Homo sapiens (Human) Neuroligin-4, X-linked (HNLX) Neuroligin4 KIAA0951
Comment
Neuronal cell surface protein involved in cell-cell-interactions. Homodimer. Interacts with NRXN1 in a calcium-dependent manner. Interacts through its C-terminus with DLG4/PSD-95 third PDZ domain. In fact Neuroligin4 is neuroligin X on chromosome X a new entry neuroligin 4Y neuroligin Y is created human-neurxx LOC59203 mRNA in fact identical to 4neur is suppressed Neuroligin4 mutated in AUTISM, X-LINKED see Jamain et al, Laumonnier et al, Yan et al. see mutation
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
445kbdel_human-NLGN4X : 445kbdel_human-NLGN4X G99S : Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients K378R : Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients R704C : Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients R87W : A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export V403M : Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients del1254AG_human-NLGN4X : X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family fs1186T_human-NLGN4X : Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSRPQGLLWLPLLFTPVCVMLNSNVLLWLTALAIKFTLIDSQAQYPVVNT NYGKIRGLRTPLPNEILGPVEQYLGVPYASPPTGERRFQPPEPPSSWTGI RNTTQFAAVCPQHLDERSLLHDMLPIWFTANLDTLMTYVQDQNEDCLYLN IYVPTEDDIHDQNSKKPVMVYIHGGSYMEGTGNMIDGSILASYGNVIVIT INYRLGILGFLSTGDQAAKGNYGLLDQIQALRWIEENVGAFGGDPKRVTI FGSGAGASCVSLLTLSHYSEGLFQKAIIQSGTALSSWAVNYQPAKYTRIL ADKVGCNMLDTTDMVECLRNKNYKELIQQTITPATYHIAFGPVIDGDVIP DDPQILMEQGEFLNYDIMLGVNQGEGLKFVDGIVDNEDGVTPNDFDFSVS NFVDNLYGYPEGKDTLRETIKFMYTDWADKENPETRRKTLVALFTDHQWV APAVATADLHAQYGSPTYFYAFYHHCQSEMKPSWADSAHGDEVPYVFGIP MIGPTELFSCNFSKNDVMLSAVVMTYWTNFAKTGDPNQPVPQDTKFIHTK PNRFEEVAWSKYNPKDQLYLHIGLKPRVRDHYRATKVAFWLELVPHLHNL NEIFQYVSTTTKVPPPDMTSFPYGTRRSPAKIWPTTKRPAITPANNPKHS KDPHKTGPEDTTVLIETKRDYSTELSVTIAVGASLLFLNILAFAALYYKK DKRRHETHRRPSPQRNTTNDIAHIQNEEIMSLQMKQLEHDHECESLQAHD TLRLTCPPDYTLTLRRSPDDIPLMTPNTITMIPNTLTGMQPLHTFNTFSG GQNSTNLPHGHSTTRV
OBJECTIVES: In this study, we aimed to measure the plasma concentration of NLGN4 in children with autism compared to matched healthy controls, and to examine a possible correlation between the plasma NLGN4 level and the degree of severity of autism, and social impairment in the autistic patients. SUBJECTS AND METHODS: In this study, 88 autistic patients aged 3-12 years and 33 age and sex-matched controls aged 3-9 years were recruited. Plasma NLGN4 concentration was determined using a commercial enzyme-linked immunoassay (ELISA). The Childhood Autism Rating Scale (CARS) and the Social Responsiveness Scale (SRS) were used to assess the cognitive dysfunction and social impairment in autistic patients. RESULTS: The NLGN4 plasma concentration was significantly higher (P=0.001) in autistic children (12 +/-5.35 ng/ml) in comparison with healthy controls (6.82 +/-5.52 ng/ml). In spite of the alteration in the level of NLGN4 among the subgroups of autistic children, no correlation between NLGN4 plasma level and cognitive problem, or social impairment was observed (p > 0.05). CONCLUSION: Increased plasma concentration of NLGN4 may play a role in the pathogenesis of autism, and it could be a valuable biomarker for autism. Further studies with larger sample size are warranted to validate this finding, and also to explore the potential links between NLGN4 and features of autism.
