein lipase deficiency: a Leu365- > Val change resulting in loss of enzyme activity M1I_human-LPL : A novel substitution at the translation initiator codon (ATG-->ATC) of the lipoprotein lipase gene is mainly responsible for lipoprotein lipase deficiency in a patient with severe hypertriglyceridemia and recurrent pancreatitis M328I_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia M328R_human-LPL : Severe hypertriglyceridaemia in a Greek infant: a clinical, biochemical and genetic study M328T_human-LPL : Familial lipoprotein lipase (LPL) deficiency: a catalogue of LPL gene mutations identified in 20 patients from the UK, Sweden, and Italy M404R_human-LPL : Identification and characterization of two novel mutations in the LPL gene causing type I hyperlipoproteinemia N147TfsX24_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia N147fs_human-LPL : Assessment of French patients with LPL deficiency for French Canadian mutations N281MfsX23_human-LPL : Severe hypertriglyceridemia in a newborn with monogenic lipoprotein lipase deficiency: an unconventional therapeutic approach with exchange transfusion N318IfsX304_human-LPL : A novel frameshift mutation in exon 6 (the site of Asn 291) of the lipoprotein lipase gene in type I hyperlipidemia N318S_human-LPL : A frequently occurring mutation in the lipoprotein lipase gene (Asn291Ser) contributes to the expression of familial combined hyperlipidemia N70S_human-LPL : Mutations in Japanese subjects with primary hyperlipidemia--results from the Research Committee of the Ministry of Health and Welfare of Japan since 1996 P184R_human-LPL : A missense mutation Pro157 Arg in lipoprotein lipase (LPLNijmegen) resulting in loss of catalytic activity P234L_human-LPL : A mutation in the human lipoprotein lipase gene as the most common cause of familial chylomicronemia in French Canadians P241S_human-LPL : Genotype-phenotype relationships in patients with type I hyperlipoproteinemia Q133X_human-LPL : Lipoprotein lipase deficiency resulting from a nonsense mutation in exon 3 of the lipoprotein lipase gene Q262X_human-LPL : Incidental finding of severe hypertriglyceridemia in children. Role of multiple rare variants in genes affecting plasma triglyceride Q267H_human-LPL : Severe Hypertriglyceridemia due to a novel p.Q240H mutation in the Lipoprotein Lipase gene Q30X_human-LPL : Plasma exchange therapy for familial chylomicronemia syndrome in infant: A case report R102S_human-LPL : Mutations in exon 3 of the lipoprotein lipase gene segregating in a family with hypertriglyceridemia, pancreatitis, and non-insulin-dependent diabetes R116P_human-LPL : Rare novel LPL mutations are associated with neonatal onset lipoprotein lipase (LPL) deficiency in two cases R116Q_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia R197H_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia R197L_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia R214I_human-LPL : Incidental finding of severe hypertriglyceridemia in children. Role of multiple rare variants in genes affecting plasma triglyceride R270C_human-LPL : Assessment of French patients with LPL deficiency for French Canadian mutations R270G_human-LPL : Genotype-phenotype relationships in patients with type I hyperlipoproteinemia R270H_human-LPL : Recurrent missense mutations at the first and second base of codon Arg243 in human lipoprotein lipase in patients of different ancestries R333H_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia R432T_human-LPL : Rare and common variants in LPL and APOA5 in Thai subjects with severe hypertriglyceridemia: A resequencing approach S196C_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia S199C_human-LPL : Gene-environment interaction in the conversion of a mild-to-severe phenotype in a patient homozygous for a Ser172-->Cys mutation in the lipoprotein lipase gene S199fsX7_human-LPL : Combination of circulating antilipoprotein lipase (Anti-LPL) antibody and heterozygous S172 fsX179 mutation of LPL gene leading to chronic hyperchylomicronemia S220R_human-LPL : Familial lipoprotein lipase (LPL) deficiency: a catalogue of LPL gene mutations identified in 20 patients from the UK, Sweden, and Italy S271T_human-LPL : Compound heterozygote for lipoprotein lipase deficiency: Ser----Thr244 and transition in 3' splice site of intron 2 (AG----AA) in the lipoprotein lipase gene S278C_human-LPL : Compound heterozygosity for a known and a novel defect in the lipoprotein lipase gene (Asp250-->Asn; Ser251-->Cys) resulting in lipoprotein lipase (LPL) deficiency S286G_human-LPL : Compound heterozygosity for a new (S259G) and a previously described (G188E) mutation in lipoprotein lipase (LpL) as a cause of chylomicronemia. Mutations in brief no. 183. Online S286R_human-LPL : Familial hypertriglyceridemia: biochemical, clinical and molecular study in a Moroccan family S325R_human-LPL : Genotype-phenotype studies of six novel LPL mutations in Chinese patients with hypertriglyceridemia S350C_human-LPL : [The application of end user computing (EUC) for detection of lipoprotein lipase gene abnormality] S365F_human-LPL : Genotype-phenotype studies of six novel LPL mutations in Chinese patients with hypertriglyceridemia S423_P424del_human-LPL : Diagnosis and management of type I and type V hyperlipoproteinemia S474X_human-LPL : The association of the S447X mutation in LPL with Coronary artery disease: a meta-analysis T128A_human-LPL : Assessment of French patients with LPL deficiency for French Canadian mutations T379A_human-LPL : DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene V208I_human-LPL : A novel missense mutation in the gene for lipoprotein lipase resulting in a highly conservative amino acid substitution (Asp180-->Glu) causes familial chylomicronemia (type I hyperlipoproteinemia) V227A_human-LPL : Mutations in Japanese subjects with primary hyperlipidemia--results from the Research Committee of the Ministry of Health and Welfare of Japan since 1996 V340GfsX13_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia V370M_human-LPL : DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene V442G_human-LPL : Incidental finding of severe hypertriglyceridemia in children. Role of multiple rare variants in genes affecting plasma triglyceride V64M_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia V96L_human-LPL : A compound heterozygote for lipoprotein lipase deficiency, Val69-->Leu and Gly188-->Glu: correlation between in vitro LPL activity and clinical expression V96fs_human-LPL : Assessment of French patients with LPL deficiency for French Canadian mutations W113G_human-LPL : Familial lipoprotein lipase (LPL) deficiency: a catalogue of LPL gene mutations identified in 20 patients from the UK, Sweden, and Italy W113R_human-LPL : A missense mutation (Trp86----Arg) in exon 3 of the lipoprotein lipase gene: a cause of familial chylomicronemia W14X_human-LPL : A novel nonsense mutation in exon 1 and a transition in intron 3 of the lipoprotein lipase gene W409X_human-LPL : Heterogeneous mutations in the human lipoprotein lipase gene in patients with familial lipoprotein lipase deficiency W420X_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia W421X_human-LPL : Clinical, biochemical and molecular analysis of two infants with familial chylomicronemia syndrome W91X_human-LPL : Trp64->nonsense mutation in the lipoprotein lipase gene Y100X_human-LPL : Mutations in exon 3 of the lipoprotein lipase gene segregating in a family with hypertriglyceridemia, pancreatitis, and non-insulin-dependent diabetes Y158D_human-LPL : Rare novel LPL mutations are associated with neonatal onset lipoprotein lipase (LPL) deficiency in two cases Y289H_human-LPL : Homozygosity for two point mutations in the lipoprotein lipase (LPL) gene in a patient with familial LPL deficiency: LPL(Asp9-->Asn, Tyr262-->His) Y315X_human-LPL : [Familial hyperchylomicronemia with a new mutation of the lipoprotein lipase gene] Y329X_human-LPL : Pseudodominance of lipoprotein lipase (LPL) deficiency due to a nonsense mutation (Tyr302>Term) in exon 6 of LPL gene in an Italian family from Sardinia (LPL(Olbia)) Y88X_human-LPL : Heterogeneous mutations in the human lipoprotein lipase gene in patients with familial lipoprotein lipase deficiency c-39T>C_human-LPL : A mutation in the promoter of the lipoprotein lipase (LPL) gene in a patient with familial combined hyperlipidemia and low LPL activity c-93T>G_human-LPL : The Asn9 variant of lipoprotein lipase is associated with the -93G promoter mutation and an increased risk of coronary artery disease. The Regress Study Group c.88+2T>G/c.56C>G_human-LPL : Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia delTot_human-LPL : Severe hypertriglyceridemia in a newborn with monogenic lipoprotein lipase deficiency: an unconventional therapeutic approach with exchange transfusion
4 structures(e.g. : 6E7K, 6OAU, 6OAZ... more)(less) 6E7K: Structure of the lipoprotein lipase GPIHBP1 complex that mediates plasma triglyceride hydrolysis, 6OAU: Apo Structure of WT Lipoprotein Lipase in Complex with GPIHBP1 Mutant N78D N82D produced in GnTI-deficient HEK293-F cells, 6OAZ: Apo Structure of WT Lipoprotein Lipase in Complex with GPIHBP1 Mutant N78D N82D produced in HEK293-F cells, 6OB0: Compound 2 bound structure of WT Lipoprotein Lipase in Complex with GPIHBP1 Mutant N78D N82D produced in HEK293-F cells No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MESKALLVLTLAVWLQSLTASRGGVAAADQRRDFIDIESKFALRTPEDTA EDTCHLIPGVAESVATCHFNHSSKTFMVIHGWTVTGMYESWVPKLVAALY KREPDSNVIVVDWLSRAQEHYPVSAGYTKLVGQDVARFINWMEEEFNYPL DNVHLLGYSLGAHAAGIAGSLTNKKVNRITGLDPAGPNFEYAEAPSRLSP DDADFVDVLHTFTRGSPGRSIGIQKPVGHVDIYPNGGTFQPGCNIGEAIR VIAERGLGDVDQLVKCSHERSIHLFIDSLLNEENPSKAYRCSSKEAFEKG LCLSCRKNRCNNLGYEINKVRAKRSSKMYLKTRSQMPYKVFHYQVKIHFS GTESETHTNQAFEISLYGTVAESENIPFTLPEVSTNKTYSFLIYTEVDIG ELLMLKLKWKSDSYFSWSDWWSSPGFAIQKIRVKAGETQKKVIFCSREKV SHLQKGKAPAVFVKCHDKSLNKKSG
The lipolytic processing of triglyceride-rich lipoproteins (TRLs) by lipoprotein lipase (LPL) is crucial for the delivery of dietary lipids to the heart, skeletal muscle, and adipose tissue. The processing of TRLs by LPL is regulated in a tissue-specific manner by a complex interplay between activators and inhibitors. Angiopoietin-like protein 4 (ANGPTL4) inhibits LPL by reducing its thermal stability and catalyzing the irreversible unfolding of LPL's alpha/beta-hydrolase domain. We previously mapped the ANGPTL4 binding site on LPL and defined the downstream unfolding events resulting in LPL inactivation. The binding of LPL to glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 protects against LPL unfolding. The binding site on LPL for an activating cofactor, apolipoprotein C2 (APOC2), and the mechanisms by which APOC2 activates LPL have been unclear and controversial. Using hydrogen-deuterium exchange/mass spectrometry, we now show that APOC2's C-terminal alpha-helix binds to regions of LPL surrounding the catalytic pocket. Remarkably, APOC2's binding site on LPL overlaps with that for ANGPTL4, but their effects on LPL conformation are distinct. In contrast to ANGPTL4, APOC2 increases the thermal stability of LPL and protects it from unfolding. Also, the regions of LPL that anchor the lid are stabilized by APOC2 but destabilized by ANGPTL4, providing a plausible explanation for why APOC2 is an activator of LPL, while ANGPTL4 is an inhibitor. Our studies provide fresh insights into the molecular mechanisms by which APOC2 binds and stabilizes LPL-and properties that we suspect are relevant to the conformational gating of LPL's active site.
The complex between lipoprotein lipase (LPL) and its endothelial receptor (GPIHBP1) is responsible for the lipolytic processing of triglyceride-rich lipoproteins (TRLs) along the capillary lumen, a physiologic process that releases lipid nutrients for vital organs such as heart and skeletal muscle. LPL activity is regulated in a tissue-specific manner by endogenous inhibitors (angiopoietin-like [ANGPTL] proteins 3, 4, and 8), but the molecular mechanisms are incompletely understood. ANGPTL4 catalyzes the inactivation of LPL monomers by triggering the irreversible unfolding of LPL's alpha/beta-hydrolase domain. Here, we show that this unfolding is initiated by the binding of ANGPTL4 to sequences near LPL's catalytic site, including beta2, beta3-alpha3, and the lid. Using pulse-labeling hydrogendeuterium exchange mass spectrometry, we found that ANGPTL4 binding initiates conformational changes that are nucleated on beta3-alpha3 and progress to beta5 and beta4-alpha4, ultimately leading to the irreversible unfolding of regions that form LPL's catalytic pocket. LPL unfolding is context dependent and varies with the thermal stability of LPL's alpha/beta-hydrolase domain (T (m) of 34.8 degreesC). GPIHBP1 binding dramatically increases LPL stability (T (m) of 57.6 degreesC), while ANGPTL4 lowers the onset of LPL unfolding by -20 degreesC, both for LPL and LPLGPIHBP1 complexes. These observations explain why the binding of GPIHBP1 to LPL retards the kinetics of ANGPTL4-mediated LPL inactivation at 37 degreesC but does not fully suppress inactivation. The allosteric mechanism by which ANGPTL4 catalyzes the irreversible unfolding and inactivation of LPL is an unprecedented pathway for regulating intravascular lipid metabolism.
        
Title: Lipoprotein Lipase and Its Regulators: An Unfolding Story Wu SA, Kersten S, Qi L Ref: Trends Endocrinol Metab, 32:48, 2021 : PubMed
Lipoprotein lipase (LPL) is one of the most important factors in systemic lipid partitioning and metabolism. It mediates intravascular hydrolysis of triglycerides packed in lipoproteins such as chylomicrons and very-low-density lipoprotein (VLDL). Since its initial discovery in the 1940s, its biology and pathophysiological significance have been well characterized. Nonetheless, several studies in the past decade, with recent delineation of LPL crystal structure and the discovery of several new regulators such as angiopoietin-like proteins (ANGPTLs), glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), lipase maturation factor 1 (LMF1) and Sel-1 suppressor of Lin-12-like 1 (SEL1L), have completely transformed our understanding of LPL biology.
The lipolytic processing of triglyceride-rich lipoproteins (TRLs) by lipoprotein lipase (LPL) is crucial for the delivery of dietary lipids to the heart, skeletal muscle, and adipose tissue. The processing of TRLs by LPL is regulated in a tissue-specific manner by a complex interplay between activators and inhibitors. Angiopoietin-like protein 4 (ANGPTL4) inhibits LPL by reducing its thermal stability and catalyzing the irreversible unfolding of LPL's alpha/beta-hydrolase domain. We previously mapped the ANGPTL4 binding site on LPL and defined the downstream unfolding events resulting in LPL inactivation. The binding of LPL to glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 protects against LPL unfolding. The binding site on LPL for an activating cofactor, apolipoprotein C2 (APOC2), and the mechanisms by which APOC2 activates LPL have been unclear and controversial. Using hydrogen-deuterium exchange/mass spectrometry, we now show that APOC2's C-terminal alpha-helix binds to regions of LPL surrounding the catalytic pocket. Remarkably, APOC2's binding site on LPL overlaps with that for ANGPTL4, but their effects on LPL conformation are distinct. In contrast to ANGPTL4, APOC2 increases the thermal stability of LPL and protects it from unfolding. Also, the regions of LPL that anchor the lid are stabilized by APOC2 but destabilized by ANGPTL4, providing a plausible explanation for why APOC2 is an activator of LPL, while ANGPTL4 is an inhibitor. Our studies provide fresh insights into the molecular mechanisms by which APOC2 binds and stabilizes LPL-and properties that we suspect are relevant to the conformational gating of LPL's active site.
Severe hypertriglyceridemia (sHTG) is an established risk factor for acute pancreatitis. Current therapeutic approaches for sHTG are often insufficient to reduce triglycerides and prevent acute pancreatitis. This phase 2 trial ( NCT03452228 ) evaluated evinacumab (angiopoietin-like 3 inhibitor) in three cohorts of patients with sHTG: cohort 1, familial chylomicronemia syndrome with bi-allelic loss-of-function lipoprotein lipase (LPL) pathway mutations (n = 17); cohort 2, multifactorial chylomicronemia syndrome with heterozygous loss-of-function LPL pathway mutations (n = 15); and cohort 3, multifactorial chylomicronemia syndrome without LPL pathway mutations (n = 19). Fifty-one patients (males, n = 27; females, n = 24) with a history of hospitalization for acute pancreatitis were randomized 2:1 to intravenous evinacumab 15 mg kg(-1) or placebo every 4 weeks over a 12-week double-blind treatment period, followed by a 12-week single-blind treatment period. The primary end point was the mean percent reduction in triglycerides from baseline after 12 weeks of evinacumab exposure in cohort 3. Evinacumab reduced triglycerides in cohort 3 by a mean (s.e.m.) of -27.1% (37.4) (95% confidence interval -71.2 to 84.6), but the prespecified primary end point was not met. No notable differences in adverse events between evinacumab and placebo treatment groups were seen during the double-blind treatment period. Although the primary end point of a reduction in triglycerides did not meet the prespecified significance level, the observed safety and changes in lipid and lipoprotein levels support the further evaluation of evinacumab in larger trials of patients with sHTG. Trial registration number: ClinicalTrials.gov NCT03452228 .
BACKGROUND: Insulin resistance (IR) is exacerbated during pregnancy via increases in insulin counterregulatory hormones. Maternal lipids are strong determinants of neonatal growth, although triglyceride-rich lipoproteins (TGRLs) cannot be transferred directly to the fetus through the placenta. The catabolism of TGRLs under physiological IR and the reduced synthesis of lipoprotein lipase (LPL) are poorly understood. We examined the association of maternal and umbilical cord blood (UCB)-LPL concentrations with maternal metabolic parameters and fetal development. METHODS: Changes in anthropometric measures and lipid-, glucose-, and insulin-related parameters, including maternal and UCB-LPL concentrations, were examined in 69 women during pregnancy. The relationship between those parameters and neonatal birth weight was assessed. RESULTS: Parameters reflecting glucose metabolism did not change during pregnancy, whereas those associated with lipid metabolism and IR changed markedly, particularly in the second and third trimesters. In the third trimester, the maternal LPL concentration gradually decreased, by 54%, whereas the UCB-LPL concentration was -2-fold higher than the maternal LPL concentration. Univariate and multivariate analyses showed that the UCB-LPL concentration was a significant determinant of neonatal birth weight, together with placental birth weight. CONCLUSION: The LPL concentration in UCB reflects neonatal development under a decreased LPL concentration in maternal serum.
BACKGROUND & AIMS: Progression of alcohol-associated liver disease (ALD) is driven by genetic predisposition. The rs13702 variant in the lipoprotein lipase (LPL) gene is linked to non-alcoholic fatty liver disease. We aimed at clarifying its role in ALD. METHODS: Patients with alcohol-associated cirrhosis, with (n = 385) and without hepatocellular carcinoma (HCC) (n = 656), with HCC attributable to viral hepatitis C (n = 280), controls with alcohol abuse without liver damage (n = 366), and healthy controls (n = 277) were genotyped regarding the LPL rs13702 polymorphism. Furthermore, the UK Biobank cohort was analysed. LPL expression was investigated in human liver specimens and in liver cell lines. RESULTS: Frequency of the LPL rs13702 CC genotype was lower in ALD with HCC in comparison to ALD without HCC both in the initial (3.9% vs. 9.3%) and the validation cohort (4.7% vs. 9.5%; p <0.05 each) and compared with patients with viral HCC (11.4%), alcohol misuse without cirrhosis (8.7%), or healthy controls (9.0%). This protective effect (odds ratio [OR] = 0.5) was confirmed in multivariate analysis including age (OR = 1.1/year), male sex (OR = 3.0), diabetes (OR = 1.8), and carriage of the PNPLA3 I148M risk variant (OR = 2.0). In the UK Biobank cohort, the LPL rs13702 C allele was replicated as a risk factor for HCC. Liver expression of LPL mRNA was dependent on LPL rs13702 genotype and significantly higher in patients with ALD cirrhosis compared with controls and alcohol-associated HCC. Although hepatocyte cell lines showed negligible LPL protein expression, hepatic stellate cells and liver sinusoidal endothelial cells expressed LPL. CONCLUSIONS: LPL is upregulated in the liver of patients with alcohol-associated cirrhosis. The LPL rs13702 high producer variant confers protection against HCC in ALD, which might help to stratify people for HCC risk. IMPACT AND IMPLICATIONS: Hepatocellular carcinoma is a severe complication of liver cirrhosis influenced by genetic predisposition. We found that a genetic variant in the gene encoding lipoprotein lipase reduces the risk for hepatocellular carcinoma in alcohol-associated cirrhosis. This genetic variation may directly affect the liver, because, unlike in healthy adult liver, lipoprotein lipase is produced from liver cells in alcohol-associated cirrhosis.
        
Title: Rs15285, a functional polymorphism located in lipoprotein lipase, predicts the risk and prognosis of gastric cancer Shen K, Zhou X, Hu L, Xiao J, Cheng Q, Wang Y, Liu K, Fan H, Xu Z, Yang L Ref: Applied Microbiology & Biotechnology, :, 2023 : PubMed
Lipoprotein lipase (LPL), a crucial gene in lipid metabolism, has a significant role in the progression of malignant tumors. The purpose of this research was to investigate the impact of rs15285 found in the LPL gene's 3'UTR region on the risk, biological behavior, and gastric cancer (GC) prognosis as well as to examine its potential function. Genotyping of rs15285 in 888 GC cases and 874 controls was conducted by SNaPshot technology. We used bioinformatics analysis and in vitro experiments to study the role of rs15285. First, this study revealed for the first time that polymorphism rs15285 increases the risk of GC (OR = 1.48, 95%CI = 1.16-1.89, P = 0.002). Although no relationship was found between rs12585 and the pathological features of GC, the prognosis of individuals with the rs12585 TT genotype was poorer than that of patients with the CC or CC+CT genotype (HR = 2.39 for TT vs. CC, P = 0.025; HR = 2.38 for TT vs. CC+CT, P = 0.025). In addition, bioinformatics analysis showed rs12585 may affect the binding of miRNAs to LPL, resulting in an increase of LPL expression to promote cancer progression. Ultimately, in vitro tests revealed that the rs15285 T allele increased LPL expression on the mRNA as well as the protein levels, promoting GC cell proliferation, invasion, and metastasis. The LPL rs12528 TT genotype increased the risk of GC and predicted a poor prognosis. Mechanistically, the rs15285 T allele could improve the expression of LPL, and thus promotes the malignant phenotype of GC. Therefore, our study may provide new biological predictors and a theoretical basis for the prognosis and customized therapy of stomach cancer patients. KEY POINTS: Rs15285 polymorphism is a risk factor for GC. Rs12585 TT genotype predicts a bad outcome in GC individuals. Rs15285 T allele enhances GC cells malignant biological behavior.
A one-year-and-nine-month-old Japanese boy was admitted with hypertriglyceridemia (fasting triglycerides 2548 mg/dL). After close examination, he was diagnosed with lipoprotein lipase (LPL) deficiency (compound heterozygous) and was immediately started on a fat-restricted dietary therapy. He responded well to the regimen (1200 kcal/day, 20 g fat/day) and his triglycerides decreased to 628 mg/dL within 7 days of starting the dietary therapy. It was decided to manage his illness without using any drugs because he was still an infant and responded well to a fat-restricted diet. During his hospital stay, dietitians provided him with nutritional counseling using a food exchange list, which was designed to easily calculate the fat content by including foods that are commonly served. His family quickly learned the skills to prepare a fat-restricted diet. Moreover, since dietary restrictions may have impaired the child's growth and development, the dietitians continued to intervene regularly after the child was discharged from the hospital. The dietitians confirmed that the patient was receiving nutritional intake appropriate for his growth and discussed the dietary concerns in his daily life and how to participate in school events that involved eating and drinking. Nutritional counseling was provided every 3-4 months from disease onset to age 23 years, except for a 14-month break at age 20 years. The patient grew up without developing acute pancreatitis, a serious complication of LPL deficiency. The long-term intervention of dieticians is necessary to achieve a balance between living on a strict diet for disease management and ensuring appropriate nutritional intakes for growth/development.
        