The molecular mechanisms involved in breast cancer progression and metastasis still remain unclear to date. It is a heterogeneous disease featuring several different phenotypes with consistently different biological characteristics. Neuroligins are neural cell adhesion molecules that have been implicated in heterotopic cell adhesion. In humans, alterations in neuroligin genes are implicated in autism and other cognitive diseases. Until recently, neuroligins have been shown to be abundantly expressed in blood vessels and also play a role implicated in the growth of glioma cells. Here we report increased expression of neuroligin 4X (NLGN4X) in breast cancer. We found NLGN4X was abundantly expressed in breast cancer tissues. NLGN4X expression data for all breast cancer cell lines in the Cancer Cell Line Encyclopedia (CCLE) was analyzed. Correlation between NLGN4X levels and clinicopathologic parameters were analyzed within Oncomine datasets. Evaluation of these bioinfomatic datasets results revealed that NLGN4X expression was higher in triple negative breast cancer cells, particularly the basal subtype and tissues versus non-triple-negative sets. Its level was also observed to be higher in metastatic tissues. RT-PCR, flow cytometry and immunofluorescence study of MDA-MB-231 and MCF-7 breast cancer cells validated that NLGN4X was increased in MDA-MB-231. Knockdown of NLGN4X expression by siRNA decreased cell proliferation and migration significantly in MDA-MB-231 breast cancer cells. NLGN4X knockdown in MDA-MB-231 cells resulted in induction of apoptosis as determined by annexin staining, elevated caspase 3/7 and cleaved PARP by flow cytometry. High NLGN4X expression highly correlated with decrease in relapse free-survival in TNBC. NLGN4X might represent novel biomarkers and therapeutic targets for breast cancer. Inhibition of NLGN4X may be a new target for the prevention and treatment of breast cancer.
As a part of our cDNA project for deducing the coding sequence of unidentified human genes, we newly determined the sequences of 100 cDNA clones from a set of size-fractionated human brain cDNA libraries, and predicted the coding sequences of the corresponding genes, named KIAA0919 to KIAA1018. The sequencing of these clones revealed that the average sizes of the inserts and corresponding open reading frames were 4.9 kb and 2.6 kb (882 amino acid residues), respectively. A computer search of the sequences against the public databases indicated that predicted coding sequences of 87 genes contained sequences similar to known genes, 53% of which (46 genes) were categorized as proteins relating to cell signaling/communication, cell structure/motility and nucleic acid management. The chromosomal locations of the genes were determined by using human-rodent hybrid panels unless their mapping data were already available in the public databases. The expression profiles of all the genes among 10 human tissues, 8 brain regions (amygdala, corpus callosum, cerebellum, caudate nucleus, hippocampus, substania nigra, subthalamic nucleus, and thalamus), spinal cord, fetal brain and fetal liver were also examined by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.
        
26 lessTitle: An Autism-Associated Mutation Impairs Neuroligin-4 Glycosylation and Enhances Excitatory Synaptic Transmission in Human Neurons Cast TP, Boesch DJ, Smyth K, Shaw AE, Ghebrial M, Chanda S Ref: Journal of Neuroscience, 41:392, 2021 : PubMed
Neuroligins (NLGNs) are a class of postsynaptic cell adhesion molecules that interact with presynaptic neurexins (NRXNs) and regulate synapse function. NLGN4 is a member of the NLGN family and consists of a unique amino acid sequence in humans that is not evolutionarily well conserved in rodents. The human-specific NLGN4 gene has been reported to be mutated in many patients with autism and other neurodevelopmental disorders. However, it remained unclear how these mutations might alter the molecular properties of NLGN4 and affect synaptic transmission in human neurons. Here, we describe a severely autistic male patient carrying a single amino acid substitution (R101Q) in the NLGN4 gene. When expressed in HEK293 cells, the R101Q mutation in NLGN4 did not affect its binding affinity for NRXNs or its capacity to form homodimers. This mutation, however, impaired the maturation of NLGN4 protein by inhibiting N-linked glycosylation at an adjacent residue (N102), which is conserved in all NLGNs. As a result, the R101Q substitution significantly decreased the surface trafficking of NLGN4 and increased its retention in the endoplasmic reticulum and Golgi apparatus. In human neurons derived from male stem cell lines, the R101Q mutation also similarly reduced the synaptic localization of NLGN4, resulting in a loss-of-function phenotype. This mutation-induced trafficking defect substantially diminished the ability of NLGN4 to form excitatory synapses and modulate their functional properties. Viewed together, our findings suggest that the R101Q mutation is pathogenic for NLGN4 and can lead to synaptic dysfunction in autism.