Title: Plasma exchange therapy for familial chylomicronemia syndrome in infant: A case report Han L, Qiang G, Yang L, Kou R, Li Q, Xin M, Liu R, Zhang Z Ref: Medicine (Baltimore), 101:e29689, 2022 : PubMed
INTRODUCTION: Familial chylomicronemia syndrome (FCS) is a rare genetic disease. FCS usually manifests by the age of 10 years, and 25% of cases of FCS occur during infancy. Here we present a case of FCS in a male infant and summarize our experiences on the diagnosis and therapy of this case. PATIENT CONCERNS: A male infant aged 1 month and 8 days had recurrent hematochezia and hyperchylomicronemia. DIAGNOSIS: FCS based on symptoms and genetic test. INTERVENTIONS: Plasma exchange therapy. OUTCOMES: His development was normal with a good spirit and satisfactory weight gain, and no hematochezia occurred again. CONCLUSION: Genetic test is important for accurate diagnosis of FCS, and we identified a new mutation of lipoprotein lipase gene c.88C>A which conformed to autosomal recessive inheritance. Plasma exchange therapy can be applied to infants with FCS with low risk and good outcomes.
        
Title: Case Report: Next-Generation Sequencing Identified a Novel Pair of Compound-Heterozygous Mutations of LPL Gene Causing Lipoprotein Lipase Deficiency Li Y, Hu M, Han L, Feng L, Yang L, Chen X, Du T, Yao H Ref: Front Genet, 13:831133, 2022 : PubMed
Lipoprotein lipase deficiency (LPLD) is a rare disease characterized by the accumulation of chylomicronemia with early-onset. Common symptoms are abdominal pain, hepatosplenomegaly, eruptive xanthomas and lipemia retinalis. Serious complications include acute pancreatitis. Gene LPL is one of causative factors of LPLD. Here, we report our experience on an asymptomatic 3.5-month-old Chinese girl with only milky blood. Whole-exome sequencing was performed and identified a pair of compound-heterozygous mutations in LPL gene, c.862G>A (p.A288T) and c.461A>G (p.H154R). Both variants are predicted "deleterious" and classified as "likely pathogenic". This study expanded the LPL mutation spectrum of disease LPLD, thereby offering exhaustive and valuable experience on early diagnosis and proper medication of LPLD.
The prevalence of familial lipoprotein lipase deficiency (LPLD) is approximately one in 1,000,000 in the general population. There are conflicting reports on whether or not LPLD is atherogenic. We conducted coronary computed tomographic (CT) angiography on two patients in their 70s who had genetically confirmed LPLD. Patient was a 73 year old woman with a body mass index (BMI) of 27.5 kg/m(2), no history of diabetes mellitus and no history of drinking alcohol or smoking. At the time of her first visit, her serum total cholesterol, triglycerides and high-density lipoprotein cholesterol levels were 4.8 mmol/L, 17.3 mmol/L, and 0.5 mmol/L, respectively. She was treated with a lipid-restricted diet and fibrate but her serum TG levels remained extremely high. Next-generation sequencing analysis revealed a missense mutation (homo) in the LPL gene, c.662T > C (p. Ile221Thr), leading to the diagnosis of homozygous familial LPL deficiency (LPLD). Patient 2 was another 73- year- old woman. She also had marked hypertriglyceridemia with no history of diabetes mellitus, drinking alcohol, or smoking. Previous genetic studies showed she had a nonsense mutation (homozygous) in the LPL gene, c.1277G> A (p.Trp409Ter). To clarify the degree of coronary artery stenosis in these two cases, we conducted coronary CT angiography and found that no coronary artery stenosis in either the right or left coronary arteries. Based on the findings in these two elderly women along with previous reports on patients in their 60s with LPLD and hypertriglyceridemia, we suggest that LPLD may not be associated with the development or progression of coronary artery disease.
        
Title: Novel pathogenic variant combination in LPL causing familial chylomicronemia syndrome in an Asian family and experimental validation in vitro: a case report Shi H, Wang Z Ref: Transl Pediatr, 11:1717, 2022 : PubMed
BACKGROUND: Familial chylomicronemia syndrome (FCS) is a rare autosomal recessive disorder, typically caused by biallelic pathogenic variants in the lipoprotein lipase (LPL) gene. Lipoprotein lipase, encoded by the LPL gene, catalyzes the hydrolysis of triglycerides, and its deficiency or dysfunction can lead to chylomicronemia and potentially fatal recurrent acute pancreatitis. CASE DESCRIPTION: Here, we report an Asian child with FCS due to compound heterozygous LPL variants. The 4-year-old patient presented with splenomegaly and severe hypertriglyceridemia, specifically chylomicronemia which resulted in abnormal coagulation measured by a turbidity-based assay. Based on the clinical features and family history, the diagnosis of FCS was suspected, and confirmed by the identification of compound heterozygous variants in the LPL gene (c.461A>G; p.His154Arg and c.788T>A; p.Leu263Gln) in the patient, inheriting one from each parent. According to the clinical and genetic findings, the patient was diagnosed with FCS. In vitro experimental validation found that the LPL p.H154R variant reduced the expression of lipoprotein lipase and decreased its lipolytic activity, while the LPL p.L263Q variant mainly impaired its lipolytic activity. CONCLUSIONS: FCS was molecularly diagnosed using whole exome sequencing in the case presented. When interpreting abnormal coagulation profiles measured by turbidity-based assay, the possibility of lipemic blood (or chylomicronemia) should be considered and the presence of this phenomenon might indicate the diagnosis of FCS. In vitro experiments showed that the two LPL variants impaired lipoprotein lipase expression and/or function making them likely to be pathogenic.
Lipoprotein lipase (LPL) deficiency is an extremely rare disorder of lipid metabolism known to cause hypertriglyceridaemia in childhood. We report the incidental diagnosis of LPL deficiency in an infant presenting with an acute respiratory tract infection. The patient was initially treated for a lower respiratory tract infection, but was subsequently found to have milky appearance of the serum, with a triglyceride concentration greater than 1000 mg/dL. Clinical examination revealed hepatosplenomegaly and lipaemia retinalis. Genetic analysis showed that the patient was a compound heterozygote for two rare likely pathogenic LPL variants c.808C>G p.(Arg270Gly) and c.1019-3C>G. She was commenced on a low-fat diet with the addition of medium chain triglyceride formula. At follow-up, her serum triglyceride level was normal.
BACKGROUND: Type I hyperlipoproteinemia, characterized by severe hypertriglyceridemia, is caused mainly by loss-of-function mutation of the lipoprotein lipase (LPL) gene. To date, more than 200 mutations in the LPL gene have been reported, while only a limited number of mutations have been evaluated for pathogenesis. OBJECTIVE: This study aims to explore the molecular mechanisms underlying lipoprotein lipase deficiency in two pedigrees with type 1 hyperlipoproteinemia. METHODS: We conducted a systematic clinical and genetic analysis of two pedigrees with type 1 hyperlipoproteinemia. Postheparin plasma of all the members was used for the LPL activity analysis. In vitro studies were performed in HEK-293T cells that were transiently transfected with wild-type or variant LPL plasmids. Furthermore, the production and activity of LPL were analyzed in cell lysates or culture medium. RESULTS: Proband 1 developed acute pancreatitis in youth, and her serum triglycerides (TGs) continued to be at an ultrahigh level, despite the application of various lipid-lowering drugs. Proband 2 was diagnosed with type 1 hyperlipoproteinemia at 9 months of age, and his serum TG levels were mildly elevated with treatment. Two novel compound heterozygous variants of LPL (c.3G>C, p. M1? and c.835_836delCT, p. L279Vfs*3, c.188C>T, p. Ser63Phe and c.662T>C, p. Ile221Thr) were identified in the two probands. The postheparin LPL activity of probands 1 and 2 showed decreases of 72.22 +/- 9.46% (p<0.01) and 54.60 +/- 9.03% (p<0.01), respectively, compared with the control. In vitro studies showed a substantial reduction in the expression or enzyme activity of LPL in the LPL variants. CONCLUSIONS: Two novel compound heterozygous variants of LPL induced defects in the expression and function of LPL and caused type I hyperlipoproteinemia. The functional characterization of these variants was in keeping with the postulated LPL mutant activity.
The complex between lipoprotein lipase (LPL) and its endothelial receptor (GPIHBP1) is responsible for the lipolytic processing of triglyceride-rich lipoproteins (TRLs) along the capillary lumen, a physiologic process that releases lipid nutrients for vital organs such as heart and skeletal muscle. LPL activity is regulated in a tissue-specific manner by endogenous inhibitors (angiopoietin-like [ANGPTL] proteins 3, 4, and 8), but the molecular mechanisms are incompletely understood. ANGPTL4 catalyzes the inactivation of LPL monomers by triggering the irreversible unfolding of LPL's alpha/beta-hydrolase domain. Here, we show that this unfolding is initiated by the binding of ANGPTL4 to sequences near LPL's catalytic site, including beta2, beta3-alpha3, and the lid. Using pulse-labeling hydrogendeuterium exchange mass spectrometry, we found that ANGPTL4 binding initiates conformational changes that are nucleated on beta3-alpha3 and progress to beta5 and beta4-alpha4, ultimately leading to the irreversible unfolding of regions that form LPL's catalytic pocket. LPL unfolding is context dependent and varies with the thermal stability of LPL's alpha/beta-hydrolase domain (T (m) of 34.8 degreesC). GPIHBP1 binding dramatically increases LPL stability (T (m) of 57.6 degreesC), while ANGPTL4 lowers the onset of LPL unfolding by -20 degreesC, both for LPL and LPLGPIHBP1 complexes. These observations explain why the binding of GPIHBP1 to LPL retards the kinetics of ANGPTL4-mediated LPL inactivation at 37 degreesC but does not fully suppress inactivation. The allosteric mechanism by which ANGPTL4 catalyzes the irreversible unfolding and inactivation of LPL is an unprecedented pathway for regulating intravascular lipid metabolism.
        
Title: A non-integrated iPSC line (SDQLCHi042-A) from a boy suffering from familial combined hyperlipidemia with compound heterozygous mutations of lipoprotein lipase gene Li Z, Zhang X, Li X, Yang Y, Xin H, Yang X, Liu N, Gai Z, Liu Y Ref: Stem Cell Res, 53:102313, 2021 : PubMed
In this study, peripheral blood monouclear cells (PBMCs) were donated from a boy suffering from familial combined hyperlipidemia confirmed by clinical and genetic diagnosis, which carried compound heterozygous mutations of lipoprotein lipase (LPL) gene. The induced pluripotent stem cell (iPSC) was generated with non-integrated episomal vectors carrying OCT4, SOX2, KLF4, BCL-XL and C-MYC. The iPSCs presented the morphology of pluripotent cells, highly expressed mRNA and protein of pluripotent markers, excellent differentiation potency in vitro and normal karyotype, and bore LPL gene mutations.
        
Title: Lipoprotein Lipase and Its Regulators: An Unfolding Story Wu SA, Kersten S, Qi L Ref: Trends Endocrinol Metab, 32:48, 2021 : PubMed
Lipoprotein lipase (LPL) is one of the most important factors in systemic lipid partitioning and metabolism. It mediates intravascular hydrolysis of triglycerides packed in lipoproteins such as chylomicrons and very-low-density lipoprotein (VLDL). Since its initial discovery in the 1940s, its biology and pathophysiological significance have been well characterized. Nonetheless, several studies in the past decade, with recent delineation of LPL crystal structure and the discovery of several new regulators such as angiopoietin-like proteins (ANGPTLs), glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), lipase maturation factor 1 (LMF1) and Sel-1 suppressor of Lin-12-like 1 (SEL1L), have completely transformed our understanding of LPL biology.
        
Title: Rare novel LPL mutations are associated with neonatal onset lipoprotein lipase (LPL) deficiency in two cases Wu YQ, Hu YY, Li GN Ref: BMC Pediatr, 21:414, 2021 : PubMed
BACKGROUND: Lipoprotein lipase (LPL) deficiency is a monogenic lipid metabolism disorder biochemically characterized by hypertriglyceridemia (HTG) inherited in an autosomal recessive manner. Neonatal onset LPL deficiency is rare. The purpose of this study was to clarify the clinical features of neonatal LPL deficiency and to analyze the genetic characteristics of LPL gene. METHODS: In order to reach a definite molecular diagnose, metabolic diseases-related genes were sequenced through gene capture and next generation sequencing. Meanwhile, the clinical characteristics and follow-up results of the two newborns were collected and analyzed. RESULTS: Three different mutations in the LPL gene were identified in the two newborns including a novel compound heterozygous mutation (c.347G > C and c.472 T > G) and a reported homozygous mutation (c.836 T > G) was identified. Interestingly, both the two neonatal onset LPL deficiency patients presented with suffered recurrent infection in the hyperlipidemia stage, which was not usually found in childhood or adulthood onset LPL deficiency patients. CONCLUSION: The two novel mutaitons, c.347G > C and c.472 T > G, identified in this study were novel, which expanded the LPL gene mutation spectrum. In addition, suffered recurrent infection in the hyperlipidemia stage implied a certain correlation between immune deficiency and lipid metabolism abnormality. This observation further supplemented and expanded the clinical manifestations of LPL deficiency.
INTRODUCTION: Pathogenic variants in lipoprotein lipase (LPL) and glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) have been described in patients with severe hypertriglyceridaemia. We aimed to optimise high resolution melting (HRM) assays to detect the presence of functional variants in these genes. METHODS: One hundred and sixteen patients with severe hypertriglyceridaemia were studied. HRM assays were optimised to scan exons and splice junctions in LPL and GPIHBP1. Sanger sequencing was the reference method. Next-generation-sequencing (NGS) was performed in five patients, including one with Familial Chylomicronemia syndrome (FCS). RESULTS: We identified 15 different variants in LPL and 6 in GPIHBP1. The variants revealed with NGS were also detected with HRM, including a rare premature stop codon in LPL (p.Trp421*) and two LPL pathogenic variants in the patient with FCS (p.His80Arg+p.Gly215Glu). Having multiple functional variant alleles was associated with pancreatitis onset at younger ages and higher baseline triglycerides. CONCLUSIONS: Our HRM assays detected the presence of functional gene variants that were confirmed with Sanger and NGS sequencing. The presence of multiple functional variant alleles was associated with differences in the clinical profile. Therefore, these assays represent a reliable, cost-effective tool that can be used to complement the NGS approach for gene scanning.
Lipases are enzymes necessary for the proper distribution and utilization of lipids in the human body. Lipoprotein lipase (LPL) is active in capillaries, where it plays a crucial role in preventing dyslipidemia by hydrolyzing triglycerides from packaged lipoproteins. Thirty years ago, the existence of a condensed and inactive LPL oligomer was proposed. Although recent work has shed light on the structure of the LPL monomer, the inactive oligomer remained opaque. Here we present a cryo-EM reconstruction of a helical LPL oligomer at 3.8-A resolution. Helix formation is concentration-dependent, and helices are composed of inactive dihedral LPL dimers. Heparin binding stabilizes LPL helices, and the presence of substrate triggers helix disassembly. Superresolution fluorescent microscopy of endogenous LPL revealed that LPL adopts a filament-like distribution in vesicles. Mutation of one of the helical LPL interaction interfaces causes loss of the filament-like distribution. Taken together, this suggests that LPL is condensed into its inactive helical form for storage in intracellular vesicles.
The binding of lipoprotein lipase (LPL) to GPIHBP1 focuses the intravascular hydrolysis of triglyceride-rich lipoproteins on the surface of capillary endothelial cells. This process provides essential lipid nutrients for vital tissues (e.g., heart, skeletal muscle, and adipose tissue). Deficiencies in either LPL or GPIHBP1 impair triglyceride hydrolysis, resulting in severe hypertriglyceridemia. The activity of LPL in tissues is regulated by angiopoietin-like proteins 3, 4, and 8 (ANGPTL). Dogma has held that these ANGPTLs inactivate LPL by converting LPL homodimers into monomers, rendering them highly susceptible to spontaneous unfolding and loss of enzymatic activity. Here, we show that binding of an LPL-specific monoclonal antibody (5D2) to the tryptophan-rich lipid-binding loop in the carboxyl terminus of LPL prevents homodimer formation and forces LPL into a monomeric state. Of note, 5D2-bound LPL monomers are as stable as LPL homodimers (i.e., they are not more prone to unfolding), but they remain highly susceptible to ANGPTL4-catalyzed unfolding and inactivation. Binding of GPIHBP1 to LPL alone or to 5D2-bound LPL counteracts ANGPTL4-mediated unfolding of LPL. In conclusion, ANGPTL4-mediated inactivation of LPL, accomplished by catalyzing the unfolding of LPL, does not require the conversion of LPL homodimers into monomers. Thus, our findings necessitate changes to long-standing dogma on mechanisms for LPL inactivation by ANGPTL proteins. At the same time, our findings align well with insights into LPL function from the recent crystal structure of the LPL*GPIHBP1 complex.
BACKGROUND: Acute pancreatitis in pregnancy (APIP) is a life-threatening disease for both mother and fetus. To date, only three patients with recurrent hypertriglyceridemia-induced APIP (HTG-APIP) have been reported to carry rare variants in the lipoprotein lipase (LPL) gene, which encodes the key enzyme responsible for triglyceride (TG) metabolism. Coincidently, all three patients harbored LPL variants on both alleles and presented with complete or severe LPL deficiency. METHODS: The entire coding regions and splice junctions of LPL and four other TG metabolism genes (APOC2, APOA5, GPIHBP1, and LMF1) were analyzed by Sanger sequencing in a Han Chinese patient who had experienced two episodes of HTG-APIP. The impact of a novel LPL missense variant on LPL protein expression and activity was analyzed by transient expression in HEK293T cells. RESULTS: A novel heterozygous LPL missense variant, p.His210Leu (c.629A > T), was identified in our patient. This variant did not affect protein synthesis but significantly impaired LPL secretion and completely abolished the enzymatic activity of the mutant protein. CONCLUSION: This report describes the first identification and functional characterization of a heterozygous variant in the LPL that predisposed to recurrent HTG-APIP. Our findings confirm a major genetic contribution to the etiology of individual predisposition to HTG-APIP.
Lipoprotein lipase (LPL) plays a central role in triglyceride (TG) metabolism. By catalyzing the hydrolysis of TGs present in TG-rich lipoproteins (TRLs), LPL facilitates TG utilization and regulates circulating TG and TRL concentrations. Until very recently, structural information for LPL was limited to homology models, presumably due to the propensity of LPL to unfold and aggregate. By coexpressing LPL with a soluble variant of its accessory protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) and with its chaperone protein lipase maturation factor 1 (LMF1), we obtained a stable and homogenous LPL/GPIHBP1 complex that was suitable for structure determination. We report here X-ray crystal structures of human LPL in complex with human GPIHBP1 at 2.5-3.0 A resolution, including a structure with a novel inhibitor bound to LPL. Binding of the inhibitor resulted in ordering of the LPL lid and lipid-binding regions and thus enabled determination of the first crystal structure of LPL that includes these important regions of the protein. It was assumed for many years that LPL was only active as a homodimer. The structures and additional biochemical data reported here are consistent with a new report that LPL, in complex with GPIHBP1, can be active as a monomeric 1:1 complex. The crystal structures illuminate the structural basis for LPL-mediated TRL lipolysis as well as LPL stabilization and transport by GPIHBP1.
Lipoprotein lipase (LPL), the enzyme that hydrolyzes triglycerides in plasma lipoproteins, is assumed to be active only as a homodimer. In support of this idea, several groups have reported that the size of LPL, as measured by density gradient ultracentrifugation, is approximately 110 kDa, twice the size of LPL monomers ( approximately 55 kDa). Of note, however, in those studies the LPL had been incubated with heparin, a polyanionic substance that binds and stabilizes LPL. Here we revisited the assumption that LPL is active only as a homodimer. When freshly secreted human LPL (or purified preparations of LPL) was subjected to density gradient ultracentrifugation (in the absence of heparin), LPL mass and activity peaks exhibited the size expected of monomers (near the 66-kDa albumin standard). GPIHBP1-bound LPL also exhibited the size expected for a monomer. In the presence of heparin, LPL size increased, overlapping with a 97.2-kDa standard. We also used density gradient ultracentrifugation to characterize the LPL within the high-salt and low-salt peaks from a heparin-Sepharose column. The catalytically active LPL within the high-salt peak exhibited the size of monomers, whereas most of the inactive LPL in the low-salt peak was at the bottom of the tube (in aggregates). Consistent with those findings, the LPL in the low-salt peak, but not that in the high-salt peak, was easily detectable with single mAb sandwich ELISAs, in which LPL is captured and detected with the same antibody. We conclude that catalytically active LPL can exist in a monomeric state.
Lipoprotein lipase (LPL) is responsible for the intravascular processing of triglyceride-rich lipoproteins. The LPL within capillaries is bound to GPIHBP1, an endothelial cell protein with a three-fingered LU domain and an N-terminal intrinsically disordered acidic domain. Loss-of-function mutations in LPL or GPIHBP1 cause severe hypertriglyceridemia (chylomicronemia), but structures for LPL and GPIHBP1 have remained elusive. Inspired by our recent discovery that GPIHBP1's acidic domain preserves LPL structure and activity, we crystallized an LPL-GPIHBP1 complex and solved its structure. GPIHBP1's LU domain binds to LPL's C-terminal domain, largely by hydrophobic interactions. Analysis of electrostatic surfaces revealed that LPL contains a large basic patch spanning its N- and C-terminal domains. GPIHBP1's acidic domain was not defined in the electron density map but was positioned to interact with LPL's large basic patch, providing a likely explanation for how GPIHBP1 stabilizes LPL. The LPL-GPIHBP1 structure provides insights into mutations causing chylomicronemia.
BACKGROUND AND AIMS: Type I hyperlipoproteinemia is an autosomal recessive disorder of lipoprotein metabolism caused by mutations in the LPL gene, with an estimated prevalence in the general population of 1 in a million. In this work, we studied the molecular mechanism of two known mutations in the LPL gene in ex vivo and in vitro experiments and also the effect of two splice site mutations in ex vivo experiments. METHODS: Two patients with hypertriglyceridemia were selected from the Lipid Clinic in Vienna. The first patient was compound heterozygote for c.680T > C (exon 5; p.V200A) and c.1139+1G > A (intron 7 splice site). The second patient was compound heterozygote for c.953A > G (exon 6; p.N291S) and c.1019-3C > A (intron 6 splice site). The LPL gene was sequenced and post-heparin plasma samples (ex vivo) were used to test LPL activity. In vitro experiments were performed in HEK 293T/17cells transiently transfected with wild type or mutant LPL plasmids. Cell lysate and media were used to evaluate LPL production, secretion, activity and dimerization by Western blot analysis and LPL enzymatic assay, respectively. RESULTS: Our data show that in both patients, LPL activity is absent. V200A is a mutation that alters LPL secretion and activity whereas the N291S mutation affects LPL activity, but both mutations do not affect dimerization. The effect of these mutations in patients is more severe since they have splice site mutations on the other allele. CONCLUSIONS: We characterized these LPL mutations at the molecular level showing that are pathogenic.
Angiopoietin-like protein (ANGPTL)4 regulates plasma lipids, making it an attractive target for correcting dyslipidemia. However, ANGPTL4 inactivation in mice fed a high fat diet causes chylous ascites, an acute-phase response, and mesenteric lymphadenopathy. Here, we studied the role of ANGPTL4 in lipid uptake in macrophages and in the above-mentioned pathologies using Angptl4-hypomorphic and Angptl4 (-/-) mice. Angptl4 expression in peritoneal and bone marrow-derived macrophages was highly induced by lipids. Recombinant ANGPTL4 decreased lipid uptake in macrophages, whereas deficiency of ANGPTL4 increased lipid uptake, upregulated lipid-induced genes, and increased respiration. ANGPTL4 deficiency did not alter LPL protein levels in macrophages. Angptl4-hypomorphic mice with partial expression of a truncated N-terminal ANGPTL4 exhibited reduced fasting plasma triglyceride, cholesterol, and NEFAs, strongly resembling Angptl4 (-/-) mice. However, during high fat feeding, Angptl4-hypomorphic mice showed markedly delayed and attenuated elevation in plasma serum amyloid A and much milder chylous ascites than Angptl4 (-/-) mice, despite similar abundance of lipid-laden giant cells in mesenteric lymph nodes. In conclusion, ANGPTL4 deficiency increases lipid uptake and respiration in macrophages without affecting LPL protein levels. Compared with the absence of ANGPTL4, low levels of N-terminal ANGPTL4 mitigate the development of chylous ascites and an acute-phase response in mice.
        