        
Title: Elevated plasma X-linked neuroligin 4 expression is associated with autism spectrum disorder Alayadhi LY, Qasem H, Alghamdi HAM, Elamin NE Ref: Med Princ Pract, :, 2020 : PubMed
OBJECTIVES: In this study, we aimed to measure the plasma concentration of NLGN4 in children with autism compared to matched healthy controls, and to examine a possible correlation between the plasma NLGN4 level and the degree of severity of autism, and social impairment in the autistic patients. SUBJECTS AND METHODS: In this study, 88 autistic patients aged 3-12 years and 33 age and sex-matched controls aged 3-9 years were recruited. Plasma NLGN4 concentration was determined using a commercial enzyme-linked immunoassay (ELISA). The Childhood Autism Rating Scale (CARS) and the Social Responsiveness Scale (SRS) were used to assess the cognitive dysfunction and social impairment in autistic patients. RESULTS: The NLGN4 plasma concentration was significantly higher (P=0.001) in autistic children (12 +/-5.35 ng/ml) in comparison with healthy controls (6.82 +/-5.52 ng/ml). In spite of the alteration in the level of NLGN4 among the subgroups of autistic children, no correlation between NLGN4 plasma level and cognitive problem, or social impairment was observed (p > 0.05). CONCLUSION: Increased plasma concentration of NLGN4 may play a role in the pathogenesis of autism, and it could be a valuable biomarker for autism. Further studies with larger sample size are warranted to validate this finding, and also to explore the potential links between NLGN4 and features of autism.
        
Title: Pathogenic paternally inherited NLGN4X deletion in a female with autism spectrum disorder: Clinical, cytogenetic, and molecular characterization Kopp N, Amarillo I, Martinez-Agosto J, Quintero-Rivera F Ref: American Journal of Medicine Genet A, :e62025, 2020 : PubMed
Neuroligin 4 X-linked (NLGN4X) is an X-linked postsynaptic scaffolding protein, with functional role in excitatory synapsis development and maintenance, that has been associated with neuropsychiatric disorders such as intellectual disability, autism spectrum disorders (ASD), anxiety, attention deficit hyperactivity disorder (ADHD), and Tourette's syndrome. Chromosomal microarray analysis identified a paternally inherited, 445 Kb deletion on Xp22.3 that includes the entire NLGN4X in a 2.5 year old female (46,XX) with congenital hypotonia, strabismus, ASD, and increased aggressive behavioral issues. Her family history is significant for a mother with learning disabilities, a father with anxiety, major depressive disorder, and substance abuse, as well as two maternal half-brothers with developmental delays. X-inactivation studies in the proband's blood showed random X-inactivation despite the presence of an abnormal X chromosome. Furthermore, trio exome sequencing did not reveal any other deleterious variant that could explain her phenotype. Our report describes the first example of a paternally inherited NLGN4X microdeletion as the genetic etiology of ASD in a female proband, and the psychiatric phenotypes in the father. It also provides further evidence that NLGN4X is sensitive to dosage changes in females, and can contribute to a variety of psychiatric features within the same family.
        
Title: Analysis of the SNP rs3747333 and rs3747334 in NLGN4X gene in autism spectrum disorder: a meta-analysis Sun H, Yang Y, Zhang L, Wu H, Zhang H, Li H Ref: Ann Gen Psychiatry, 18:6, 2019 : PubMed
Background: The SNP rs3747333 and rs3747334 in Neuroligin 4X (NLGN4X) gene have been demonstrated to be associated with the susceptibility to Autism spectrum disorder (ASDs; MIM 209850), but the results are inconsistent. Therefore, a meta-analysis of eligible studies reporting the association between rs3747333 and rs3747334 and ASD was carried out to enhance the reliability of published results. Methods: A systematic literature search was performed using PubMed, Web of Science, Cochrane Library to search English articles concerning the relation between rs3747333, rs3747334 and ASD up to Sep. 21th, 2017. Summary odds ratios (OR) and 95% confidence interval (CI) were used to evaluate the risk of rs3747333, rs3747334 in the ASD. The heterogeneity and publication bias of the eligible studies were also evaluated. Results: Six eligible studies involving 1284 subjects (735 patients and 549 healthy controls) were included in this meta-analysis. Overall, the results indicated that there was no significant risk elevation between rs3747333, rs3747334 variants and ASD (OR = 0.39, 95% CI 0.10-1.60). Furthermore, sensitivity analysis and publication bias analysis confirmed this result. Conclusions: In conclusion, our meta-analysis suggests that the rs3747333, rs3747334 in NLGN4X gene are not frequent causes of ASD.
The molecular mechanisms involved in breast cancer progression and metastasis still remain unclear to date. It is a heterogeneous disease featuring several different phenotypes with consistently different biological characteristics. Neuroligins are neural cell adhesion molecules that have been implicated in heterotopic cell adhesion. In humans, alterations in neuroligin genes are implicated in autism and other cognitive diseases. Until recently, neuroligins have been shown to be abundantly expressed in blood vessels and also play a role implicated in the growth of glioma cells. Here we report increased expression of neuroligin 4X (NLGN4X) in breast cancer. We found NLGN4X was abundantly expressed in breast cancer tissues. NLGN4X expression data for all breast cancer cell lines in the Cancer Cell Line Encyclopedia (CCLE) was analyzed. Correlation between NLGN4X levels and clinicopathologic parameters were analyzed within Oncomine datasets. Evaluation of these bioinfomatic datasets results revealed that NLGN4X expression was higher in triple negative breast cancer cells, particularly the basal subtype and tissues versus non-triple-negative sets. Its level was also observed to be higher in metastatic tissues. RT-PCR, flow cytometry and immunofluorescence study of MDA-MB-231 and MCF-7 breast cancer cells validated that NLGN4X was increased in MDA-MB-231. Knockdown of NLGN4X expression by siRNA decreased cell proliferation and migration significantly in MDA-MB-231 breast cancer cells. NLGN4X knockdown in MDA-MB-231 cells resulted in induction of apoptosis as determined by annexin staining, elevated caspase 3/7 and cleaved PARP by flow cytometry. High NLGN4X expression highly correlated with decrease in relapse free-survival in TNBC. NLGN4X might represent novel biomarkers and therapeutic targets for breast cancer. Inhibition of NLGN4X may be a new target for the prevention and treatment of breast cancer.
        
Title: Not all neuroligin 3 and 4X missense variants lead to significant functional inactivation Xu X, Hu Z, Zhang L, Liu H, Cheng Y, Xia K, Zhang X Ref: Brain Behav, 7:e00793, 2017 : PubMed
INTRODUCTION: Neuroligins are postsynaptic cell adhesion molecules that interact with neurexins to regulate the fine balance between excitation and inhibition of synapses. Recently, accumulating evidence, involving mutation analysis, cellular assays, and mouse models, has suggested that neuroligin (NLGN) mutations affect synapse maturation and function. Previously, four missense variations [p.G426S (NLGN3), p.G84R (NLGN4X), p.Q162K (NLGN4X), and p.A283T (NLGN4X)] in four different unrelated patients have been identified by PCR and direct sequencing. METHODS: In this study, we analyzed the functional effect of these missense variations by in vitro experiment via the stable HEK293 cells expressing wild-type and mutant neuroligin. RESULTS: We found that the four mutations did not significantly impair the expression of neuroligin 3 and neuroligin 4X, and also did not measurably inhibit the neurexin 1-neuroligin interaction. These variants might play a modest role in the pathogenesis of autism or might simply be unreported infrequent polymorphisms. CONCLUSION: Our data suggest that these four previously described neuroligin mutations are not primary risk factors for autism.