Title: The association of the S447X mutation in LPL with Coronary artery disease: a meta-analysis Sun W, Wu Y, Wen Y, Guo M, Zhang H Ref: Minerva Cardioangiol, 67:246, 2019 : PubMed
INTRODUCTION: To investigate the relationships between lipase gene polymorphisms and coronary artery disease (CAD) risk. EVIDENCE ACQUISITION: We searched PubMed, Embase and ISI web of science databases for articles estimated the association of S447X polymorphism with CAD. EVIDENCE SYNTESIS: Twelve-five articles were included in the meta-analysis. We found the G allele S447X polymorphism could reduce CAD risk by approximately 22% (OR=0.78, 95% CI: 0.71-0.84; fixed effects, I2=35.3%, P=0.07). Compared with non-carriers, individuals with two copies of the G allele had approximately 52% risks of CAD (OR=0.48, 95% CI: 0.29-0.68), and the individuals with GG and GC+GG had approximately 19% and 26% risks of CAD compared with those with CC genotype, respectively (GC versus CC: OR=0.81, 95% CI: 0.74-0.88; [GC+GG] versus CC: OR=0.74, 95% CI: 0.68-0.80). The G allelic significantly decreased risk of myocardial infarction (MI) (OR=0.74, 95% CI: 0.57-0.92). We found significant relationship between the variant and AMD in all the genetic models (GG versus CC: OR=0.48, 95% CI: 0.18-0.79; GC versus CC: OR=0.76, 95% CI: 0.57-0.94; [GG+GC] versus CC: OR=0.73, 95% CI: 0.64-0.83). CONCLUSIONS: The results indicated G allelic could significantly decrease CAD and MI risk.
Lipoprotein lipase (LPL), identified in the 1950s, has been studied intensively by biochemists, physiologists, and clinical investigators. These efforts uncovered a central role for LPL in plasma triglyceride metabolism and identified LPL mutations as a cause of hypertriglyceridemia. By the 1990s, with an outline for plasma triglyceride metabolism established, interest in triglyceride metabolism waned. In recent years, however, interest in plasma triglyceride metabolism has awakened, in part because of the discovery of new molecules governing triglyceride metabolism. One such protein-and the focus of this review-is GPIHBP1, a protein of capillary endothelial cells. GPIHBP1 is LPL's essential partner: it binds LPL and transports it to the capillary lumen; it is essential for lipoprotein margination along capillaries, allowing lipolysis to proceed; and it preserves LPL's structure and activity. Recently, GPIHBP1 was the key to solving the structure of LPL. These developments have transformed the models for intravascular triglyceride metabolism.
        
Title: The HindIII and PvuII polymorphisms of lipoprotein lipase (LPL) gene reduce the risk of ischemic stroke (IS): A meta-analysis Cao L, Li Q, Chen X Ref: Medicine (Baltimore), 97:e0483, 2018 : PubMed
BACKGROUND: Lipoprotein lipase (LPL) polymorphisms were suggested to be the risk factor for ischemic stroke (IS). However, controversial results were obtained. Our objective was to investigate the association of LPL polymorphisms at Ser447Ter, HindIII (+/-), and PvuII (+/-) with IS risk. METHODS: Literatures search were carried out on databases: PubMed, Web of science, the Cochrane database of system reviews, Chinese National Knowledge Infrastructure, and Embase. Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated to detect the relationship between LPL polymorphisms and the risk of IS. RESULTS: No significant association was detected between LPL Ser447Ter and IS in allelic, dominant, or recessive models (P > .05). Significant lower frequencies of allelic and dominant models of LPL HindIII (+/-) and PvuII (+/-) in cases were detected (HindIII (+/-): allelic model: P = .0002, OR[95%CI] = 0.80 [0.71, 0.90]; dominant model: P = 0.003, OR[95%CI] = 0.80 [0.69, 0.92]; PvuII (+/-): allelic model: P < 0.0001, OR[95%CI] = 0.75[0.65-0.86]; dominant model: P = 0.02, OR[95%CI] = 0.67[0.48-0.93]). And the recessive model of PvuII (+/-) was significantly associated with the IS risk (P = .01, OR[95%CI] = .71[0.55-0.93]). Subgroup analysis stratified by ethnicity showed that the frequencies of allelic, dominant, and recessive models of HindIII (+/-), as well as dominant model of PvuII (+/-) were significant lower in Asian cases (HindIII (+/-): allelic model: P < .00001, OR[95%CI] = 0.69 [0.59, 0.79]; dominant model: P < .0001, OR[95%CI] = 0.69 [0.58, 0.83]; recessive model: P = .005, OR[95%CI] = 0.66 [0.50, 0.89]; PvuII (+/-): dominant model: P = .0008, OR[95%CI] = 0.66 [0.51-0.84]), but not in Caucasian cases (P > .05). In addition, the frequencies of allelic and recessive models of PvuII (+/-) significantly decreased in Caucasian cases (P < .05). CONCLUSION: the HindIII (+/-) and PvuII (+/-), but not the Ser447Ter might be the protective factors for IS.
        
Title: Compound but non-linked heterozygous p.W14X and p.L279 V LPL gene mutations in a Chinese patient with long-term severe hypertriglyceridemia and recurrent acute pancreatitis Li X, Yang Q, Shi X, Chen W, Pu N, Li W, Li J Ref: Lipids Health Dis, 17:144, 2018 : PubMed
BACKGROUND: Variants in the lipoprotein lipase (LPL), apolipoprotein C-II (APOC2), apolipoprotein A-V (APOA5), GPIHBP1 and LMF1 genes may cause severe hypertriglyceridemia (HTG), which is now the second-leading aetiology of acute pancreatitis in China. METHODS: The patient and his family were assessed for gene variants by Sanger sequencing of exons and exon-intron junctions of the LPL, GPIHBP1, APOA5, APOC2, and LMF1 genes. Post-heparin blood was collected for LPL mass and activity detection. RESULTS: The patient had suffered from long-term severe hypertriglyceridemia and recurrent abdominal pain for over 30 years, since age 26, and 3 bouts of acute pancreatitis. Two heterozygous LPL single-nucleotide polymorphisms (SNPs) were compound but dislinked: a single-nucleotide substitution (c.42G > A) resulting in the substitution of tryptophan with a stop codon (p.W14X) in one allele, and a single-nucleotide substitution (c.835C > G) resulting in a leucine-to-valine substitution (p.L279 V) in another allele. Only one SNP, p.L279 V, was detected in his son. Post-heparin LPL activity and mass were also lower in the patient. CONCLUSION: Two heterozygous LPL SNPs, W14X and L279 V, were newly found to be compound but dislinked, which may cause long-term severe hypertriglyceridemia and recurrent acute pancreatitis.
BACKGROUND: Severe hypertriglyceridemia usually results from a combination of genetic and environmental factors and is most often attributable to mutations in the lipoprotein lipase (LPL) gene. OBJECTIVES: The aim of this study was to identify rare mutations in the LPL gene causing severe hypertriglyceridemia. METHODS: A Chinese infant who presented classical features of severe hypertriglyceridemia recruited for DNA sequencing of the LPL gene. The pathogenicity grade of the variants was defined based on the prediction of pathogenicity using in silico prediction tools. Review some studies to understand the molecular mechanisms underlying the severe hypertriglyceridemia. RESULTS: We identified a rare mutation in the LPL gene causing severe hypertriglyceridemia: a nucleotide substitution (c.836T>G) resulting in a leucine to arginine substitution at position 279 of the protein (p.Leu279Arg).The pathogenicity of the variant was predicted by in silico analysis using PolyPhen2 and SIFT prediction programs, which indicated that mutation p.Leu279Arg is probably harmful. We have also reviewed published studies concerning the molecular mechanisms underlying severe hypertriglyceridemia. A missense mutation in the 6 exon of the LPL gene is reportedly associated with LPL deficiency. CONCLUSIONS: We have here identified a rare pathogenic mutation in the LPL gene in a Chinese infant with severe hypertriglyceridemia.
BACKGROUND: Mutations in the lipoprotein lipase gene causing decreased lipoprotein lipase activity are associated with surrogate markers of insulin resistance and the metabolic syndrome in humans. OBJECTIVE: We investigated the hypothesis that a heterozygous lipoprotein lipase mutation (N291S) induces whole-body insulin resistance and alterations in the plasma metabolome. METHODS: In 6 carriers of a heterozygous lipoprotein lipase mutation (N291S) and 11 age-matched and weight-matched healthy controls, we examined insulin sensitivity and substrate metabolism by euglycemic-hyperinsulinemic clamps combined with indirect calorimetry. Plasma samples were taken before and after the clamp (4 hours of physiological hyperinsulinemia), and metabolites were measured enzymatically or by gas chromatography-mass spectrometry. RESULTS: Compared with healthy controls, heterozygous carriers of a defective lipoprotein lipase allele had elevated fasting plasma levels triglycerides (P < .006), and markedly impaired insulin-stimulated glucose disposal rates (P < .024) and nonoxidative glucose metabolism (P < .015). Plasma metabolite profiling demonstrated lower circulating levels of pyruvic acid and alpha-tocopherol in the N291S carriers than in controls both before and after stimulation with insulin (all >1.5-fold change and P < .05). CONCLUSION: Heterozygous carriers with a defective lipoprotein lipase allele are less insulin sensitive and have increased plasma levels of nonesterified fatty acids and triglycerides. The heterozygous N291S carriers also have a distinct plasma metabolomic signature, which may serve as a diagnostic tool for deficient lipoprotein lipase activity and as a marker of lipid-induced insulin resistance.
BACKGROUND: The incidental finding of severe hypertriglyceridemia (HyperTG) in a child may suggest the diagnosis of familial chylomicronemia syndrome (FCS), a recessive disorder of the intravascular hydrolysis of triglyceride (TG)-rich lipoproteins. FCS may be due to pathogenic variants in lipoprotein lipase (LPL), as well as in other proteins, such as apolipoprotein C-II and apolipoprotein A-V (activators of LPL), GPIHBP1 (the molecular platform required for LPL activity on endothelial surface) and LMF1 (a factor required for intracellular formation of active LPL). OBJECTIVE: Molecular characterization of 5 subjects in whom HyperTG was an incidental finding during infancy/childhood. METHODS: We performed the parallel sequencing of 20 plasma TG-related genes. RESULTS: Three children with severe HyperTG were found to be compound heterozygous for rare pathogenic LPL variants (2 nonsense, 3 missense, and 1 splicing variant). Another child was found to be homozygous for a nonsense variant of APOA5, which was also found in homozygous state in his father with longstanding HyperTG. The fifth patient with a less severe HyperTG was found to be heterozygous for a frameshift variant in LIPC resulting in a truncated Hepatic Lipase. In addition, 1 of the patients with LPL deficiency and the patient with APOA-V deficiency were also heterozygous carriers of a pathogenic variant in LIPC and LPL gene, respectively, whereas the patient with LIPC variant was also a carrier of a rare APOB missense variant. CONCLUSIONS: Targeted parallel sequencing of TG-related genes is recommended to define the molecular defect in children presenting with an incidental finding of HyperTG.
        
Title: Biochemical Analysis of the Lipoprotein Lipase Truncation Variant, LPLS447X, Reveals Increased Lipoprotein Uptake Hayne CK, Lafferty MJ, Eglinger BJ, Kane JP, Neher SB Ref: Biochemistry, 56:525, 2017 : PubMed
Lipoprotein lipase (LPL) is responsible for the hydrolysis of triglycerides from circulating lipoproteins. Whereas most identified mutations in the LPL gene are deleterious, one mutation, LPLS447X, causes a gain of function. This mutation truncates two amino acids from LPL's C-terminus. Carriers of LPLS447X have decreased VLDL levels and increased HDL levels, a cardioprotective phenotype. LPLS447X is used in Alipogene tiparvovec, the gene therapy product for individuals with familial LPL deficiency. It is unclear why LPLS447X results in a serum lipid profile more favorable than that of LPL. In vitro reports vary as to whether LPLS447X is more active than LPL. We report a comprehensive, biochemical comparison of purified LPLS447X and LPL dimers. We found no difference in specific activity on synthetic and natural substrates. We also did not observe a difference in the Ki for ANGPTL4 inhibition of LPLS447X relative to that of LPL. Finally, we analyzed LPL-mediated uptake of fluorescently labeled lipoprotein particles and found that LPLS447X enhanced lipoprotein uptake to a greater degree than LPL did. An LPL structural model suggests that the LPLS447X truncation exposes residues implicated in LPL binding to uptake receptors.
Importance: The activity of lipoprotein lipase (LPL) is the rate-determining step in clearing triglyceride-rich lipoproteins from the circulation. Mutations that damage the LPL gene (LPL) lead to lifelong deficiency in enzymatic activity and can provide insight into the relationship of LPL to human disease. Objective: To determine whether rare and/or common variants in LPL are associated with early-onset coronary artery disease (CAD). Design, Setting, and Participants: In a cross-sectional study, LPL was sequenced in 10 CAD case-control cohorts of the multinational Myocardial Infarction Genetics Consortium and a nested CAD case-control cohort of the Geisinger Health System DiscovEHR cohort between 2010 and 2015. Common variants were genotyped in up to 305699 individuals of the Global Lipids Genetics Consortium and up to 120600 individuals of the CARDIoGRAM Exome Consortium between 2012 and 2014. Study-specific estimates were pooled via meta-analysis. Exposures: Rare damaging mutations in LPL included loss-of-function variants and missense variants annotated as pathogenic in a human genetics database or predicted to be damaging by computer prediction algorithms trained to identify mutations that impair protein function. Common variants in the LPL gene region included those independently associated with circulating triglyceride levels. Main Outcomes and Measures: Circulating lipid levels and CAD. Results: Among 46891 individuals with LPL gene sequencing data available, the mean (SD) age was 50 (12.6) years and 51% were female. A total of 188 participants (0.40%; 95% CI, 0.35%-0.46%) carried a damaging mutation in LPL, including 105 of 32646 control participants (0.32%) and 83 of 14245 participants with early-onset CAD (0.58%). Compared with 46703 noncarriers, the 188 heterozygous carriers of an LPL damaging mutation displayed higher plasma triglyceride levels (19.6 mg/dL; 95% CI, 4.6-34.6 mg/dL) and higher odds of CAD (odds ratio = 1.84; 95% CI, 1.35-2.51; P < .001). An analysis of 6 common LPL variants resulted in an odds ratio for CAD of 1.51 (95% CI, 1.39-1.64; P = 1.1 x 10-22) per 1-SD increase in triglycerides. Conclusions and Relevance: The presence of rare damaging mutations in LPL was significantly associated with higher triglyceride levels and presence of coronary artery disease. However, further research is needed to assess whether there are causal mechanisms by which heterozygous lipoprotein lipase deficiency could lead to coronary artery disease.
        
Title: Severe hypertriglyceridemia due to two novel loss-of-function lipoprotein lipase gene mutations (C310R/E396V) in a Chinese family associated with recurrent acute pancreatitis Lun Y, Sun X, Wang P, Chi J, Hou X, Wang Y Ref: Oncotarget, 8:47741, 2017 : PubMed
Lipoprotein lipase (LPL) is widely expressed in skeletal muscles, cardiac muscles as well as adipose tissue and involved in the catabolism of triglyceride. Herein we have systematically characterized two novel loss-of-function mutations in LPL from a Chinese family in which afflicted members were manifested by severe hypertriglyceridemia and recurrent pancreatitis. DNA sequencing revealed that the proband was a heterozygote carrying a novel c.T928C (p.C310R) mutation in exon 6 of the LPL gene. Another member of the family was detected to be a compound heterozygote who along with the c.T928C mutation also carried a novel missense mutation c.A1187T (p.E396V) in exon 8 of the LPL gene. Furthermore, COS-1 cells were transfected with lentiviruses containing the mutant LPL genes. While C310R markedly reduced the overall LPL protein level, COS-1 cells carrying E396V or double mutations contained similar overall LPL protein levels to the wild-type. The specific activity of the LPL mutants remained at comparable magnitude to the wild-type. However, few LPL were detected in the culture medium for the mutants, suggesting that both mutations caused aberrant triglyceride catabolism. More specifically, E396V and double mutations dampened the transport of LPL to the cell surface, while for the C310R mutation, reducing LPL protein level might be involved. By characterizing these two novel LPL mutations, this study has expanded our understanding on the pathogenesis of familial hypertriglyceridemia (FHTG).
BACKGROUND: The relationship between plasma lipoprotein lipase (LPL), hepatic triglyceride lipase (HTGL), glycosylphosphatidylinositol anchored HDL binding protein1 (GPIHBP1) concentration and the metabolism of remnant lipoproteins (RLP) and small dense LDL (sdLDL) in patients with coronary artery disease (CAD) is not fully elucidated. METHODS: One hundred patients who underwent coronary angiography were enrolled. The plasma LPL, HTGL and GPIHBP1 concentrations were determined by ELISA. The time dependent changes in those lipases, lipids and lipoproteins were studied at a time-point just before, and 15min, 4h and 24h after heparin administration. RESULTS: The LPL concentration exhibited a significant positive correlation with HDL-C, and inversely correlated with TG and RLP-C. The HTGL concentration was positively correlated with RLP-C and sdLDL-C. The HTGL ratio of the pre-heparin/post-heparin plasma concentration and sdLDL-C/LDL-C ratio were significantly greater in CAD patients than in non-CAD patients. GPIHBP1 was positively correlated with LPL and inversely correlated with RLP-C and sdLDL-C. CONCLUSION: The HTGL concentration was positively correlated with RLP-C and sdLDL-C, while LPL and GPIHBP1 were inversely correlated with RLP-C and sdLDL-C. These results suggest that elevated HTGL is associated with increased CAD risk, while elevated LPL is associated with a reduction of CAD risk.
        
Title: Severe hypertriglyceridemia in Japan: Differences in causes and therapeutic responses Murase T, Okubo M, Ebara T, Mori Y Ref: J Clin Lipidol, 11:1383, 2017 : PubMed
BACKGROUND: Severe hypertriglyceridemia (>1000 mg/dL) has a variety of causes and frequently leads to life-threating acute pancreatitis. However, the origins of this disorder are unclear for many patients. OBJECTIVE: We aimed to characterize the causes of and responses to therapy in rare cases of severe hypertriglyceridemia in a group of Japanese patients. METHODS: We enrolled 121 patients from a series of case studies that spanned 30 years. Subjects were divided into 3 groups: (1) primary (genetic causes); (2) secondary (acquired); and (3) disorders of uncertain causes. In the last group, we focused on 3 possible risks factors for hypertriglyceridemia: obesity, diabetes mellitus, and heavy alcohol intake. RESULTS: Group A (n = 20) included 13 patients with familial lipoprotein lipase deficiency, 3 patients with apolipoprotein CII deficiency, and other genetic disorders in the rest of the group. Group B patients (n = 15) had various metabolic and endocrine diseases. In Group C (uncertain causes; n = 86), there was conspicuous gender imbalance (79 males, 3 females) and most male subjects were heavy alcohol drinkers. In addition, 18 of 105 adult patients (17%) had histories of acute pancreatitis. CONCLUSION: The cause of severe hypertriglyceridemia is uncertain in many patients. In primary genetic forms of severe hypertriglyceridemia, genetic diversity between populations is unknown. In the acquired forms, we found fewer cases of estrogen-induced hypertriglyceridemia than in Western countries. In our clinical experience, the cause of most hypertriglyceridemia is uncertain. Our work suggests that genetic factors for plasma triglyceride sensitivity to alcohol should be explored.
Lipoprotein lipase (LPL) is a crucial enzyme in lipid metabolism and transport, and its enzymatic deficiency causes metabolic disorders, such as hypertriglyceridemia. LPL has one predicted C-mannosylation site at Trp417. In this study, we demonstrated that LPL is C-mannosylated at Trp417 by mass spectrometry. Furthermore, by using wild-type and a C-mannosylation-defective mutant of LPL-overexpressing cell lines, we revealed that both secretion efficiency and enzymatic activity of C-mannosylation-defective mutant LPL were lower than those of wild-type. These data suggest the importance of C-mannosylation for LPL functions.
BACKGROUND: Lipoprotein lipase (LPL) plays an important role in plasma lipoprotein metabolism and its polymorphisms are possibly implicated in the etiology of ischemic cerebrovascular disease (CVD). The aim of this work was to determine the association of the of D9N, N291S, and T495G polymorphisms of the LPL gene as a risk factor for the development of CVD. METHODS: A case-control study was conducted that included 100 patients with CVD and 120 healthy controls. All the subjects were genotyped for the D9N, N291S, and T495G polymorphisms of the LPL gene through polymerase chain reaction-restriction fragment length polymorphism, and the results were analyzed for their association with CVD. RESULTS: The D9N genotype was not significantly correlated with CVD; the odds ratio (OR) between the control subjects and CVD patients was .29 (95% confidence interval [CI], .03-2.66; P = .27). The N291S polymorphism was not significantly correlated with CVD either; the OR between the control subjects and CVD patients was 1.2 (95% CI, .07-19.46; P = .89). And the T495G mutation was not significantly correlated with CVD; the OR between the control subjects and the CVD patients was 1.21 (95% CI, .7-2.08; P = .48). CONCLUSIONS: In the present study, the D9N, N291S, and T495G polymorphisms of the LPL gene were not risk factors for the development of CVD.
Alipogene tiparvovec (Glybera) is a gene therapy product approved in Europe under the "exceptional circumstances" pathway as a treatment for lipoprotein lipase deficiency (LPLD), a rare genetic disease resulting in chylomicronemia and a concomitantly increased risk of acute and recurrent pancreatitis, with potentially lethal outcome. This retrospective study analyzed the frequency and severity of pancreatitis in 19 patients with LPLD up to 6 years after a single treatment with alipogene tiparvovec. An independent adjudication board of three pancreas experts, blinded to patient identification and to pre- or post-gene therapy period, performed a retrospective review of data extracted from the patients' medical records and categorized LPLD-related acute abdominal pain events requiring hospital visits and/or hospitalizations based on the adapted 2012 Atlanta diagnostic criteria for pancreatitis. Both entire disease time period data and data from an equal time period before and after gene therapy were analyzed. Events with available medical record information meeting the Atlanta diagnostic criteria were categorized as definite pancreatitis; events treated as pancreatitis but with variable levels of laboratory and imaging data were categorized as probable pancreatitis or acute abdominal pain events. A reduction of approximately 50% was observed in all three categories of the adjudicated post-gene therapy events. Notably, no severe pancreatitis and only one intensive care unit admission was observed in the post-alipogene tiparvovec period. However, important inter- and intraindividual variations in the pre- and post-gene therapy incidence of events were observed. There was no relationship between the posttreatment incidence of events and the number of LPL gene copies injected, the administration of immunosuppressive regimen or the percent triglyceride decrease achieved at 12 weeks (primary end point in the prospective clinical studies). Although a causal relationship cannot be established and despite the limited number of individuals evaluated, results from this long-term analysis suggest that alipogene tiparvovec was associated with a lower frequency and severity of pancreatitis events, and a consequent overall reduction in health care resource use up to 6 years posttreatment.
BACKGROUND: Severe hypertriglyceridemia usually results from a combination of genetic and environmental factors. Few data exist on the genetics of severe hypertriglyceridemia in Asian populations. OBJECTIVE: To examine the genetic variants of 3 candidate genes known to influence triglyceride metabolism, LPL, APOC2, and APOA5, which encode lipoprotein lipase, apolipoprotein C-II, and apolipoprotein A-V, respectively, in a large group of Thai subjects with severe hypertriglyceridemia. METHODS: We identified sequence variants of LPL, APOC2, and APOA5 by sequencing exons and exon-intron junctions in 101 subjects with triglyceride levels >/= 10 mmol/L (886 mg/dL) and compared with those of 111 normotriglyceridemic subjects. RESULTS: Six different rare variants in LPL were found in 13 patients, 2 of which were novel (1 heterozygous missense variant: p.Arg270Gly and 1 frameshift variant: p.Asp308Glyfs*3). Four previously identified heterozygous missense variants in LPL were p.Ala98Thr, p.Leu279Val, p.Leu279Arg, and p.Arg432Thr. Collectively, these rare variants were found only in the hypertriglyceridemic group but not in the control group (13% vs 0%, P < .0001). One common variant in APOA5 (p.Gly185Cys, rs2075291) was found at a higher frequency in the hypertriglyceridemic group compared with the control group (25% vs 6%, respectively, P < .0005). Altogether, rare variants in LPL or APOA5 and/or the common APOA5 p.Gly185Cys variant were found in 37% of the hypertriglyceridemic group vs 6% in the controls (P = 3.1 x 10(-8)). No rare variant in APOC2 was identified. CONCLUSIONS: Rare variants in LPL and a common variant in APOA5 were more commonly found in Thai subjects with severe hypertriglyceridemia. A common p.Gly185Cys APOA5 variant, in particular, was quite prevalent and potentially contributed to hypertriglyceridemia in this group of patients.
Lipoprotein lipase (LPL) undergoes spontaneous inactivation via global unfolding and this unfolding is prevented by GPIHBP1 (Mysling et al., 2016). We now show: (1) that ANGPTL4 inactivates LPL by catalyzing the unfolding of its hydrolase domain; (2) that binding to GPIHBP1 renders LPL largely refractory to this inhibition; and (3) that both the LU domain and the intrinsically disordered acidic domain of GPIHBP1 are required for this protective effect. Genetic studies have found that a common polymorphic variant in ANGPTL4 results in lower plasma triglyceride levels. We now report: (1) that this ANGPTL4 variant is less efficient in catalyzing the unfolding of LPL; and (2) that its Glu-to-Lys substitution destabilizes its N-terminal alpha-helix. Our work elucidates the molecular basis for regulation of LPL activity by ANGPTL4, highlights the physiological relevance of the inherent instability of LPL, and sheds light on the molecular defects in a clinically relevant variant of ANGPTL4.
BACKGROUND: Type 1 hyperlipoproteinemia is a rare autosomal recessive disorder most often caused by mutations in the lipoprotein lipase (LPL) gene resulting in severe hypertriglyceridemia and pancreatitis. OBJECTIVES: The aim of this study was to identify novel mutations in the LPL gene causing type 1 hyperlipoproteinemia and to understand the molecular mechanisms underlying the severe hypertriglyceridemia. METHODS: Three patients presenting classical features of type 1 hyperlipoproteinemia were recruited for DNA sequencing of the LPL gene. Pre-heparin and post-heparin plasma of patients were used for protein detection analysis and functional test. Furthermore, in vitro experiments were performed in HEK293 cells. Protein synthesis and secretion were analyzed in lysate and medium fraction, respectively, whereas medium fraction was used for functional assay. RESULTS: We identified two novel mutations in the LPL gene causing type 1 hyperlipoproteinemia: a two base pair deletion (c.765_766delAG) resulting in a frameshift at position 256 of the protein (p.G256TfsX26) and a nucleotide substitution (c.1211 T > G) resulting in a methionine to arginine substitution (p.M404 R). LPL protein and activity were not detected in pre-heparin or post-heparin plasma of the patient with p.G256TfsX26 mutation or in the medium of HEK293 cells over-expressing recombinant p.G256TfsX26 LPL. A relatively small amount of LPL p.M404 R was detected in both pre-heparin and post-heparin plasma and in the medium of the cells, whereas no LPL activity was detected. CONCLUSIONS: We conclude that these two novel mutations cause type 1 hyperlipoproteinemia by inducing a loss or reduction in LPL secretion accompanied by a loss of LPL enzymatic activity.
BACKGROUND: Lipoprotein lipase (LPL) deficiency is a serious lipid disorder of severe hypertriglyceridemia (SHTG) with chylomicronemia. A large number of variants in the LPL gene have been reported but their influence on LPL activity and SHTG has not been completely analyzed. Gaining insight into the deleterious effect of the mutations is clinically essential. METHODS: We used gene sequencing followed by in-vivo/in-vitro and in-silico tools for classification. We classified 125 rare LPL mutations in 33 subjects thought to have LPL deficiency and in 314 subjects selected for very SHTG. RESULTS: Of the 33 patients thought to have LPL deficiency, only 13 were homozygous or compound heterozygous for deleterious mutations in the LPL gene. Among the 314 very SHTG patients, 3 were compound heterozygous for pathogenic mutants. In a third group of 51,467 subjects, from a general population, carriers of common variants, Asp9Asn and Asn291Ser, were associated with mild increase in triglyceride levels (11%-35%). CONCLUSION: In total, 39% of patients clinically diagnosed as LPL deficient had 2 deleterious variants. Three patients selected for very SHTG had LPL deficiency. The deleterious mutations associated with LPL deficiency will assist in the diagnosis and selection of patients as candidates for the presently approved LPL gene therapy.
Familial chylomicronemia syndrome (FCS) is a rare autosomal recessive disease due mainly to inherited deficiencies in the proteins or enzymes involved in the clearance of triglycerides from circulation. It usually happens in late childhood and adolescence, which can have serious consequences if misdiagnosed or untreated. In the present study, we investigated two Chinese male babies (A and B), 30d and 48d in age, respectively, who have milky plasma. Clinical, biochemical, and radiological assessments were performed, while samples from the patients were referred for molecular diagnosis, including genetic testing and subsequent analysis of related genes. The fasting serum lipids of the two patients showed extreme lipid abnormalities. Through a low-lipid formula diet including skimmed milk and dietary advice, their plasma lipid levels were significantly lower and more stable at the time of hospital discharge. The genetic testing revealed compound heterozygote mutations in the lipoprotein lipase (LPL) gene for patient A and two known compound heterozygote LPL gene mutations for the patient B. FCS is the most dramatic example of severe hypertriglyceridemia. Early diagnosis and timely dietary intervention is very important for affected children.
Rare monogenic hyperchylomicronemia is caused by loss-of-function mutations in genes involved in the catabolism of triglyceride-rich lipoproteins, including the lipoprotein lipase gene, LPL. Clinical hallmarks of this condition are eruptive xanthomas, recurrent pancreatitis and abdominal pain. Patients with LPL deficiency and severe or recurrent pancreatitis are eligible for the first gene therapy treatment approved by the European Union. Therefore the precise molecular diagnosis of familial hyperchylomicronemia may affect treatment decisions. We present a 57-year-old male patient with excessive hypertriglyceridemia despite intensive lipid-lowering therapy. Abdominal sonography showed signs of chronic pancreatitis. Direct DNA sequencing and cloning revealed two novel missense variants, c.1302A>T and c.1306G>A, in exon 8 of the LPL gene coexisting on the same allele. The variants result in the amino-acid exchanges p.(Lys434Asn) and p.(Gly436Arg). They are located in the carboxy-terminal domain of lipoprotein lipase that interacts with the glycosylphosphatidylinositol-anchored HDL-binding protein (GPIHBP1) and are likely of functional relevance. No further relevant mutations were found by direct sequencing of the genes for APOA5, APOC2, LMF1 and GPIHBP1. We conclude that heterozygosity for damaging mutations of LPL may be sufficient to produce severe hypertriglyceridemia and that chylomicronemia may be transmitted in a dominant manner, at least in some families.
BACKGROUND: Monogenic hypertriglyceridemia (HTG) may result from mutations in some genes which impair the intravascular lipolysis of triglyceride (TG)-rich lipoproteins mediated by the enzyme Lipoprotein lipase (LPL). Mutations in the LPL gene are the most frequent cause of monogenic HTG (familial chylomicronemia) with recessive transmission. METHODS: The LPL gene was resequenced in 149 patients with severe HTG (TG > 10 mmol/L) and 106 patients with moderate HTG (TG > 4.5 and <10 mmol/L) referred to tertiary Lipid Clinics in Italy. RESULTS: In the group of severe HTG, 26 patients (17.4%) were homozygotes, 9 patients (6%) were compound heterozygotes and 15 patients (10%) were simple heterozygotes for rare LPL gene variants. Single or multiple episodes of pancreatitis were recorded in 24 (48%) of these patients. There was no difference in plasma TG concentration between patients with or without a positive history of pancreatitis. Among moderate HTG patients, six patients (5.6%) were heterozygotes for rare LPL variants; two of them had suffered from pancreatitis. Overall 36 rare LPL variants were found, 15 of which not reported previously. Systematic analysis of close relatives of mutation carriers led to the identification of 44 simple heterozygotes (plasma TG 3.2 +/- 4.1 mmol/L), none of whom had a positive history of pancreatitis. CONCLUSIONS: The prevalence of rare LPL variants in patients with severe or moderate HTG, referred to tertiary lipid clinics, was 50/149 (33.5%) and 6/106 (5.6%), respectively. Systematic analysis of relatives of mutation carriers is an efficient way to identify heterozygotes who may develop severe HTG.
BACKGROUND: Lipoprotein Lipase (LPL) deficiency is a rare autosomal recessive disorder with a heterogeneous clinical presentation. Several mutations in the LPL gene have been identified to cause decreased activity of the enzyme. FINDINGS: An 11-week-old, exclusively breastfed male presented with coffee-ground emesis, melena, xanthomas, lipemia retinalis and chylomicronemia. Genomic DNA analysis identified lipoprotein lipase deficiency due to compound heterozygosity including a novel p.Q240H mutation in exon 5 of the lipoprotein lipase (LPL) gene. His severe hypertriglyceridemia, including xanthomas, resolved with dietary long-chain fat restriction. CONCLUSIONS: We describe a novel mutation of the LPL gene causing severe hypertriglyceridemia and report the response to treatment. A review of the current literature regarding LPL deficiency syndrome reveals a few potential new therapies under investigation.
        
Title: A novel lipoprotein lipase gene missense mutation in Chinese patients with severe hypertriglyceridemia and pancreatitis Chen TZ, Xie SL, Jin R, Huang ZM Ref: Lipids Health Dis, 13:52, 2014 : PubMed
BACKGROUND: Alterations or mutations in the lipoprotein lipase (LPL) gene contribute to severe hypertriglyceridemia (HTG). This study reported on two patients in a Chinese family with LPL gene mutations and severe HTG and acute pancreatitis. METHODS: Two patients with other five family members were included in this study for DNA-sequences of hyperlipidemia-related genes (such as LPL, APOC2, APOA5, LMF1, and GPIHBP1) and 43 healthy individuals and 70 HTG subjects were included for the screening of LPL gene mutations. RESULTS: Both patients were found to have a compound heterozygote for a novel LPL gene mutation (L279V) and a known mutation (A98T). Furthermore, one HTG subject out of 70 was found to carry this novel LPL L279V mutation. CONCLUSIONS: The data from this study showed that compound heterozygote mutations of A98T and L279V inactivate lipoprotein lipase enzymatic activity and contribute to severe HTG and acute pancreatitis in two Chinese patients. Further study will investigate how these LPL gene mutations genetically inactivate the LPL enzyme.
CONTEXT: Type I hyperlipoproteinemia (T1HLP) is a rare, autosomal recessive disorder characterized by extreme hypertriglyceridemia that fails to respond to lipid-lowering agents, predisposing to frequent attacks of acute pancreatitis. Mutations in lipoprotein lipase (LPL), apolipoprotein CII (APOC2), lipase maturation factor 1 (LMF1), glycosyl-phosphatidylinositol anchored high-density lipoprotein-binding protein 1 (GPIHBP1), and apolipoprotein AV (APOA5) cause T1HLP, but we lack data on phenotypic variations among the different genetic subtypes. OBJECTIVE: To study genotype-phenotype relationships among subtypes of T1HLP patients. DESIGN/INTERVENTION: Genetic screening for mutations in LPL, APOC2, GPIHBP1, LMF1, and APOA5. SETTING: Tertiary referral center. PATIENTS: Ten patients (7 female, 3 male) with chylomicronemia, serum triglyceride levels about 2000 mg/dL, and no secondary causes of hypertriglyceridemia. MAIN OUTCOME MEASURES: Genotyping and phenotypic features. RESULTS: Four patients harbored homozygous or compound heterozygous mutations in LPL, 3 had homozygous mutations in GPIHBP1, and 1 had a heterozygous APOA5 mutation. We failed to fully identify the genetic etiology in 2 cases: 1 had a heterozygous LPL mutation only and another did not have any mutations. We identified 2 interesting phenotypic features: the patient with heterozygous APOA5 mutation normalized triglyceride levels with weight loss and fish oil therapy, and all 7 female patients were anemic. CONCLUSIONS: Our data suggest the possibility of novel loci for T1HLP. We observed that heterozygous APOA5 mutation can cause T1HLP but such patients may unexpectedly respond to therapy, and females with T1HLP suffer from anemia. Further studies of larger cohorts may elucidate more phenotype-genotypes relationships among T1HLP subtypes.
        
Title: A novel Lipoprotein lipase (LPL) agonist rescues the enzyme from inhibition by angiopoietin-like 4 (ANGPTL4) Geldenhuys WJ, Aring D, Sadana P Ref: Bioorganic & Medicinal Chemistry Lett, 24:2163, 2014 : PubMed
Lipoprotein lipase (LPL) is a key physiological regulator of triglycerides and atherosclerosis risk. Random screening identified a compound designated C10, showing greater LPL agonist activity than NO-1886, a known LPL agonist. Structure-activity relationship (SAR) exploration of C10 led to the identification of C10d exhibiting at least two fold greater LPL activation than NO-1886. Unlike NO-1886, novel LPL agonists C10 and C10d reversed the LPL inhibition by angiopoietin-like 4 (ANGPTL4), a physiological inhibitor of LPL.
OBJECTIVE: To assess the phospholipase activity of endothelial (EL) and hepatic lipase (HL) in postheparin plasma of subjects with metabolic syndrome (MS)/obesity and their relationship with atherogenic and antiatherogenic lipoproteins. Additionally, to evaluate lipoprotein lipase (LPL) and HL activity as triglyceride (TG)-hydrolyses to complete the analyses of SN1 lipolytic enzymes in the same patient. APPROACH AND RESULTS: Plasma EL, HL, and LPL activities were evaluated in 59 patients with MS and 36 controls. A trend toward higher EL activity was observed in MS. EL activity was increased in obese compared with normal weight group (P=0.009) and was negatively associated with high-density lipoprotein-cholesterol (P=0.014 and P=0.005) and apolipoprotein A-I (P=0.045 and P=0.001) in control and MS group, respectively. HL activity, as TG-hydrolase, was increased in MS (P=0.025) as well as in obese group (P=0.017); directly correlated with low-density lipoprotein-cholesterol (P=0.005) and apolipoprotein B (P=0.003) and negatively with high-density lipoprotein-cholesterol (P=0.021) in control group. LPL was decreased in MS (P<0.001) as well as in overweight and obese compared with normal weight group (P=0.015 and P=0.004, respectively); inversely correlated %TG-very low-density lipoproteins (P=0.04) and TG/apolipoprotein B index (P=0.013) in control group. These associations were not found in MS. CONCLUSIONS: We describe for the first time EL and HL activity as phospholipases in MS/obesity, being both responsible for high-density lipoprotein catabolism. Our results elucidate part of the remaining controversies about SN1 lipases activity in MS and different grades of obesity. The impact of insulin resistance on the activity of the 3 enzymes determines the lipoprotein alterations observed in these states.
OBJECTIVE: Chylomicronemia syndrome presenting in childhood is a rare recessive disorder due to mutations of lipoprotein lipase (LPL) and more rarely of APOC2, APOA5, GPIHBP1 or LMF1 genes. It often requires urgent and suitable treatment to avoid acute pancreatitis. The aim of this study was the molecular characterization and treatment of a 3 month-old infant with plasma triglycerides (TG) > 300 mmol/L. METHODS: All candidate genes were sequenced. The patient was submitted to one plasma-exchange (PEX) procedure and subsequently to a rigid lipid-lowering diet (milk: Monogen((R))). RESULTS: The proband was homozygous for a novel LPL mutation (c.242G > A, p.G81D) which in silico results pathogenic. After PEX, which was well tolerated, TG dropped to 64 mmol/L. During 5-month follow-up there was a clear trend towards lower and stable TG values. CONCLUSION: PEX is applicable in subjects with very low body weight when the extreme severity of the clinical picture has no therapeutic alternatives.
        
Title: Biochemistry and pathophysiology of intravascular and intracellular lipolysis Young SG, Zechner R Ref: Genes Dev, 27:459, 2013 : PubMed
All organisms use fatty acids (FAs) for energy substrates and as precursors for membrane and signaling lipids. The most efficient way to transport and store FAs is in the form of triglycerides (TGs); however, TGs are not capable of traversing biological membranes and therefore need to be cleaved by TG hydrolases ("lipases") before moving in or out of cells. This biochemical process is generally called "lipolysis." Intravascular lipolysis degrades lipoprotein-associated TGs to FAs for their subsequent uptake by parenchymal cells, whereas intracellular lipolysis generates FAs and glycerol for their release (in the case of white adipose tissue) or use by cells (in the case of other tissues). Although the importance of lipolysis has been recognized for decades, many of the key proteins involved in lipolysis have been uncovered only recently. Important new developments include the discovery of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), the molecule that moves lipoprotein lipase from the interstitial spaces to the capillary lumen, and the discovery of adipose triglyceride lipase (ATGL) and comparative gene identification-58 (CGI-58) as crucial molecules in the hydrolysis of TGs within cells. This review summarizes current views of lipolysis and highlights the relevance of this process to human disease.
Lipoprotein lipase (LPL) is secreted into the interstitial spaces by adipocytes and myocytes but then must be transported to the capillary lumen by GPIHBP1, a glycosylphosphatidylinositol-anchored protein of capillary endothelial cells. The mechanism by which GPIHBP1 and LPL move across endothelial cells remains unclear. We asked whether the transport of GPIHBP1 and LPL across endothelial cells was uni- or bidirectional. We also asked whether GPIHBP1 and LPL are transported across cells in vesicles and whether this transport process requires caveolin-1. The movement of GPIHBP1 and LPL across cultured endothelial cells was bidirectional. Also, GPIHBP1 moved bidirectionally across capillary endothelial cells in live mice. The transport of LPL across endothelial cells was inhibited by dynasore and genistein, consistent with a vesicular transport process. Also, transmission electron microscopy (EM) and dual-axis EM tomography revealed GPIHBP1 and LPL in invaginations of the plasma membrane and in vesicles. The movement of GPIHBP1 across capillary endothelial cells was efficient in the absence of caveolin-1, and there was no defect in the internalization of LPL by caveolin-1-deficient endothelial cells in culture. Our studies show that GPIHBP1 and LPL move bidirectionally across endothelial cells in vesicles and that transport is efficient even when caveolin-1 is absent.
OBJECTIVES: The severe forms of hypertriglyceridaemia (HTG) are caused by mutations in genes that lead to the loss of function of lipoprotein lipase (LPL). In most patients with severe HTG (TG > 10 mmol L(-1) ), it is a challenge to define the underlying cause. We investigated the molecular basis of severe HTG in patients referred to the Lipid Clinic at the Academic Medical Center Amsterdam. METHODS: The coding regions of LPL, APOC2, APOA5 and two novel genes, lipase maturation factor 1 (LMF1) and GPI-anchored high-density lipoprotein (HDL)-binding protein 1 (GPIHBP1), were sequenced in 86 patients with type 1 and type 5 HTG and 327 controls. RESULTS: In 46 patients (54%), rare DNA sequence variants were identified, comprising variants in LPL (n = 19), APOC2 (n = 1), APOA5 (n = 2), GPIHBP1 (n = 3) and LMF1 (n = 8). In 22 patients (26%), only common variants in LPL (p.Asp36Asn, p.Asn318Ser and p.Ser474Ter) and APOA5 (p.Ser19Trp) could be identified, whereas no mutations were found in 18 patients (21%). In vitro validation revealed that the mutations in LMF1 were not associated with compromised LPL function. Consistent with this, five of the eight LMF1 variants were also found in controls and therefore cannot account for the observed phenotype. CONCLUSIONS: The prevalence of mutations in LPL was 34% and mostly restricted to patients with type 1 HTG. Mutations in GPIHBP1 (n = 3), APOC2 (n = 1) and APOA5 (n = 2) were rare but the associated clinical phenotype was severe. Routine sequencing of candidate genes in severe HTG has improved our understanding of the molecular basis of this phenotype associated with acute pancreatitis and may help to guide future individualized therapeutic strategies.
GPIHBP1, a glycosylphosphatidylinositol-anchored protein of capillary endothelial cells, shuttles lipoprotein lipase (LPL) from subendothelial spaces to the capillary lumen. An absence of GPIHBP1 prevents the entry of LPL into capillaries, blocking LPL-mediated triglyceride hydrolysis and leading to markedly elevated triglyceride levels in the plasma (i.e., chylomicronemia). Earlier studies have established that chylomicronemia can be caused by LPL mutations that interfere with catalytic activity. We hypothesized that some cases of chylomicronemia might be caused by LPL mutations that interfere with LPL's ability to bind to GPIHBP1. Any such mutation would provide insights into LPL sequences required for GPIHBP1 binding. Here, we report that two LPL missense mutations initially identified in patients with chylomicronemia, C418Y and E421K, abolish LPL's ability to bind to GPIHBP1 without interfering with LPL catalytic activity or binding to heparin. Both mutations abolish LPL transport across endothelial cells by GPIHBP1. These findings suggest that sequences downstream from LPL's principal heparin-binding domain (amino acids 403-407) are important for GPIHBP1 binding. In support of this idea, a chicken LPL (cLPL)-specific monoclonal antibody, xCAL 1-11 (epitope, cLPL amino acids 416-435), blocks cLPL binding to GPIHBP1 but not to heparin. Also, changing cLPL residues 421 to 425, 426 to 430, and 431 to 435 to alanine blocks cLPL binding to GPIHBP1 without inhibiting catalytic activity. Together, these data define a mechanism by which LPL mutations could elicit disease and provide insights into LPL sequences required for binding to GPIHBP1.
The association of polymorphisms affecting lipid metabolism with the risk of myocardial infarction (MI) in type 2 diabetes mellitus was investigated. The Genetics, Outcomes and Lipids in type 2 Diabetes (GOLD) Study is a prospective, multicenter study, conducted on 990 patients presenting diabetes and MI (n=386), or diabetes without previous manifestation of stroke, peripheral or coronary arterial disease (n=604), recruited from 27 institutions in Brazil. APO A1 (A/G -75 and C/T +83) and APO C3 (C/G 3'UTR) non-coding sequences, CETP (Taq 1B), LPL (D9N), APO E (epsilon2, epsilon3, epsilon4,), PON-1 (Q192R), and two LCAT variants Arg(147)-->Trp and Tyr(171)-->Stop were tested by PCR-RFLP. There was a higher prevalence of LPL DN genotype (19% vs.12%, p=0.03) and a higher frequency of the N allele (11% vs. 7%) among subjects with MI when compared to controls, with an odds ratio of MI for carriers of 9N allele of 2.46 (95% CI=1.79-3.39, p<0.0001). This association was present in men and women, in non-smokers and in hypertensive patients. A logistic regression model including gender, duration of diabetes, systolic blood pressure, HDL-C, left ventricle hypertrophy and D9N polymorphism showed that the latter still remained significantly associated with MI (OR=1.50, 95% CI=1.02-2.25, p=0.049). These findings suggest that D9N polymorphism can be a useful risk marker for myocardial infarction and that further potential candidate genes should be screened for exploratory analysis and for future therapeutic intervention in diabetes.
Angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) are secreted proteins that regulate triglyceride (TG) metabolism in part by inhibiting lipoprotein lipase (LPL). Recently, we showed that treatment of wild-type mice with monoclonal antibody (mAb) 14D12, specific for ANGPTL4, recapitulated the Angptl4 knock-out (-/-) mouse phenotype of reduced serum TG levels. In the present study, we mapped the region of mouse ANGPTL4 recognized by mAb 14D12 to amino acids Gln(29)-His(53), which we designate as specific epitope 1 (SE1). The 14D12 mAb prevented binding of ANGPTL4 with LPL, consistent with its ability to neutralize the LPL-inhibitory activity of ANGPTL4. Alignment of all angiopoietin family members revealed that a sequence similar to ANGPTL4 SE1 was present only in ANGPTL3, corresponding to amino acids Glu(32)-His(55). We produced a mouse mAb against this SE1-like region in ANGPTL3. This mAb, designated 5.50.3, inhibited the binding of ANGPTL3 to LPL and neutralized ANGPTL3-mediated inhibition of LPL activity in vitro. Treatment of wild-type as well as hyperlipidemic mice with mAb 5.50.3 resulted in reduced serum TG levels, recapitulating the lipid phenotype found in Angptl3(-/-) mice. These results show that the SE1 region of ANGPTL3 and ANGPTL4 functions as a domain important for binding LPL and inhibiting its activity in vitro and in vivo. Moreover, these results demonstrate that therapeutic antibodies that neutralize ANGPTL4 and ANGPTL3 may be useful for treatment of some forms of hyperlipidemia.
Acylation stimulating protein (ASP, C3adesArg) is an adipose tissue derived hormone that stimulates triglyceride (TG) synthesis. ASP stimulates lipoprotein lipase (LPL) activity by relieving feedback inhibition caused by fatty acids (FA). The present study examines plasma ASP and lipids in male and female LPL-deficient subjects primarily with the P207L mutation, common in the population of Quebec, Canada. We evaluated the fasting and postprandial states of LPL heterozygotes and fasting levels in LPL homozygotes. Homozygotes displayed increased ASP (58-175% increase, P < 0.05-0.01), reduced HDL-cholesterol (64-75% decrease, P < 0.0001), and elevated levels of TG (19-38-fold, P < 0.0001) versus control (CTL) subjects. LPL heterozygotes with normal fasting TG (1.3-1.9 mmol/l) displayed increased ASP (101-137% increase, P < 0.05-0.01) and delayed TG clearance after a fatload; glucose levels remained similar to controls. Hypertriglyceridemics with no known LPL mutation also had increased ASP levels (63-192% increase, P < 0.001). High-TG LPL heterozygotes were administered a fatload before and after fibrate treatment. The treatment reduced fasting and postprandial plasma ASP, TG, and FA levels without changing insulin or glucose levels. ASP enhances adipose tissue fatty-acid trapping following a meal; however in LPL deficiency, high ASP levels are coupled with delayed lipid clearance.
        
Title: The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms Shan L, Yu XC, Liu Z, Hu Y, Sturgis LT, Miranda ML, Liu Q Ref: Journal of Biological Chemistry, 284:1419, 2009 : PubMed
Two members of the angiopoietin-like family of proteins, ANGPTL3 and ANGPTL4, have been shown to play important roles in modulating lipoprotein metabolism in the body. Both proteins were found to suppress lipoprotein lipase (LPL) activity in vitro as well as in vivo. However, their mechanisms of inhibition remained poorly understood. Using enzyme kinetic analysis with purified recombinant proteins, we have found key mechanistic differences between ANGPTL3 and ANGPTL4. ANGPTL3 reduced LPL catalytic activity but did not significantly alter its self-inactivation rate. In contrast, ANGPTL4 suppressed LPL by accelerating the irreversible inactivation of LPL. Furthermore, heparin was able to overcome the inhibitory effect of ANGPTL3 on LPL but not that of ANGPTL4. Site-directed mutagenesis demonstrated the critical function of Glu(40) in ANGPTL4. In contrast, when cysteine residues involved in disulfide bond formation were mutated to serines, ANGPTL4 retained its activity. Taken together, our data provide a more detailed view of the structure and mechanisms of these proteins. The finding that ANGPTL3 and ANGPTL4 inhibit LPL activity through distinct mechanisms indicates that the two proteins play unique roles in modulation of lipid metabolism in vivo.
        
Title: A 60-y-old chylomicronemia patient homozygous for missense mutation (G188E) in the lipoprotein lipase gene showed no accelerated atherosclerosis Ebara T, Endo Y, Yoshiike S, Tsuji M, Taguchi S, Murase T, Okubo M Ref: Clinica Chimica Acta, 386:100, 2007 : PubMed
BACKGROUND: Familial lipoprotein lipase (LPL) deficiency is a rare autosomal recessive disorder caused by mutations in the LPL gene. Patients with LPL deficiency have chylomicronemia; however, whether they develop accelerated atherosclerosis remains unclear. METHODS: We investigated clinical and mutational characteristics of a 60-y-old Japanese patient with chylomicronemia. RESULTS: The patient's fasting plasma triglyceride levels were >9.0 mmol/l. In postheparin plasma, one fifth of the normal LPL protein mass was present; however, LPL activity was undetectable. Molecular analysis of the LPL gene showed the patient to be a homozygote of missense mutation replacing glycine with glutamine at codon 188 (G188E), which had been known to produce mutant LPL protein lacking lipolytic activity. Ultrasonographic examination of the patient's carotid and femoral arteries showed no accelerated atherosclerosis. Moreover, 64-slice mechanical multidetector-row computer tomography (MDCT) angiography did not detect any accelerated atherosclerotic lesions in the patient's coronary arteries. The patient had none of the risk factors such as smoking, hypertension, and diabetes. CONCLUSIONS: Our case suggests that accelerated atherosclerosis may not develop in patients with LPL deficiency, when they have no risk factors.
Single nucleotide polymorphisms (SNPs) are hypothesized to explain the genetic predisposition to ischemic heart disease (IHD) in the general population. Lack of evidence for a role of such variation is fostering pessimism about the utility of genetic information in the practice of medicine. In this study we determined the utility of exonic and 5' SNPs in apolipoprotein E (APOE) and lipoprotein lipase (LPL) when considered singly and in combination for predicting incidence of IHD in 8,456 individuals from the general population during 24 years of follow-up. In men, LPL D9N improved prediction of IHD (P = 0.03) beyond smoking, diabetes and hypertension. The group of men heterozygous and homozygous for the rare D9N variant had a hazard ratio (HR) of 1.69 (95% confidence interval = 1.10-2.58) relative to the most common genotype. Pairwise combinations of D9N with -219G > T in APOE and N291S and S447X in LPL significantly improved the prediction of IHD (P = 0.05 in women, P = 0.04 in men, P = 0.03 in men, respectively) beyond smoking, diabetes and hypertension, and identified subgroups of individuals (n = 6-94) with highly significant HRs of 1.92-4.35. These results were validated in a case-control study (n = 8,806). In conclusion, we present evidence that combinations of SNPs in APOE and LPL identify subgroups of individuals at substantially increased risk of IHD beyond that associated with smoking, diabetes and hypertension.
        
Title: A novel substitution at the translation initiator codon (ATG-->ATC) of the lipoprotein lipase gene is mainly responsible for lipoprotein lipase deficiency in a patient with severe hypertriglyceridemia and recurrent pancreatitis Yu XH, Zhao TQ, Wang L, Liu ZP, Zhang CM, Chen R, Li L, Liu G, Hu WC Ref: Biochemical & Biophysical Research Communications, 341:82, 2006 : PubMed
A patient with severe hypertriglyceridemia and recurrent pancreatitis was found to have significantly decreased lipoprotein lipase (LPL) activity and normal apolipoprotein C-II concentration in post-heparin plasma. DNA analysis of the LPL gene revealed two mutations, one of which was a novel homozygous G-->C substitution, resulting in the conversion of a translation initiation codon methionine to isoleucine (LPL-1). The second was the previously reported heterozygous substitution of glutamic acid at residue 242 with lysine (LPL-242). In vitro expression of both mutations separately or in combination demonstrated that LPL-1 had approximately 3% protein mass and 2% activity, whereas LPL-242 had undetectable activity but normal mass. The combined mutation LPL-1-242 exhibited similar changes as for LPL-1, with markedly reduced mass, and for LPL-242, with undetectable activity. These results suggest that the homozygous initiator codon mutation rather than the heterozygous LPL-242 alteration was mainly responsible for the patient phenotypes.
CONTEXT: Lipoprotein lipase (LPL) deficiency is a rare autosomal recessive disorder caused by LPL gene mutation and is characterized by severe hyperchylomicronemia. Patients with LPL deficiency suffer from the frequent recurrence of acute pancreatitis, but the underlying mechanisms are not fully understood. CASE REPORT: A 22-yr-old male Japanese patient with severe hyperchylomicronemia was admitted to our hospital in 1973. He had no consanguinity and no family history of hyperlipidemia. He was genetically diagnosed as LPL deficiency (homozygous for LPL(Arita)) with no LPL mass or activity in postheparin plasma. He has experienced recurrent acute pancreatitis 22 times during our 31-yr clinical follow-up, but no pancreatic pseudocyst, irregularity of the pancreatic duct, or abnormal pancreatic calcification was observed in computed tomography. Moreover, his pancreatic endocrine function, as assessed by the oral glucose tolerance test, has preserved more than 30 yr. Although he was a current smoker, no clinically significant atherosclerotic lesion had been observed. CONCLUSIONS: From the long-term observation of this patient, we propose that LPL deficiency is not invariably associated with high mortality and that even with repeated episodes of acute pancreatitis, pancreatic function may be slow to decline.
As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.
BACKGROUND: Patients with lipoprotein lipase (LPL) deficiency had been generally thought to be spared accelerated atherosclerosis in spite of a marked elevation of plasma triglyceride levels. However, it has been recently reported that some heterozygous and homozygous LPL-deficient patients are associated with premature atherosclerosis. In this paper, we report a 55-year-old type I hyperlipidaemic patient with a novel missense mutation in the LPL gene. PATIENT AND RESULTS: The patient had suffered from coronary artery disease, abdominal aortic aneurysm, and stenoses of the bilateral renal arteries and superficial femoral arteries. Sequencing of the genomic DNA revealed that the patient was a homozygote for the mutation, a G to C transition at nucleotide position 1069 in the exon 6, resulting in an amino acid substitution of Phe for Leu303 (L303F). Approximately 6% and approximately 40% of normal LPL activity and LPL mass, respectively, were detected in the patient's postheparin plasma. An in vitro expression study demonstrated that COS7 cells transfected with L303F mutant cDNA produced a 40% amount of LPL protein in cell lysates compared with normal cDNA, but no protein was detected in the media. Lipoprotein lipase activity was completely absent in both lysates and media of the cells transfected with the mutant cDNA, suggesting that this mutation in the LPL gene results in the production of a functionally inactive protein. CONCLUSION: This case suggests that the LPL missense mutation (L303F), which impairs lipolysis but preserves the LPL mass, is proatherogenic.
We screened 160 unrelated Chinese hypertriglyceridemic subjects for sequence alterations in the promoter and the 10 exons of the lipoprotein lipase (LPL) gene. We identified one reported mutation (L252R), one common polymorphism (S447X), and six novel mutations: V181I, C283Y, S298R and S338F (found in single individuals), L252V (in two individuals), and A71T (in three individuals). Screening of family members of the above probands revealed a total of 19 mutation carriers, most of whom, though not all, displayed reduced LPL activity and mass when compared to normolipidemic control subjects. In in vitro expression studies, A71T, V181I, L252R, L252V and C283Y decreased the specific activity of the gene product. Interestingly, S298R had no effect on the catalytic activity while S338F increased it. A71T and C283Y reduced the secretion of the mutant proteins significantly while V181I, S298R and S338F had mild effects only. The total LPL mass of all the mutant constructs was reduced compared to that of the wild type construct, probably due to the instabilities of the mutant mRNA or the mutant protein. The heterogeneity in phenotypic effects of these mutations is a likely consequence of their variable effects on proteoglycan binding, conformation and interactions with other secondary genetic or environmental factors.
Missense mutations in exon 5 of the LPL gene are the most common reported cause of LPL deficiency. Exon 5 is also the region with the strongest homology to pancreatic and hepatic lipase, and is conserved in LPL from different species. Mutant LPL proteins from post-heparin plasma from patients homozygous for missense mutations at amino acid positions 176, 188, 194, 205, and 207, and from COS cells transiently transfected with the corresponding cDNAs were quantified and characterized, in an attempt to determine which aspect of enzyme function was affected by each specific mutation. All but one of the mutant proteins were present, mainly as partially denatured LPL monomer, rendering further detailed assessment of their catalytic activity, affinity to heparin, and binding to lipoprotein particles difficult. However, the fresh unstable Gly(188)-->Glu LPL and the stable Ile(194)-->Thr LPL, although in native conformation, did not express lipase activity. It is proposed that many of the exon 5 mutant proteins are unable to achieve or maintain native dimer conformation, and that the Ile(194)-->Thr substitution interferes with access of lipid substrate to the catalytic pocket. These results stress the importance of conformational evaluation of mutant LPL. Absence of catalytic activity does not necessarily imply that the substituted amino acid plays a specific direct role in catalysis.
        
Title: The LPL S447X cSNP is associated with decreased blood pressure and plasma triglycerides, and reduced risk of coronary artery disease Clee SM, Loubser O, Collins J, Kastelein JJ, Hayden MR Ref: Clin Genet, 60:293, 2001 : PubMed
Linkage of the lipoprotein lipase (LPL) gene to blood pressure levels has been reported. The LPL S447X single nucleotide polymorphism (cSNP) has been associated with decreased triglycerides (TG), increased high density lipoprotein cholesterol, and a decreased risk of coronary artery disease (CAD), which may occur independently of its beneficial lipid changes. To investigate the relationship between LPL S447X cSNP and these parameters, we studied a cohort of individuals with familial hypercholesterolemia in whom blood pressures and information regarding the use of blood pressure lowering medications were available. Carriers of the S447X variant had decreased TG (1.21+/-0.47 vs. 1.52+/-0.67, p<0.001) and a trend towards decreased vascular disease (12.7 vs. 19.5%) compared to non-carriers. More interestingly, however, carriers of this cSNP had decreased diastolic blood pressure compared to non-carriers (78+/-10 vs. 82+/-11, p=0.002), evident in both men and women, youths and adults, with similar trends for systolic blood pressure. Furthermore, the decrease in blood pressure appeared independent of the decrease in TG (p=0.02), suggesting that the LPL protein may have a direct influence on the vascular wall. This suggests an additional mechanism whereby this variant may have protective effects, independent of changes in plasma lipid levels.
We analyzed the molecular defect in the lipoprotein lipase (LPL) gene of a young boy from Sardinia who had primary hyperchylomicronemia, pancreatitis, and a complete LPL deficiency in post-heparin plasma. Analysis of LPL gene was performed by using single strand conformation polymorphism (SSCP) and direct sequencing of SSCP-positive region. The proband was homozygous for a C > A transversion in exon 6, which converts the codon for tyrosine at position 302 into a termination codon and eliminates an RsaI restriction site; this allowed the rapid screening of the proband's family members, among whom nine heterozygotes and one additional homozygote were identified. The homozygote was the proband's paternal grandmother who had shown the first clinical manifestation (recurrent pancreatitis) of LPL deficiency at the age of 54 years. LPL mutation carriers showed a mild dyslipidemic phenotype characterized by a reduction of high density lipoprotein-cholesterol (HDL-C) levels, HDL-C/total cholesterol ratio, and low density lipoprotein (LDL) size, associated with a variable increase of triglyceride levels. Five of these carriers were also heterozygotes for beta-thalassemia (Q39X mutation). In these double mutation carriers, plasma HDL-C levels were higher and plasma triglycerides tended to be lower than in carriers of LPL mutation alone. The Tyr302 > Term mutation encodes a truncated protein of 301 amino acids that is probably not secreted by the LPL producing cells. This is the first mutation of LPL gene found in Sardinians.
We studied the molecular basis of familial lipoprotein lipase (LPL) deficiency in a new Japanese kindred. The proband was a four-month-old infant with severe hyperchylomicronemia. In postheparin plasma, LPL activity was virtually absent, although LPL mass was detectable. Single strand conformational polymorphism (SSCP) analysis showed an abnormal band with exon 5 of the LPL gene that was amplified by PCR from the proband's genomic DNA. DNA sequence analysis of the amplified fragment demonstrated that the proband was homozygous for a G-to-A change at nucleotide position 818 resulting in the substitution of glutamic acid for glycine at codon 188. Although this is among the first Gly188Glu mutations identified in Japanese, the missense mutation has previously been reported as a prevalent cause of familial LPL deficiency worldwide and has been proposed to have a common origin. However, DNA haplotype analysis with either restriction fragment length polymorphism (RFLP) or microsatellite markers revealed that the DNA haplotype of the proband was not identical to the haplotype previously reported as common to the other patients with the Gly188Glu mutation. These results add the Gly188Glu mutation to the growing list of LPL gene mutations underlying familial LPL deficiency in Japanese and indicate that the origin of the Gly188Glu mutation is not necessarily common but would be multicentric at least in part.
We investigated interactions between a mutation (D9N) in the lipoprotein lipase (LPL) gene and physical activity, as well as other lifestyle factors, on lipid traits in a population-based sample of Dutch men and women (n = 379). We used questionnaire information to classify physical activity, alcohol consumption, and smoking habits, while overweight was defined as a body mass index (BMI) > 25 kg/m2. Non-fasting blood samples were used for the determination of lipid traits and the D9N genotype. Fifteen subjects (4%) carried the mutation. They presented with higher levels of total cholesterol, apolipoprotein (apo) B and triglycerides compared to non-carriers. While no interactions with overweight, alcohol consumption, and smoking were found, a strong interaction between the D9N mutation and physical activity became apparent. Physically inactive D9N carriers (n = 5) had considerably higher total cholesterol (+2 mmol/l, p < or = 0.0001) and apo B levels (+63 mg/dl, p < or = 0.0001) compared to non-carriers of this mutation, whereas their high-density lipoprotein (HDL)-cholesterol concentrations were lower (-0.22 mmol/l, p < 0.05). This was not the case for physically active D9N carriers (n = 10). In conclusion, a common variant of the LPL gene (D9N) adversely affects plasma lipid and lipoprotein profiles. However, the unfavorable consequences may be counteracted by physical activity.
        
Title: Common mutations of the lipoprotein lipase gene and their clinical significance Gehrisch S Ref: Curr Atheroscler Rep, 1:70, 1999 : PubMed
The accumulation of triglyceride-rich lipoproteins is an independent factor for an increased risk for premature arteriosclerosis. Common mutations in the lipoprotein lipase (LPL) gene are at least in part inherited susceptibility factors involved in the age- and sex-dependent phenotypic expression of hypertriglyceridemia. It can be estimated that about 20% of patients with hypertriglyceridemia are carriers of common LPL gene mutations (Asp9Asn, Asn291Ser, Trp86Arg, Gly188Glu, Pro207Leu, Asp250Asn) associated with the HLP. Genotyping of these LPL gene mutations is recommended especially in patients with high risk for premature arteriosclerosis. A comparably high number of individuals are carriers of common mutations (Ser447X) or silent mutations (Thr361) associated with low favorable lipids.
A new heterozygous lipoprotein lipase gene defect has been identified in a type I hyperlipidemic patient at the position of notable amino acid Asn 291. The patient is a 33-year-old male. His body mass index (BMI) was 18.5 kg/m2. The total cholesterol (TC), triglycerides (TG) and high density lipoprotein-cholesterol (HDL-C) concentration from his fasting plasma were 4.8, 11.9 and 0.4 mmol/l, respectively. The lipoprotein lipase (LPL) activity and mass in the postheparin plasma (PHP) from the patient were 0.58 mmol/ml/h (normal range: 7.7+/-2.6) and 244 ng/ml (normal range: 192+/-30), respectively. The hepatic lipase activity of the PHP from the patient was 10.6 mmol/ml/h (normal range: 9.9+/-3.6). DNA analysis of the LPL gene revealed that this patient had a heterozygous one nucleotide deletion of A coding Asn 291, resulting in a premature termination of the LPL protein at amino acid residue 303. The other abnormality in the LPL gene of the proband was an amino acid residue 194 defect (Ile194-->Thr), which is known to cause a defective enzyme. A medium-chain triglyceride (MCT) loading test was conducted to find how this triglyceride affects plasma lipoprotein metabolism in this patient in a short term (Fig. 3). The plasma total cholesterol (TC) or high density lipoprotein (HDL)-C levels did not change significantly after oral administration of a fatty meal containing long chain triglycerides (LCT) or MCT. The plasma TG level, on the other hand, increased from 11.9 to 19.2 mmol/l (+61%) at 6 h after loading a fatty meal containing LCT, whereas the plasma TG levels tended to even decrease at 6 h after oral administration of an MCT, tricaprin (from 11.6 to 10.5 mmol/l (-9.4%)). These results suggest that MCT, as opposed to LCT, is useful for treatment of type I hyperlipidemia with a novel mutation at the notable amino acid Asn 291 of the LPL gene.
Allelic variation in 9.7 kb of genomic DNA sequence from the human lipoprotein lipase gene (LPL) was scored in 71 healthy individuals (142 chromosomes) from three populations: African Americans (24) from Jackson, MS; Finns (24) from North Karelia, Finland; and non-Hispanic Whites (23) from Rochester, MN. The sequences had a total of 88 variable sites, with a nucleotide diversity (site-specific heterozygosity) of .002+/-.001 across this 9.7-kb region. The frequency spectrum of nucleotide variation exhibited a slight excess of heterozygosity, but, in general, the data fit expectations of the infinite-sites model of mutation and genetic drift. Allele-specific PCR helped resolve linkage phases, and a total of 88 distinct haplotypes were identified. For 1,410 (64%) of the 2,211 site pairs, all four possible gametes were present in these haplotypes, reflecting a rich history of past recombination. Despite the strong evidence for recombination, extensive linkage disequilibrium was observed. The number of haplotypes generally is much greater than the number expected under the infinite-sites model, but there was sufficient multisite linkage disequilibrium to reveal two major clades, which appear to be very old. Variation in this region of LPL may depart from the variation expected under a simple, neutral model, owing to complex historical patterns of population founding, drift, selection, and recombination. These data suggest that the design and interpretation of disease-association studies may not be as straightforward as often is assumed.
        
Title: Compound heterozygosity for a new (S259G) and a previously described (G188E) mutation in lipoprotein lipase (LpL) as a cause of chylomicronemia. Mutations in brief no. 183. Online Evans D, Wendt D, Ahle S, Guerra A, Beisiegel U Ref: Hum Mutat, 12:217, 1998 : PubMed
Familial chylomicronemia is an autosomal recessive disease characterised by fasting triglyceridemia and an absence of lipoprotein lipase (LpL) activity in post-heparin plasma. The disease is a result of mutation in either the lipoprotein lipase (Lpl) gene or in the apoCII gene which codes for an essential co-factor. To date, over 80 mutations in the LpL gene have been reported. The proband, a 30 month old female, presented with fasting triglycerides of 3192 mg/dl, and no detectable LpL mass or activity in post-heparin plasma. Sequencing of all of the exons and exon/intron boundaries of the LpL gene showed that she was a compound heterozygote with G-A transitions in codon 188 (G188E:GGG to GAG) generating an avall restriction site and in codon 259 (S259G:AGT to GGT) generating a bssKI site. Restriction digests confirmed the mutations and determined the incidence within the family. The father (55%LPL activity), paternal aunt (82%) and paternal grandmother (29%) were all heterozygous for the S259G mutation whilst her sister (55%), mother (73%) and maternal grandfather (45%) were heterozygous for the G188E mutation. The maternal grandmother (114%) was unaffected.
Lipoprotein lipase plays a central role in lipid metabolism and the gene that encodes this enzyme (LPL) is a candidate susceptibility gene for cardiovascular disease. Here we report the complete sequence of a fraction of the LPL gene for 71 individuals (142 chromosomes) from three populations that may have different histories affecting the organization of the sequence variation. Eighty-eight sites in this 9.7 kb vary among individuals from these three populations. Of these, 79 were single nucleotide substitutions and 9 sites involved insertion-deletion variations. The average nucleotide diversity across the region was 0.2% (or on average 1 variable site every 500 bp). At 34 of these sites, the variation was found in only one of the populations, reflecting the differing population and mutational histories. If LPL is a typical human gene, the pattern of sequence variation that exists in introns as well as exons, even for the small number of samples considered here, will present challenges for the identification of sites, or combinations of sites, that influence variation in risk of disease in the population at large.
Lipoprotein lipase (LPL) is the rate-limiting enzyme for the hydrolysis of triglyceride-rich lipoproteins. Numerous LPL gene mutations have been described as a cause of familial chylomicronemia in various populations. In general, allelic heterogeneity is observed in LPL deficiency in different populations. However, a founder effect has been reported in certain populations, such as French Canadians. Although familial chylomicronemia is observed in Morocco, the molecular basis for the disease remains unknown. Here, we report two unrelated Moroccan families of Berber ancestry, ascertained independently in Holland and France. In both probands, familial chylomicronemia manifested in infancy and was complicated with acute pancreatitis at age 2 years. Both probands were homozygous for a Ser259Arg mutation, which results in the absence of LPL catalytic activity both in vivo and in vitro. In heterozygous relatives, a partial decrease in plasma LPL activity was observed, sometimes associated with combined hyperlipidemia. This mutation previously unreported in other populations segregated on an identical haplotype, rarely observed in Caucasians, in both families. Therefore, LPL deficiency is a cause of familial chylomicronemia in Morocco and may result from a founder effect in patients of Berber ancestry.
Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.
Lipoprotein lipase degrades triglycerides in plasma and as a byproduct produces HDL particles. Genetic variation in lipoprotein lipase may therefore affect cardiovascular risk. We tested 9,214 men and women from a general population sample and 948 patients with ischemic heart disease for the Asn291Ser substitution in lipoprotein lipase. The allele frequency in the general population was 0.024 and 0.026 for women and men, respectively. In comparison with noncarriers, female heterozygous probands had increased plasma triglycerides (delta = 0.23 mmol/liter), while HDL cholesterol was reduced in both female and male carriers (delta = 0.18 mmol/liter and delta = 0.11 mmol/liter, respectively). A similar phenotype was found in six homozygous carriers. On multiple logistic regression analysis, plasma triglycerides and HDL cholesterol were independent predictors of ischemic heart disease in both genders. On univariate analysis, odds ratios for ischemic heart disease in probands were 1.89 in women (95% CI: 1.19-3.01) and 0.90 in men (95% CI: 0.62-1.31), and on multivariate analysis were 1.98 in women (95% CI: 1.11-3.53) and 1.02 in men (95% CI: 0.65-1.60). This study demonstrates that a single common mutation in the lipoprotein lipase gene is associated with elevated plasma triglycerides and reduced HDL cholesterol levels, whereby carriers, in particular women, seem to be predisposed to ischemic heart disease. It cannot be excluded, however, that male carriers of this substitution may represent a subset of low-HDL individuals without raised triglycerides not predisposed to ischemic heart disease.
BACKGROUND: Patients with lipoprotein lipase deficiency usually present with chylomicronemia in childhood. The syndrome has been considered nonatherogenic primarily because of the low levels of low-density lipoprotein (LDL) cholesterol. We prospectively evaluated patients with lipoprotein lipase deficiency for atherosclerosis. METHODS: Evidence of carotid, peripheral, and coronary atherosclerosis was sought in four patients (two men and two women) with the phenotype of familial chylomicronemia by clinical examination over a period of 14 to 30 years and by Doppler ultrasonography, B-mode ultrasonography [corrected], and exercise-tolerance testing after the age of 40. Angiography was performed when indicated. Lipoprotein lipase deficiency was assessed in vivo and in vitro by functional assays and DNA-sequence analysis. RESULTS: All four patients had a profound functional deficiency of lipoprotein lipase with a reduced enzymatic mass due to missense mutations on both alleles of the lipoprotein lipase gene. In all four patients, peripheral or coronary atherosclerosis (or both) was observed before the age of 55. Despite following a low-fat diet in which fat composed 10 to 15 percent of the daily caloric intake, the patients had hypertriglyceridemia (mean [+/- SD] triglyceride level, 2621 +/- 1112 mg per deciliter [29.59 +/- 12.55 mmol per liter]), low plasma levels of high-density lipoprotein cholesterol (17 +/- 7 mg per deciliter [0.43 +/- 0.18 mmol per liter]), and very low levels of LDL cholesterol (28 +/- 16 mg per deciliter [0.72 +/- 0.41 mmol per liter]). Three patients had one risk factor for atherosclerosis, whereas in one male patient, heavy smoking and diabetes were associated with an accelerated course of the disease. CONCLUSIONS: Premature atherosclerosis can occur in patients with familiar chylomicronemia as a result of mutations in the lipoprotein lipase gene. Defective lipolysis may increase susceptibility to atherosclerosis in humans.
Uniparental disomy (UPD)-the inheritance of two homologous chromosomes from a single parent-may be unmasked in humans by the unexpected appearance of developmental abnormalities, genetic disorders resulting from genomic imprinting, or recessive traits. Here we report a female patient with familial chylomicronemia resulting from complete lipoprotein-lipase (LPL) deficiency due to homozygosity for a frameshift mutation in exon 2 of the LPL gene. She was the normal term product of an unremarkable pregnancy and had shown normal development until her current age of 5.5 years. The father (age 33 years) and the mother (age 24 years) were unrelated and healthy, with no family history of stillbirths or malformations. The father was a heterozygous carrier of the mutation, whereas no mutation in the LPL gene was detected in the mother. Southern blotting did not reveal any LPL gene rearrangement in the proband or her parents. The proband was homozygous for 17 informative markers spanning both arms of chromosome 8 and specifically for the haplotype containing the paternally derived LPL gene. This shows that homozygosity for the defective mutation in the LPL gene resulted from a complete paternal isodisomy for chromosome 8. This is the first report of UPD for chromosome 8 unmasked by LPL deficiency and suggests that normal development can occur with two paternally derived copies of human chromosome 8.
While the molecular characterization of lipoprotein lipase (LPL) activation is progressing, the intracellular processing, transport, and secretion signals of LPL are still poorly known. The aim of this paper is to study are involvement of glycine 142 in LPL secretion and to elucidate the intracellular destination of the altered protein that remains inside the cell. We mutated the human LPL cDNA by site-directed mutagenesis in order to produce the G142e hLPL in which the glycine 142 was replaced by a glutamic acid. The wild type human LPL (WT hLPL) and the mutant G142E hLPL were expressed by transient transfection in COS1 cells. Using Western blot assays we identified a single band that had the same molecular weight for both proteins. However, Western blots of culture media did not reveal any specific band for the mutant protein, and ELISA experiments showed that the extracellular mass of the mutant LPL was only 25% of the WT protein, indicating defective secretion of the altered enzyme. Heparin increased LPL secretion in the case of the WT hLPL but did not have any stimulatory effect when acting on G142E hLPL-transfected cells. However, heparin-Sepharose chromatography revealed that both proteins presented the same heparin affinity. Metabolic labeling and radioimmunoprecipitation studies showed that both the WT and the mutant hLPL intracellular levels decreased upon chase time. Furthermore, leupeptin had a greater effect on the intracellular level of the mutant enzyme, thus indicating its higher intracellular degradation. Immunofluorescent studies using confocal microscopy indicated high colocalization of the LPL labeling and the Lamp1 lysosomal labeling in G142E hLPL-expressing cells. This result was confirmed using immunoelectron microscopy, which in addition showed gold labeling in Golgi stacks. This finding together with experiments performed with endoglycosidase H digestion of immunoprecipitated radiolabeled LPL, indicated that the mutant enzyme entered the Golgi compartment. The results reported in this paper show that the G142E hLPL is not efficiently secreted to the extracellular medium, but it is missorted to lysosomes for intracellular degradation. This finding suggests that lysosomal missorting might be a mechanism of cell quality control of secreted LPL.
The role of the lipoprotein lipase (LPL) gene in familial combined hyperlipidaemia (FCH) is unclear at present. We screened a group of 28 probands with familial combined hyperlipidaemia and a group of 91 population controls for two LPL gene mutations, D9N and N291S. LPL-D9N was found in two probands and one normolipidaemic population control. LPL-N291S was found in four probands and four population controls. Subsequently, two pedigrees from probands with the D9N mutation and two pedigrees from probands with the N291S mutation were studied, representing a total of 24 subjects. Both LPL gene mutations were associated with a significant effect on plasma lipids and apolipoproteins. Presence of the D9N mutation (n = 7) was associated with hypertriglyceridaemia [2.69 +/- 1.43 (SD) mmol L-1] and reduced plasma high-density lipoprotein cholesterol (HDL-C) concentrations (0.92 +/- 0.21 mmol L-1) compared with 11 non-carriers (triglyceride 1.75 +/- 0.64 mmol L-1; HDL-C 1.23 +/- 0.30 mmol L-1, P = 0.03 and P = 0.025 respectively). LPL-D9N carriers had higher diastolic blood pressures than non-carriers. LPL-N291S carriers (n = 6) showed significantly higher (26%) apo B plasma concentrations (174 +/- 26 mg dL-1) than non-carriers (138 +/- 26 mg dL-1; P = 0.023), with normal post-heparin plasma LPL activities. Linkage analysis revealed no significant relationship between the D9N or N291S LPL gene mutations and the FCH phenotype (hypertriglyceridaemia, hypercholesterolaemia or increased apo B concentrations). It is concluded that the LPL gene did not represent the major single gene causing familial combined hyperlipidaemia in the four pedigrees studied, but that the LPL-D9N and LPL-N291S mutations had significant additional effects on lipid and apolipoprotein phenotype.
A reduction of high density lipoprotein cholesterol (HDC) is recognized as an important risk factor for coronary artery disease (CAD). We now show in approximately 1 in 20 males with proven atherosclerosis that an Asn291Ser mutation in the human lipoprotein lipase (LPL) gene is associated with significantly reduced HDL levels (P = 0.001) and results in a significant decrease in LPL catalytic activity (P < 0.0009). The relative frequency of this mutation increases in those patients with lower HDL cholesterol levels. In vitro mutagenesis and expression studies confirm that this change is associated with a significant reduction in LPL activity. Our data support the relationship between LPL activity and HDL-C levels, and suggest that a specific LPL mutation may be a factor in the development of atherosclerosis.
        
Title: Mutagenesis in four candidate heparin binding regions (residues 279-282, 291-304, 390-393, and 439-448) and identification of residues affecting heparin binding of human lipoprotein lipase Ma Y, Henderson HE, Liu MS, Zhang H, Forsythe IJ, Clarke-Lewis I, Hayden MR, Brunzell JD Ref: J Lipid Res, 35:2049, 1994 : PubMed
Lipoprotein lipase (LPL) interaction with membrane-associated polyanions is a critical component of normal catalytic function. Two strong candidate binding regions, rich in arginine and lysine residues, have been defined in the N-terminal domain (aa279-282 and aa292-304) that show homology to the heparin-binding consensus sequences -X-B-B-X-B-X- and -X-B-B-B-X-X-B-X-, respectively. Additional candidate regions appear in the C-terminal domain, (residues 390-393), which are homologous to the thrombospondin heparin-binding repeat, and the positively charged terminal decapeptide (residues 439-448). To determine residues and domains critical to heparin binding, we have generated different LPL mutants that have alanine substitutions of single arginine and lysine residues and sequence interchanges with the homologous hepatic (HL) and pancreatic (PL) lipases. The mutant cDNAs were expressed in COS-1 cells and catalytically active mutants were assessed for binding to heparin-Sepharose. All the alanine substitutions within the two regions homologous to the heparin-binding consensus sequences in the N-terminal domain either abolished activity or produced a lowering of heparin binding affinity. None of the mutants in the C-terminal domain of LPL showed a loss of activity or a reduction in heparin binding affinity. These data demonstrate that charged residues at positions 279-282 and 292-304 of LPL are important for heparin binding affinity whereas the residues 390-393 and 439-448 in the C-terminal domain are not involved in heparin binding.
        
Title: Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides Maruyama K, Sugano S Ref: Gene, 138:171, 1994 : PubMed
We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).
We describe a second Italian family with primary Lipoprotein Lipase deficiency. A new mutation in exon 8 causes a Leu365- > Val change resulting in severe mass reduction and loss of enzyme activity. We suggest that this change interferes with the correct folding and stability of the protein and impairs the assembly of the active homodimer. The procedures applied are useful to screen a large sample of population for genetic variants and allow the clear identification of asymptomatic heterozygous subjects at risk from atherosclerosis disease.
Lipoprotein lipase (LPL) is a complex enzyme consisting of multiple functional domains essential for the initial hydrolysis of triglycerides present in plasma lipoproteins. Previous studies have localized the catalytic domain of LPL, responsible for the hydrolytic function of the enzyme, to the N-terminus whereas the C-terminal end may play a role in lipid and heparin binding. To date, most described missense mutations resulting in a nonfunctional LPL have been located in the N-terminal region of the enzyme. In this manuscript we describe the defect in the LPL gene of a patient with triglycerides ranging from normal to 12,000 mg/dl, low LPL mass, and no LPL activity in post-heparin plasma. Sequencing of patient PCR-amplified DNA identified two separate mutations in the C-terminal domain of LPL: an A-->T transversion at nucleotide 1484 resulting in a Glu410-->Val substitution and a C-->G mutation at position 1595 that introduces a premature stop codon at position 447. Digestion with MaeIII and MnII established that the patient is a true homozygote for both mutations. In order to investigate the functional significance of these defects, mutant enzymes containing either the Val410 or the Ter447 mutations as well as both Val410 and Ter447, were expressed in vitro. Compared to the wild-type enzyme, LPL447 demonstrated a moderate reduction of specific activity using triolein (70% of normal) and tributyrin (74% of normal) substrates, while LPL410 had a significant (11% and 23% of normal) reduction of the normal lipase and esterase specific activities, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
        
Title: A newly identified heterozygous lipoprotein lipase gene mutation (Cys239-->stop/TGC972-->TGA; LPLobama) in a patient with primary type IV hyperlipoproteinemia Takagi A, Ikeda Y, Mori A, Tsutsumi Z, Oida K, Nakai T, Yamamoto A Ref: J Lipid Res, 35:2008, 1994 : PubMed
We investigated measures for identification of heterozygous lipoprotein lipase (LPL) deficiency in unrelated subjects with primary type IV hyperlipoproteinemia in order to acquire a helpful clue for understanding the correlation between hypertriglyceridemia and the status of being a heterozygous carrier of an LPL gene variant. Identification of heterozygous LPL deficiency was performed by monitoring the immunoreactive LPL mass in postheparin plasma (PHP) using our developed sandwich-enzyme immunoassay technique for first screening. Then, in subjects found to have half or less than half of the control LPL mass value in PHP, the polymerase chain reaction-single strand conformation polymorphism method was used to detect LPL gene aberrations as a second screening. This approach was evaluated as being useful as it succeeded in identifying a subject (proband KD) with heterozygous LPL deficiency. The mutation in the LPL gene of proband KD was newly characterized as a nucleotide C972 to A transversion in exon 6, resulting in substitution of a premature termination codon (TGA) for Cys239 (TGC). This nonsense mutation, designated as LPLobama, creates an MboI restriction site and eliminates an HgiAI restriction site, and this allows rapid screening of subjects with type IV as well as type I hyperlipoproteinemia for the mutation. The homozygous state for the LPLobama allele resulted in neither detectable LPL activity nor immunoreactive LPL mass in PHP, and this was seen in two of proband KD's siblings.
We report the molecular basis of familial chylomicronemia and recurrent pancreatitis in five members of a large Dutch family. All patients had normal plasma hepatic lipase and apoC-II levels, but absent lipoprotein lipase (LPL) catalytic activity and low LPL mass in postheparin plasma. The mutation in the LPL gene was characterized as a G715-->A substitution in the last nucleotide of exon 4, resulting in a substitution of Ser for Gly154. PCR amplification of exons 4 + 5 from the patients' mRNA, followed by direct sequencing, revealed normal splicing of intron 4. The mutation creates a BfaI restriction site that allows rapid screening of family members for the mutation. Reproduction of this mutation in LPL-cDNA by site-directed mutagenesis, followed by transient expression in COS-B cells, revealed production of a catalytically inactive enzyme. The Gly154-->Ser substitution appears in a conserved beta-sheet region, in close proximity to Asp156, which is part of the catalytic triad. These studies show that changes to residues close to Asp156 can have profound effects on catalytic activity of LPL.
Macrophage scavenger receptors (MSR) mediate the binding, internalization, and processing of a wide range of negatively charged macromolecules. Functional MSR are trimers of two C-terminally different subunits that contain six functional domains. We have cloned an 80-kilobase human MSR gene and localized it to band p22 on chromosome 8 by fluorescent in situ hybridization and by genetic linkage using three common restriction fragment length polymorphisms. The human MSR gene consists of 11 exons, and two types of mRNAs are generated by alternative splicing from exon 8 to either exon 9 (type II) or to exons 10 and 11 (type I). The promoter has a 23-base pair inverted repeat with homology to the T cell element. Exon 1 encodes the 5'-untranslated region followed by a 12-kilobase intron which separates the transcription initiation and the translation initiation sites. Exon 2 encodes a cytoplasmic domain, exon 3, a transmembrane domain, exons 4 and 5, an alpha-helical coiled-coil, and exons 6-8, a collagen-like domain. The position of the gap in the coiled coil structure corresponds to the junction of exons 4 and 5. These results show that the human MSR gene consists of a mosaic of exons that encodes the functional domains. Furthermore, the specific arrangement of exons played a role in determining the structural characteristics of functional domains.
A previously undescribed single missense mutation (C-->G) was detected within exon 5 of the LPL gene in two members of an Italian family affected with type I hyperlipoproteinemia. This mutation causes a highly conservative amino acid replacement (Asp-->Glu) at position 180 of the mature LPL protein resulting in a virtual absence of LPL enzyme activity and LPL enzyme mass in postheparin plasma. Adipose tissue mRNA concentrations and mRNA sizes were not affected. Both patients were homozygous for the mutation, whereas the parents were heterozygous. Comparison of the expression of the mutated cDNA and the wildtype cDNA in cos-7 cells revealed proper transcription and translation of the mutated clone into an immunologically detectable protein. The mutated LPL protein was secreted from the cells in a manner similar to that of wild-type LPL and bound to heparin-Sepharose with identical properties. However, the mutated enzyme, in contrast to wildtype LPL, exhibited no detectable lipolytic activity against a triglyceride substrate. Our results demonstrate that even a highly conservative amino acid replacement outside the proposed active site of LPL is incompatible with proper enzyme function.
        
Title: A missense mutation (Ala334-->Thr) in exon 7 of the lipoprotein lipase gene in a case with type I hyperlipidemia Kobayashi J, Sasaki N, Tashiro J, Inadera H, Saito Y, Yoshida S Ref: Biochemical & Biophysical Research Communications, 191:1046, 1993 : PubMed
The patient is a 34-year-old female. Her fasting plasma triglyceride and cholesterol levels were 7523 mg/dl and 818 mg/dl, respectively, at 35 weeks' gestation. The lipoprotein lipase (LPL) activity and mass from postheparin plasma of the proband were 0.02 (normal range: 5.51 +/- 1.12 mu mol/ml/h) and 168 ng/ml (normal range: 220 +/- 42 ng/ml), respectively, indicating that the LPL of the patient would be functionally defective LPL. DNA sequence analysis of the LPL gene from the patient revealed a homozygous nucleotide change: a G--> A transition at nucleotide position of 1255 resulting in an amino acid substitution of Thr for Ala 334. This is the first natural missense mutation identified in exon 7 of the LPL gene.
        
Title: Gene-environment interaction in the conversion of a mild-to-severe phenotype in a patient homozygous for a Ser172-->Cys mutation in the lipoprotein lipase gene Ma Y, Liu MS, Ginzinger D, Frohlich J, Brunzell JD, Hayden MR Ref: J Clinical Investigation, 91:1953, 1993 : PubMed
Normal pregnancy is associated with a two- to threefold increase in plasma triglyceride levels, particularly in the third trimester, due both to the overproduction of VLDLs and to the possible suppression of lipoprotein lipase (LPL) activity. Numerous mutations in the human LPL gene causing complete LPL deficiency have been described, but naturally occurring mutations that result in defective LPL with partial activity have not yet been reported. Here we describe a 30-yr-old woman who was first diagnosed with LPL deficiency during pregnancy after she developed pancreatitis. Her plasma triglyceride levels remained mildly elevated at approximately 300 mg/dl (3.4 mmol/liter) after the first pregnancy but rose significantly after she became pregnant again (1800 to 2000 mg/dl) (20.2 to 22.5 mmol/liter). DNA sequence analysis of the LPL gene showed that the patient is homozygous for a Ser172-->Cys missense mutation in exon 5. In vitro mutagenesis revealed that the Ser172-->Cys mutation caused a mutant LPL protein that had residual activity higher than that seen in all eight other missense mutations in patients with LPL deficiency identified in our laboratory. We propose that some mutations in the LPL gene produce a defective LPL with partial activity, which usually leads to mild hypertriglyceridemia.
A proband with chylomicronemia, pancreatitis, and non-insulin-dependent diabetes (NIDDM) bears two different mutations in exon 3 of the lipoprotein lipase (LPL) gene: a missense mutation, 75Arg-->Ser, inherited through the paternal line and a truncation, 73Tyr-->Ter, through the maternal line. NIDDM appeared to be independently segregating. The R75S mutant was studied in extracts and media from transfected COS-1 cells. Detectable amounts of catalytically competent R75S LPL suggested destabilization of the active homodimer as with exon 5 mutants (Hata et al. 1992. J. Biol. Chem. 267:20132-20139). Hydrolysis of a short-chain fatty acid ester indicated that R75S does not directly affect activation of LPL by apoC-II. Subjects with NIDDM and wild-type LPL, and nondiabetic middle-aged carriers of the 73Tyr-->Ter truncation had moderate hypertriglyceridemia (260-521 mg/dl) and reduced high density lipoprotein cholesterol. A maternal aunt with NIDDM carried the truncation. Her phenotype (triglycerides of 5,300 mg/dl, eruptive xanthomatosis, and recurrent pancreatitis) was as severe as that in homozygotes or compound heterozygotes. We conclude: (a) diabetic carriers of dysfunctional LPL alleles are at risk for severe lipemia; and (b) the physiologic defects in NIDDM may be additive or synergistic with heterozygous LPL deficiency.
Familial lipoprotein lipase deficiency (FLD) is of particular interest to the French Canadian population of Quebec since the largest concentration of homozygotes and carriers of this genetic disease in the world resides in this area. We have previously described a missense mutation (M-188) in the lipoprotein lipase (LPL) gene which was present in FLD patients belonging to different ancestries, including a number of French Canadians (Monsalve MV et al. J Clin Invest 1990: 86: 728-734). In the present report, we show that this mutation, although found in largest absolute numbers among French Canadians as compared to other groups in the world, accounts for only a small proportion (24%) of all the LPL mutant alleles in this population. The M-188 occurs either in the homozygote state or as a compound heterozygote with another LPL mutation. Analysis of geographic distribution indicates that the M-188 is more prevalent in western Quebec, with the highest carrier rate in the Mauricie region. Genealogical reconstruction leads to the recognition of four founders for M-188, all emigrants from France to Quebec in the 17th century.
Here we report on the molecular defect that leads to a deficiency of lipoprotein lipase (LPL) activity in a proband of Dutch descent. Southern-blot analysis of the LPL gene from the patient did not reveal any major DNA rearrangements. Sequencing of polymerase-chain-reaction-amplified DNA revealed that the proband is a homozygote for G725C, resulting in a substitution of Pro157 for Arg. This substitution alters a restriction site for PvuII, which allowed rapid identification of the mutant allele in family members. Site-directed mutagenesis and transient expression of the mutant LPL in COS cells produced an enzymatically inactive protein, establishing the functional significance of this mutation. This naturally occurring mutation which alters the Pro157 adjacent to Asp156 of the proposed catalytic triad, indicates that this region of the protein is indeed crucial for LPL catalytic activity.
        
Title: A G----C change at the donor splice site of intron 1 causes lipoprotein lipase deficiency in a southern-Italian family Chimienti G, Capurso A, Resta F, Pepe G Ref: Biochemical & Biophysical Research Communications, 187:620, 1992 : PubMed
We describe a new case of lipoprotein lipase deficiency in a proband from a Southern-Italian family. Enzyme activity and mass were absent. Amplification and sequencing of individual exons, intron boundaries and the regulatory region revealed only one homozygous G----C transversion at the first nucleotide of intron 1. The single strand conformation polymorphism analysis proved to be a helpful tool for the identification of the single base mutation. Northern hybridization failed to reveal the presence of mature lipoprotein lipase mRNA. The mutation, which destroys the conserved dinucleotide at the junction site of intron 1, causes defective mRNA splicing and it is responsible for the deficiency.
        
Title: The lipoprotein lipase-encoding human gene: sequence from intron-6 to intron-9 and presence in intron-7 of a 40-million-year-old Alu sequence Chuat JC, Raisonnier A, Etienne J, Galibert F Ref: Gene, 110:257, 1992 : PubMed
The complete nucleotide sequence of the 3877-bp segment spanning the 3' region of intron-6 to the 5' region of intron-9 of the human lipoprotein lipase (LPL)-encoding ten-exon gene, LPL, is reported. An Alu repeat present in intron-7 was found by sequence analysis to belong to the 40-55-million-year-old Alu-Se subclass.
Lipoprotein lipase (LPL) plays a central role in normal lipid metabolism as the key enzyme involved in the hydrolysis of triglycerides present in chylomicrons and very low density lipoproteins. LPL is a member of a family of hydrolytic enzymes that include hepatic lipase and pancreatic lipase. Based on primary sequence homology of LPL to pancreatic lipase, Ser-132, Asp-156, and His-241 have been proposed to be part of a domain required for normal enzymic activity. We have analyzed the role of these potential catalytic residues by site-directed mutagenesis and expression of the mutant LPL in human embryonic kidney-293 cells. Substitution of Ser-132, Asp-156, and His-241 by several different residues resulted in the expression of an enzyme that lacked both triolein and tributyrin esterase activities. Mutation of other conserved residues, including Ser-97, Ser-307, Asp-78, Asp-371, Asp-440, His-93, and His-439 resulted in the expression of active enzymes. Despite their effect on LPL activity, substitutions of Ser-132, Asp-156, and His-241 did not change either the heparin affinity or lipid binding properties of the mutant LPL. In summary, mutation of Ser-132, Asp-156, and His-241 specifically abolishes total hydrolytic activity without disrupting other important functional domains of LPL. These combined results strongly support the conclusion that Ser-132, Asp-156, and His-241 form the catalytic triad of LPL and are essential for LPL hydrolytic activity.
        
Title: Two novel human pancreatic lipase related proteins, hPLRP1 and hPLRP2. Differences in colipase dependence and in lipase activity Giller T, Buchwald P, Blum-Kaelin D, Hunziker W Ref: Journal of Biological Chemistry, 267:16509, 1992 : PubMed
We have isolated cDNAs coding for two novel human pancreatic lipase (hPL)-related human proteins, referred to as hPL-related proteins 1 and 2 (hPLRP1 and hPLRP2) and for hPL. The two novel proteins show an amino acid sequence identity to hPL of 68 and 65% for hPLRP1 and 2, respectively. All three proteins are secreted into the medium after transfection of COS cells with the corresponding cDNAs. The size of the three expressed proteins is similar and ranges between 45 and 50 kDa. The expressed hPLRP2 shows a lipolytic activity that is, however, in contrast to that of hPL only marginally dependent on the presence of colipase, whereas hPLRP1 shows no activity in this assay. A Northern analysis of normal human pancreas mRNA shows that the expression levels of hPLRP1 and hPLRP2 are about 4-fold and 24-fold lower, respectively, than that of hPL. hPLRP2 is, additionally, most closely related to a lipase reported to be expressed in mouse T-cells. A comparison of the sequences of the three proteins with sequences described as pancreatic lipases of other animal species shows three subfamilies of closer kinship. This suggests that the two novel proteins also exist in other species and that some of the sequences reported to be pancreatic lipase might more likely be the orthologues of hPLRP1 or hPLRP2 in those species.
A rapid detection method was developed for DNA polymorphisms in the human lipoprotein lipase (LPL) gene. The examined polymorphisms include an A-C transversion in the 5'-region of intron 3, a T-G transversion that occurs within a Hind III site of intron 8, and the previously described C-T transition that causes a Pvu II polymorphism in intron 6. Gene fragments encompassing each polymorphic site were amplified by the polymerase chain reaction (PCR) and digested with an appropriate restriction enzyme whose recognition site was either naturally affected by the polymorphism or artificially created with a mismatched PCR-primer. According to the digestion profiles, genotypes were unambiguously distinguished. With this method, respective allelic frequencies were determined for 50 or 70 normal subjects. The procedure will facilitate LPL genotyping in the large population.
Most missense mutations of the lipoprotein lipase (LPL) gene identified among LPL-deficient subjects cluster in a segment of the sequence that encodes the catalytic triad as well as functional elements involved in the activation of the lipase at lipid-water interfaces. Consequently, loss of activity may result either from direct alterations of such functional elements or from less specific effects on protein folding and stability. This issue was addressed by examining biochemical properties of four such variants (A176T, G188E, G195E, and S244T) in a heterologous expression system (COS-1 cells). Variant G195E (GGA----GAA) was previously unreported. In all instances, inactive enzyme was recovered in medium, albeit at reduced levels. Cellular synthesis and extracellular degradation were similar to those for wild type, suggesting that reduced secretion resulted from increased intracellular degradation. When cell extracts were subjected to heparin-Superose affinity chromatography followed by elution on a linear salt gradient, all variants exhibited a single, inactive, low affinity immunoreactive peak. By contrast, wild-type enzyme presented an additional, high affinity, active species, which we interpret as homodimeric enzyme. Substitution of the active-site serine (S132A) led to loss of activity but maintenance of the high affinity species. When large amounts of the G188E variant were applied to the column, small but significant amounts of high affinity, active enzyme were recovered. Systematic substitutions at residue 188 showed that only glycine could accommodate structural constraints at this position. We conclude that the mutations examined did not impart lipase deficiency by affecting specific functional elements of the enzyme. Rather, they appear to affect protein folding and stability, and thereby formation and maintenance of subunit assembly.
        
Title: A missense mutation (Trp86----Arg) in exon 3 of the lipoprotein lipase gene: a cause of familial chylomicronemia Ishimura-Oka K, Faustinella F, Kihara S, Smith LC, Oka K, Chan L Ref: American Journal of Human Genetics, 50:1275, 1992 : PubMed
We have investigated a patient of English ancestry with familial chylomicronemia caused by lipoprotein lipase (LPL) deficiency. DNA sequence analysis of all exons and intron-exon boundaries of the LPL gene identified two single-base mutations, a T----C transition for codon 86 (TGG) at nucleotide 511, resulting in a Trp86----Arg substitution, and a C----T transition at nucleotide 571, involving the codon CAG encoding Gln106 and producing Gln106----Stop, a mutation described by Emi et al. The functional significance of the two mutations was confirmed by in vitro expression and enzyme activity assays of the mutant LPL. Linkage analysis established that the patient is a compound heterozygote for the two mutations. The Trp86----Arg mutation in exon 3 is the first natural mutation identified outside exons 4-6, which encompass the catalytic triad residues.
We have identified the molecular basis for familial lipoprotein lipase (LPL) deficiency in two unrelated families with the syndrome of familial hyperchylomicronemia. All 10 exons of the LPL gene were amplified from the two probands' genomic DNA by polymerase chain reaction. In family 1 of French descent, direct sequencing of the amplification products revealed that the patient was heterozygous for two missense mutations, Gly188----Glu (in exon 5) and Asp250----Asn (in exon 6). In family 2 of Italian descent, sequencing of multiple amplification products cloned in plasmids indicated that the patient was a compound heterozygote harboring two mutations, Arg243----His and Asp250----Asn, both in exon 6. Studies using polymerase chain reaction, restriction enzyme digestion (the Gly188----Glu mutation disrupts an Ava II site, the Arg243----His mutation, a Hha I site, and the Asp250----Asn mutation, a Taq I site), and allele-specific oligonucleotide hybridization confirmed that the patients were indeed compound heterozygous for the respective mutations. LPL constructs carrying the three mutations were expressed individually in Cos cells. All three mutant LPLs were synthesized and secreted efficiently; one (Asp250----Asn) had minimal (approximately 5%) catalytic activity and the other two were totally inactive. The three mutations occurred in highly conserved regions of the LPL gene. The fact that the newly identified Asp250----Asn mutation produced an almost totally inactive LPL and the location of this residue with respect to the three-dimensional structure of the highly homologous human pancreatic lipase suggest that Asp250 may be involved in a charge interaction with an alpha-helix in the amino terminal region of LPL. The occurrence of this mutation in two unrelated families of different ancestries (French and Italian) indicates either two independent mutational events affecting unrelated individuals or a common shared ancestral allele. Screening for the Asp250----Asn mutation should be included in future genetic epidemiology studies on LPL deficiency and familial combined hyperlipidemia.
        
Title: Two naturally occurring mutations at the first and second bases of codon aspartic acid 156 in the proposed catalytic triad of human lipoprotein lipase. In vivo evidence that aspartic acid 156 is essential for catalysis Ma YH, Bruin T, Tuzgol S, Wilson BI, Roederer G, Liu MS, Davignon J, Kastelein JJ, Brunzell JD, Hayden MR Ref: Journal of Biological Chemistry, 267:1918, 1992 : PubMed
We are studying naturally occurring mutations in the gene for lipoprotein lipase (LPL) to advance our knowledge about the structure/function relationships for this enzyme. We and others have previously described 11 mutations in human LPL gene and until now none of these directly involves any of the residues in the proposed Asp156-His241-Ser132 catalytic triad. Here we report two separate probands who are deficient in LPL activity and have three different LPL gene haplotypes, suggesting three distinct mutations. Using polymerase chain reaction cloning and DNA sequencing we have identified that proband 1 is a compound heterozygote for a G----A transition at nucleotide 721, resulting in a substitution of asparagine for aspartic acid at residue 156, and a T----A transversion, resulting in a substitution of serine for cysteine at residues 216. Proband 2 is homozygous for an A----G base change at nucleotide 722, leading to a substitution of glycine for aspartic acid at residue 156. The presence of these mutations in the patients and available family members was confirmed by restriction analysis of polymerase chain reaction-amplified DNA. In vitro site-directed mutagenesis and subsequent expression in COS cells have confirmed that all three mutations result in catalytically defective LPL. The two naturally occurring mutations, which both alter the same aspartic acid residue in the proposed Asp156-His241-Ser132 catalytic triad of human LPL, indicate that Asp156 plays a significant role in LPL catalysis. The Cys216----Ser mutation destroys a conserved disulfide bridge that is apparently critical for maintaining LPL structure and function.
We have previously reported two common lipoprotein lipase (LPL) gene mutations underlying LPL deficiency in the majority of 37 French Canadians (Monsalve et al., 1990. J. Clin. Invest. 86: 728-734; Ma et al., 1991. N. Engl. J. Med. 324: 1761-1766). By examining the 10 coding exons of the LPL gene in another French Canadian patient, we have identified a third missense mutation that is found in two of the three remaining patients for whom mutations are undefined. This is a G to A transition in exon 6 that results in a substitution of asparagine for aspartic acid at residue 250. Using in vitro site-directed mutagenesis, we have confirmed that this mutation causes a catalytically defective LPL protein. In addition, the Asp250----Asn mutation was also found on the same haplotype in an LPL-deficient patient of Dutch ancestry, suggesting a common origin. This mutation alters a TaqI restriction site in exon 6 and will allow for rapid screening in patients with LPL deficiency.
        
Title: Molecular basis of familial chylomicronemia: mutations in the lipoprotein lipase and apolipoprotein C-II genes Reina M, Brunzell JD, Deeb SS Ref: J Lipid Res, 33:1823, 1992 : PubMed
The molecular basis of familial chylomicronemia (type I hyperlipoproteinemia), a rare autosomal recessive trait, was investigated in six unrelated individuals (five of Spanish descent and one of Northern European extraction). DNA amplification by polymerase chain reaction (PCR) followed by single strand conformation polymorphism (SSCP) analysis allowed rapid identification of the underlying mutations. Six different mutant alleles (three of which are previously undescribed) of the gene encoding lipoprotein lipase (LPL) were discovered in the five LPL-deficient patients. These included an 11 bp deletion in exon 2, and five missense mutations: Trp 86 Arg (exon 3), His 136 Arg (exon 4), Gly 188 Glu (exon 5), Ile 194 Thr (exon 5), and Ile 205 Ser (exon 5). The Trp 86 Arg mutation is the only known missense mutation in exon 3. The other missense mutations lie in the highly conserved "central homology region" in close proximity with the catalytic site of LPL. These and other previously reported missense mutations provide insight into structure/function relationships in the lipase family. The missense mutations point to the important role of particular highly conserved helices and beta-strands in proper folding of the LPL molecule, and of certain connecting loops in the catalytic process. A nonsense mutation (Arg 19 Term) in the gene encoding apolipoprotein C-II (apoC-II), the cofactor of LPL, was found to underlie chylomicronemia in the sixth patient who had normal LPL but was apoC-II-deficient.
Complete deficiency of lipoprotein lipase (LPL) causes the chylomicronemia syndrome. To understand the molecular basis of LPL deficiency, two siblings with drastically reduced postheparin plasma lipolytic activities were selected for analysis of their LPL gene. We used the polymerase chain reaction to examine the nine coding LPL exons in the two affected siblings and three relatives. DNA sequence analysis revealed a single nucleotide change compared with the normal LPL cDNA: a G----A substitution at nucleotide position 680. This transition caused a replacement of glutamic acid for glycine at amino acid residue 142 of the mature LPL protein. Amino acid sequence comparisons of the region surrounding glycine-142 indicated that it is highly conserved among lipases from different species, suggesting a crucial role of this domain for the LPL structure. Expression studies of the mutant LPL cDNA in COS-7 cells produced normal amounts of enzyme mass. However, the mutated LPL was not catalytically active, nor was it efficiently secreted from the cells. This established that the Gly----Glu substitution at amino acid 142 is sufficient to abolish enzymatic activity and to result in the chylomicronemia syndrome observed in these patients.
Familial hyperchylomicronemia has reached a high prevalence in the French Canadian population of eastern Quebec. The birth places of 58 carriers identified through the birth of one affected child clustered in three regions. The genealogies of these 58 individuals showed that no founder was common to all of them. Three sets of founders were found, one for each region, with little overlapping between two regions. These results strongly suggest that more than one mutation, introduced by the French migrants in the 17th century, are segregating in the French Canadian population. Perche, a region situated between Paris and Normandy, appeared to be the most likely putative center of diffusion of at least one mutation in the lipoprotein lipase gene segregating in the modern-day French Canadian population of Quebec.
The molecular defects resulting in a deficiency of lipoprotein lipase activity in a patient with the familial hyperchylomicronemia syndrome have been identified. Increased lipoprotein lipase mass but undetectable lipoprotein lipase activity in the patient's post-heparin plasma indicate the presence of an inactive enzyme. No major gene rearrangements were identified by Southern blot analysis of the patient's lipoprotein lipase gene and Northern blot hybridization revealed an lipoprotein lipase mRNA of normal size. Sequence analysis of polymerase chain reaction-amplified lipoprotein lipase cDNA identified two separate allelic mutations. A T to C transition at nucleotide 836 results in the substitution of Ile194, located near the putative interfacial recognition site of lipoprotein lipase, to a Thr. A G to A mutation at base 983 leads to the substitution of a His for Arg243 and the loss of a HhaI restriction enzyme site. Arg243 is near His241, which has been postulated to be part of the catalytic triad of lipoprotein lipase. Direct sequencing of amplified cDNA and digestion with HhaI established that the proband is a compound heterozygote for each base substitution. Transient expression of each of the mutant lipoprotein lipase cDNAs in human embryonal kidney-293 cells resulted in the synthesis of enzymically inactive proteins, establishing the functional significance of the mutations. We conclude that the Ile194 to Thr194 and Arg243 to His243 substitutions occur in lipoprotein lipase regions essential for normal enzyme activity and each mutation results in the expression of a nonfunctional enzyme leading to the hyperchylomicronemia syndrome manifested in the proband.
We studied the molecular basis of familial Type I hyperlipoproteinemia in two brothers of Turkish descent who had normal plasma apolipoprotein C-II levels and undetectable plasma post-heparin lipoprotein lipase (LPL) activity. We cloned the cDNAs of LPL mRNA from adipose tissue biopsies obtained from these individuals by the polymerase chain reaction and directional cloning into M13 vectors. Direct sequencing of pools of greater than 2000 cDNA clones indicates that their LPL mRNA contains two mutations: a missense mutation changing codon 156 from GAU to GGU predicting an Asp156----Gly substitution and a nonsense mutation changing the codon for Ser447 from UCA to UGA, a stop codon, predicting a truncated LPL protein that contains 446 instead of 448 amino acid residues. Both patients were homozygous for both mutations. Analysis of genomic DNAs of the patients and their family members by the polymerase chain reaction, restriction enzyme digestion (the GAT----GGT mutation abolishes a TaqI restriction site), and allele-specific oligonucleotide hybridization confirms that the patients were homozygous for these mutations at the chromosomal level, and the clinically unaffected parents and sibling were true obligate heterozygotes for both mutations. In order to examine the functional significance of the mutations in this family, we expressed wild type and mutant LPLs in vitro using a eukaryotic expression vector. Five types of LPL proteins were produced in COS cells by transient transfection: (i) wild type LPL, (ii) Asp156----Gly mutant, (iii) Ser447----Ter mutant, (iv) Gly448----Ter mutant, and (v) Asp156----Gly/Ser447----Ter double mutant. Both LPL immunoreactive mass and enzyme activity were determined in the culture media and intracellularly. Immunoreactive LPLs were produced in all cases. The mutant LPLs, Asp156----Gly and Asp156----Gly/Ser447----Ter, were devoid of enzyme activity, indicating that the Asp156----Gly mutation is the underlying defect for the LPL deficiency in the two patients. The two mutant LPLs missing a single residue (Gly448) or a dipeptide (Ser447-Gly448) from its carboxyl terminus had normal enzyme activity. Thus, despite its conservation among all mammalian LPLs examined to date, the carboxyl terminus of LPL is not essential for enzyme activity. We further screened 224 unrelated normal Caucasians for the Ser447----Ter mutation and found 36 individuals who were heterozygous and one individual who was homozygous for this mutation, indicating that it is a sequence polymorphism of no functional significance. Human LPL shows high homology to hepatic triglyceride lipase and pancreatic lipase.(ABSTRACT TRUNCATED AT 400 WORDS)
The DNA sequences were determined for the lipoprotein lipase (LPL) gene from five unrelated Japanese patients with familial LPL deficiency. The results demonstrated that all five patients are homozygotes for distinct point mutations dispersed throughout the LPL gene. Patient 1 has a G-to-A transition at the first nucleotide of intron 2, which abolishes normal splicing. Patient 2 has a nonsense mutation in exon 3 (Tyr61----Stop) and patient 3 in exon 8 (Trp382----Stop). The latter mutation emphasizes the importance of the carboxy-terminal portion of the enzyme in the expression of LPL activity. Missense mutations were identified in patient 4 (Asp204----Glu) and patient 5 (Arg243----His) in the strictly conserved amino acids. Expression study of both mutant genes in COS-1 cells produced inactive enzymes, establishing the functional significance of the two mis-sense mutations. In these patients, postheparin plasma LPL mass was either virtually absent (patients 1 and 2) or significantly decreased (patients 3-5). To detect these mutations more easily, we developed a rapid diagnostic test for each mutation. We also determined the DNA haplotypes for patients and confirmed the occurrence of multiple mutations on the chromosomes with an identical haplotype. These results demonstrate that familial LPL deficiency is a heterogeneous genetic disease caused by a wide variety of gene mutations.
Studies on the molecular biology of lipoprotein lipase (LPL) deficiency have been facilitated by the availability of LPL gene probes and the recent characterization of gene mutations underlying human LPL deficiency. Typically, missense mutations have predominated and show a preferential localization to exons 4 and 5. This distribution supports earlier studies attributing functional significance to residues encoded by these exons. We now report a further missense mutation within exon 5 of the LPL gene in three unrelated patients. Amplification of individual exons by the polymerase chain reaction and direct sequencing revealed a T----C transition at codon 194 of the LPL cDNA which results in a substitution of threonine for isoleucine at this residue. The catalytic abnormality induced by this mutation was confirmed through in vitro mutagenesis studies in COS-1 cells. Transfection with a LPL cDNA containing the codon 194 transition resulted in the synthesis and secretion of a catalytically defective protein. The Thr194 substitution was associated with two different DNA haplotypes, consistent with a multicentric origin for this mutation.
BACKGROUND: Lipoprotein lipase hydrolyzes the triglyceride core of chylomicrons and very-low-density lipoproteins and has a crucial role in regulating plasma lipoprotein levels. Deficiencies of lipoprotein lipase activity lead to aberrations in lipoprotein levels. Worldwide, the frequency of lipoprotein lipase deficiency is highest among French Canadians. We sought to determine the molecular basis of the disorder in this population. METHODS: The entire coding sequence of the lipoprotein lipase gene from one French Canadian patient was amplified by the polymerase chain reaction and sequenced. Exon 5 from 36 other French Canadian patients was amplified and analyzed by dot blot hybridization with allele-specific oligonucleotides. RESULTS: Sequence analysis revealed a missense substitution of leucine (CTG) for proline (CCG) at residue 207 in exon 5. This mutation was found on 54 of the 74 mutant alleles (73 percent) in the patients. Studies of site-directed in vitro mutagenesis have confirmed that this mutation generates inactive lipoprotein lipase and is the cause of lipoprotein lipase deficiency. CONCLUSIONS: We have identified a missense mutation at residue 207 of the lipoprotein lipase gene that is the most common cause of lipoprotein lipase deficiency in French Canadians. This mutation can be easily detected by dot blot analysis, providing opportunity for definitive DNA diagnosis of the disorder and identification of heterozygous carriers.
The molecular defect that leads to a deficiency of lipoprotein lipase (LPL) activity in the proband from a Bethesda kindred has been identified. The pre- and post-heparin plasma LPL mass in the proband was elevated when compared to controls; however, there was no detectable LPL activity, indicating the presence of a defective enzyme (termed LPLBethesda). Analysis of the patient's post-heparin plasma by heparin-Sepharose affinity chromatography demonstrated that the mutant LPL had an altered affinity for heparin. Southern blot hybridization of the gene for LPLBethesda revealed no major rearrangements. Northern blot analysis of LPLBethesda mRNA from patient monocyte-derived macrophages revealed normal-sized mRNAs (3.4 and 3.7 kilobases) as well as normal cellular mRNA levels when compared to control macrophages. Sequence analysis of polymerase chain reaction-amplified LPL cDNA revealed a G----A substitution at position 781 of the normal LPL gene that resulted in the substitution of an alanine for a threonine at residue 176 and the loss of an SfaNI site present in the normal LPL gene. Amplification of cDNA by the PCR followed by digestion with SfaNI established that the patient was a true homozygote for the mutation. Expression of LPL cDNA in COS-7 cells resulted in the synthesis of a nonfunctional LPL enzyme establishing that the Ala----Thr substitution was the mutation responsible for the inactive LPL. The identification of this mutation in the LPL gene defines a region of the LPL enzyme, at Ala-176, that is essential for normal heparin-binding and catalytic activity. We propose that an amino acid substitution in this critical region of LPLBethesda results in the synthesis of a nonfunctional enzyme that leads to the chylomicronemia syndrome expressed in this proband.
        
Title: Partial gene duplication involving exon-Alu interchange results in lipoprotein lipase deficiency Devlin RH, Deeb S, Brunzell J, Hayden MR Ref: American Journal of Human Genetics, 46:112, 1990 : PubMed
Major structural rearrangements are uncommon causes of mutation in human genetic diseases. We have previously described that a significant proportion of unrelated patients of western European descent who are deficient in lipoprotein lipase (LPL) activity have a major structural rearrangement in the LPL gene. Here we report the detailed characterization of this mutation. We show that this rearrangement is due to a duplication of approximately 2 kb which results from juxtaposition of intron 6 to a partially duplicated exon 6. We have sequenced both the junction fragment of this duplication and the corresponding wild-type regions and have found that the breakpoint in intron 6 is associated with the simple repeat found at the 3' end of an Alu element. The breakpoint within exon 6 shows no homology to this simple repeat. This result both suggests that this interchange arose as a nonhomologous recombination event and shows that such events resulting in duplication which occur in normal gene evolution may also lead to genetic disease. Cloning of the junction fragment has allowed synthesis of appropriate primers for rapid screening for this rearrangement in other families with LPL deficiency.
Cloning and sequencing of lipoprotein lipase (LPL) cDNA prepared from the adipose tissue of a patient with classical LPL deficiency revealed a G to A transition at nucleotide 818 in all sequenced clones, leading to the substitution of glutamic acid for glycine at residue 188 of the mature protein. Hybridization of genomic DNA with allele-specific oligonucleotides confirmed that the patient was homozygous for this mutation and revealed that carrier status for this mutation among relatives of the patient was significantly associated with hypertriglyceridemia. Assay of the patient's plasma for immunoreactive enzyme and activity demonstrated the presence of a circulating inactive enzyme protein, the concentration of which was further increased by injection of heparin. The mutant sequence was produced by oligonucleotide-directed mutagenesis, and both normal and mutant sequences were cloned into the expression vector pSVL and transfected into COS-1 cells. The normal sequence led to the in vitro expression of an enzyme that bound to heparin-Sepharose and had a specific catalytic activity similar to that of normal postheparin plasma enzyme. By contrast, the mutant enzyme expressed in vitro was catalytically inactive and displayed a lower affinity for heparin than the normal enzyme. We conclude that this single amino acid substitution leads to the in vivo expression of an inactive enzyme accounting for the manifestations of LPL deficiency noted in the patient.
        
Title: Lipoprotein lipase deficiency resulting from a nonsense mutation in exon 3 of the lipoprotein lipase gene Emi M, Hata A, Robertson M, Iverius PH, Hegele R, Lalouel JM Ref: American Journal of Human Genetics, 47:107, 1990 : PubMed
In DNA from a male patient of German and Polish ancestry who has lipoprotein lipase deficiency, sequencing of all nine exons and intron-exon boundaries corresponding to the coding region of the lipoprotein lipase gene detected a C----T transition leading to the substitution of a stop signal for the codon that normally determines a glutamine at position 106 of the mature enzyme. Hybridization with allele-specific oligonucleotides at this position established that the patient was homozygous for this mutation. This mutation must lead to the synthesis of a sharply truncated protein, accounting for the enzymatic deficiency noted in the patient.
        
Title: Compound heterozygote for lipoprotein lipase deficiency: Ser----Thr244 and transition in 3' splice site of intron 2 (AG----AA) in the lipoprotein lipase gene Hata A, Emi M, Luc G, Basdevant A, Gambert P, Iverius PH, Lalouel JM Ref: American Journal of Human Genetics, 47:721, 1990 : PubMed
Cloning and sequencing of translated exons and intron-exon boundaries of the lipoprotein lipase gene in a patient of French descent who has the chylomicronemia syndrome revealed that he was a compound heterozygote for two nucleotide substitutions. One (TCC----ACC) leads to an amino acid substitution (Ser----Thr244), while the other alters the 3' splice site of intron 2 (AG----AA). The functional significance of the Thr244 amino acid substitution was established by in vitro expression in cultured mammalian cells.
Lipoprotein lipase (LPL) plays a crucial role in the regulation of lipoprotein metabolism by hydrolysing the core triglycerides of circulating chylomicrons and VLDL. Human, bovine, mouse, and guinea pig complementary DNA clones have recently been isolated and the organization of the human LPL gene is now known to comprise 10 exons spanning approximately 30 kb. Here we report a similar mutation on 21 alleles from 13 unrelated affected probands with LPL deficiency of French Canadian, English, Polish, German, Dutch, and East Indian ancestry. We show that an identical missense mutation within exon 5, resulting in an amino acid substitution of glutamic acid for glycine at position 188, is responsible for LPL deficiency in 21 of 88 LPL alleles assessed. This mutation alters an Ava II restriction site in exon 5 and will allow a rapid screening test for this mutation in patients with LPL deficiency. This mutation has occurred on the same haplotype in all the unrelated affected persons suggesting a common origin. The amino acid substitution lies within the longest segment of homology for LPL in different species and results in a protein that is catalytically defective.
Lipoprotein lipase (LPL) catalyzes the key step for the removal of triacylglycerol-rich lipoproteins from the circulation. In this paper, we report the cloning and structure of the normal human LPL gene, which was isolated in three overlapping lambda phage clones that span about 35 kilo bases (kb) of the genetic locus. The peptide coding region of the gene is approx. 23 kb in length and contains nine exons with intron sizes ranging from 0.7 to 8.7 kb. The entire 3' untranslated region is in the tenth exon. Specific sequences in this region support the hypothesis that two mRNA species found for human LPL are generated by differential utilization of polyadenylation signals. The first exon occurs in the 5' untranslated region and the region coding for the signal peptide. The second exon includes the protein domain coding for the N-linked glycosylation site that is required for the expression of enzyme activity. The fourth exon contains the region that was proposed as a lipid binding domain, the sixth for one putative heparin binding domain, and the eighth codes for a domain containing another N-linked glycosylation site. These results suggest that the unique structural and functional domains are confined to specific exons. The PvuII polymorphic site was located within the intron between exon 6 and 7 and the HindIII polymorphic site to the 3' flanking region. The location of these polymorphic sites suggests that the PvuII restriction fragment length polymorphism (RFLP) associated with lipase deficiency in a few Japanese kindred may be a linkage marker for a functional defect of LPL, while the HindIII RFLP associated with hypertriglyceridemia may be important for gene regulation of LPL.
        
Title: Rapid and simple isolation procedure for lipoprotein lipase from human milk Zechner R Ref: Biochimica & Biophysica Acta, 1044:20, 1990 : PubMed
Lipoprotein lipase (LPL) is an important enzyme in lipid and energy metabolism of all vertebrates. Measurement of its activity in human postheparin plasma has become a standard procedure for diagnosis of Type I hyperlipoproteinemia and other types of hypertriglyceridemias. This paper presents a rapid and simple purification procedure for human lipoprotein lipase and the production of specific polyclonal antibodies. In the isolation procedure, the fat moiety of human milk obtained by centrifugation was delipidated and a buffer-extractable fraction chromatographed sequentially on heparin-Sepharose and phenyl-Sepharose. This three-step procedure provides a high yield of apparently pure LPL with very high specific activity against radiolabeled triacylglycerol substrates. The apparent molecular weight of LPL on SDS-PAGE was 60 kDa. Amino acid analysis and NH2-terminal sequencing proved the identity and the apparent homogeneity of the isolated enzyme. alpha-Lactoferrin and antithrombin III, common contaminants in earlier isolation procedures, were not detectable immunologically. Purified LPL was used to produce in the rabbit a specific polyclonal antiserum that inhibited LPL activity from human postheparin plasma and other tissues. In postheparin plasma from normal individuals, anti-LPL IgG was used in Western blotting to show LPL protein. In preheparin plasma, or in certain patients with Type I hyperlipoproteinemia, no specific signal was detected. The improved purification procedure presented here allows the rapid isolation of human LPL and production of antibodies to the protein, both of which will greatly facilitate future studies of this important enzyme.
        
Title: Structure of the human lipoprotein lipase gene Deeb SS, Peng RL Ref: Biochemistry, 28:4131, 1989 : PubMed
Human genomic clones that span the entire lipoprotein lipase (LPL) gene have been isolated and used to determine its structure. The gene is approximately 30 kilobase (kb) pairs in length in which the mRNA specifying sequence is divided into 10 exons. Exons 1-9 are of average size (105-276 bp) whereas exon 10, which specifies the entire 3' uncoding sequence, is 1948 bp in length. Exon 1 codes for the signal peptide, exon 2 includes the protein domain that was shown to bind to the lipoprotein substrate, and exons 6 and 9 code for sequences that are relatively rich in basic amino acids and therefore likely to be involved in anchoring of the enzyme to the capillary endothelium by interaction with the acidic domain of heparan sulfate. Four closely spaced mRNA 5' termini were observed, indicating multiple transcription initiation sites, one of which seems to be favored. Two potential enhancer sequence motifs in the 5' upstream region were observed. One may specify expression in response to intracellular Ca2+ mobilization, and the other may be responsible for expression in adipocytes.
        
Title: Lipoprotein lipase with a defect in lipid interface recognition in a case with type I hyperlipidaemia Kobayashi J, Shirai K, Saito Y, Yoshida S Ref: European Journal of Clinical Investigation, 19:424, 1989 : PubMed
Defective lipoprotein lipase (LpL) was found in the postheparin plasma (PHP) of a patient with severe hypertriglyceridaemia. The patient was a 14-year-old girl with a maximum plasma triglyceride (TG) level of 3600 mg d-1 who had been suffering from recurrent pancreatitis. The patient's LpL purified from the PHP by heparin-Sepharose and phenyl-Sepharose chromatographies hydrolysed tributryrin, but not triolein emulsified with Triton X-100 and phosphatidylcholine (PC), or in chylomicrons, whereas normal LpL hydrolysed these substrates. Moreover, unlike normal LpL, LpL from the patient did not associate with VLDL, as shown by Sepharose 4B column chromatography. The patient's LpL hydrolysed triolein emulsified with lysophospholipid at a normal rate in the presence of apolipoprotein CII. These findings suggest that this patient has LpL with a normal catalytic site for tributyrin but with a defect in lipid interface recognition resulting in loss of ability to recognize VLDL or chylomicrons, but not of triolein emulsified with lysophospholipid.
        
Title: Molecular cloning and sequence of a cDNA coding for bovine lipoprotein lipase Senda M, Oka K, Brown WV, Qasba PK, Furuichi Y Ref: Proceedings of the National Academy of Sciences of the United States of America, 84:4369, 1987 : PubMed
Lipoprotein lipase (LPL; triacylglycero-protein acylhydrolase, EC 3.1.1.34) was purified from bovine milk. Synthetic oligonucleotides were prepared, based on the amino acid sequences of three peptides obtained from partial digestion of purified LPL, and were used as probes to isolate cDNA clones for LPL mRNA from a bovine mammary gland. One of the clones, pLPL-49R2, contains an insert cDNA (49R2) of about 3.2 kilobases (kb) that hybridizes to all three probes and encodes a polypeptide that includes the NH2-terminal sequence of bovine LPL reported recently [Ben-Avram, C. M., Ben-Zeev, O., Lee, T. D., Hagga, K., Shively, J. E., Goers, J., Pedersen, M. E., Reeve, J. R. & Schotz, M. C. (1986) Proc. Natl. Acad. Sci. USA 83, 4185-4189]. Complete nucleotide sequence analysis revealed that cDNA insert 49R2 contains the entire coding region for LPL as well as a 3' untranslated region of about 1.6 kb. The predicted amino acid sequence indicates that bovine LPL is a hydrophilic protein consisting of 450 amino acids (Mr 50,548) in its unglycosylated form. Blot hybridization analysis of poly(A)+ mRNA from bovine mammary gland demonstrated that there are at least three sizes of LPL mRNAs--3.2, 2.5, and 1.7 kb--with the 2.5-kb mRNA being the most abundant. Restriction endonuclease mapping of other cDNA clones suggested that the variation in mRNA size results from differential utilization of polyadenylylation signals during mRNA processing.
Lipoprotein lipase is a key enzyme of lipid metabolism that acts to hydrolyze triglycerides, providing free fatty acids for cells and affecting the maturation of circulating lipoproteins. It has been proposed that the enzyme plays a role in the development of obesity and atherosclerosis. The human enzyme has been difficult to purify and its protein sequence was heretofore undetermined. A complementary DNA for human lipoprotein lipase that codes for a mature protein of 448 amino acids has now been cloned and sequenced. Analysis of the sequence indicates that human lipoprotein lipase, hepatic lipase, and pancreatic lipase are members of a gene family. Two distinct species of lipoprotein lipase messenger RNA that arise from alternative sites of 3'-terminal polyadenylation were detected in several different tissues.
Solvent deuterium isotope effects on the rates of lipoprotein lipase (LpL) catalyzed hydrolysis of the water-soluble esters p-nitrophenyl acetate (PNPA) and p-nitrophenyl butyrate (PNPB) have been measured and fall in the range 1.5-2.2. The isotope effects are independent of substrate concentration, LpL stability, and reaction temperature and hence are effects on chemical catalysis and not due to a medium effect of D2O on LpL stability and/or conformation. pL (L = H or D) vs. rate profiles for the Vmax/Km of LpL-catalyzed hydrolysis of PNPB increase sigmoidally with increasing pL. Least-squares analysis of the profiles gives pKaH2O = 7.10 +/- 0.01, pKaD2O = 7.795 +/- 0.007, and a solvent isotope effect on limiting velocity at high pL of 1.97 +/- 0.03. Because the pL-rate profiles are for the Vmax/Km of hydrolysis of a water-soluble substrate, the measured pKa's are intrinsic acid-base ionization constants for a catalytically involved LpL active-site amino acid side chain. Benzeneboronic acid, a potent inhibitor of LpL-catalyzed hydrolysis of triacylglycerols [Vainio, P., Virtanen, J. A., & Kinnunen, P. K. J. (1982) Biochim. Biophys. Acta 711, 386-390], inhibits LpL-catalyzed hydrolysis of PNPB, with Ki = 6.9 microM at pH 7.36, 25 degrees C. This result and the solvent isotope effects for LpL-catalyzed hydrolysis of water-soluble esters are interpreted in terms of a proton transfer mechanism that is similar in many respects to that of the serine proteases.
Synthetic fragments of apo-C-II, specifically labeled on their NH2-terminals with the 5-dimethylaminonaphthalene-1-sulfonyl (dansyl or DNS) fluorophore, have been prepared by solid phase peptide synthesis. When a complex is formed between bovine milk lipoprotein lipase and N-dansyl-apo-C-II peptides, resonance energy transfer occurs from the tryptophan residues of the enzyme to the dansyl-labeled peptides upon excitation at 280 nm. In the absence of lipid, the association constant increases 10-fold when the length of the DNS peptide is increased from apo-C-II-DNS(64-78) (0.04 X 10(6) M-1) to apo-C-II-DNS(60-78) (0.3 X 10(6) M-1). In the presence of lipid, the association constants are dependent on peptide chain length, and increase from 0.4 X 10(6) M-1 for apo-C-II-DNS(64-78) to 2.2 X 10(7) M-1 for apo-C-II-DNS(43-78). The interactions are specific for lipoprotein lipase, are disrupted by guanidinium chloride, are not affected by 1.0 M NaCl, and are competitive with the corresponding nondansylated peptide. Apolipoproteins C-III and A-I, at 5 to 1 molar ratios, had no effect on the interaction. These findings demonstrate the importance of the COOH-terminal region in the lipoprotein lipase-apo-C-II interaction and show that activation of the enzyme involves a specific protein-protein interaction.
        
Title: Inhibition of lipoprotein lipase by benzene boronic acid. Effect of apolipoprotein C-II Vainio P, Virtanen JA, Kinnunen PK Ref: Biochimica & Biophysica Acta, 711:386, 1982 : PubMed
The catalytic mechanism of triacylglycerol hydrolysis by lipoprotein lipase was studied. We found lipoprotein lipase to be inhibited by benzene boronic acid, with an apparent Ki of 8.9 micro M at pH 7.4. This indicates the presence of serine and histidine in the active site of the enzyme. Inhibition of lipoprotein lipase by benzene boronic acid is likely to be due to the formation of an inhibitor-enzyme complex having analogous bonding to the active site histidine and serine as the transition-state complex which precedes the formation of an obligatory acyl-enzyme intermediate. The presence of apolipoprotein C-II, the apolipoprotein activator of lipoprotein lipase, partly reverses the inhibition of lipoprotein lipase by benzene boronic acid. This reversal by apolipoprotein C-II has a distinct pH optimum in the range of 8-9.