The extracellular domains of neuroligins and neurexins interact through Ca(2+) to form flexible trans-synaptic associations characterized by selectivity for neuroligin or neurexin subtypes. This heterophilic interaction, essential for synaptic maturation and differentiation, is regulated by gene selection, alternative mRNA splicing and post-translational modifications. A new, 2.6 A-resolution crystal structure of a soluble neurexin-1beta-neuroligin-4 (Nrx1beta-NL4) complex permits a detailed description of the Ca(2+)-coordinated interface and unveils concerted positional rearrangements of several residues of NL4, not observed in neuroligin-1, associated with Nrx1beta binding. Surface plasmon resonance analysis of the binding of structure-guided Nrx1beta mutants towards NL4 and neuroligin-1 shows that flexibility of the Nrx1beta-binding site in NL4 is reflected in a greater dissociation constant of the complex and higher sensitivity to ionic strength and pH variations. Analysis of neuroligin mutants points to critical functions for two respective residues in neuroligin-1 and neuroligin-2 in governing the affinity of the complexes. Although neuroligin-1 and neuroligin-2 have pre-determined conformations that respectively promote and prevent Nrx1beta association, unique conformational reshaping of the NL4 surface is required to permit Nrx1beta association.
Synaptogenesis requires formation of trans-synaptic complexes between neuronal cell-adhesion receptors. Heterophilic receptor pairs, such as neurexin Ibeta and neuroligin, can mediate distinct intracellular signals and form different cytoplasmic scaffolds in the pre- and post-synaptic neuron, and may be particularly important for synaptogenesis. However, the functions of neurexin and neuroligin depend on their distribution in the synapse. Neuroligin has been experimentally assigned to the post-synaptic membrane, while the localization of neurexin remains unclear. To study the subcellular distribution of neurexin Ibeta and neuroligin in mature cerebrocortical synapses, we have developed a novel method for the physical separation of junctional membranes and their direct analysis by western blotting. Using urea and dithiothreitol, we disrupted trans-synaptic protein links, without dissolving the lipid phase, and fractionated the pre- and post-synaptic membranes. The purity of these fractions was validated by electron microscopy and western blotting using multiple synaptic markers. A quantitative analysis has confirmed that neuroligin is localized strictly in the post-synaptic membrane. We have also demonstrated that neurexin Ibeta is largely (96%) pre-synaptic. Thus, neurexin Ibeta and neuroligin normally form trans-synaptic complexes and can transduce bidirectional signals.
        
Title: Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses Budreck EC, Scheiffele P Ref: European Journal of Neuroscience, 26:1738, 2007 : PubMed
Synaptic adhesion molecules are thought to play a critical role in the formation, function and plasticity of neuronal networks. Neuroligins (NL1-4) are a family of presumptive postsynaptic cell adhesion molecules. NL1 and NL2 isoforms are concentrated at glutamatergic and GABAergic synapses, respectively, but the cellular expression and synaptic localization of the endogenous NL3 and NL4 isoforms are unknown. We generated a panel of NL isoform-specific antibodies and examined the expression, developmental regulation and synaptic specificity of NL3. We found that NL3 was enriched in brain, where NL3 protein levels increased during postnatal development, coinciding with the peak of synaptogenesis. Subcellular fractionation revealed a concentration of NL3 in synaptic plasma membranes and postsynaptic densities. In cultured hippocampal neurons, endogenous NL3 was highly expressed and was localized at both glutamatergic and GABAergic synapses. Clustering of NL3 in hippocampal neurons by neurexin-expressing cells resulted in coaggregation of NL3 with glutamatergic and GABAergic scaffolding proteins. Finally, individual synapses contained colocalized NL2 and NL3 proteins, and coimmunoprecipitation studies revealed the presence of NL1-NL3 and NL2-NL3 complexes in brain extracts. These findings suggest that rodent NL3 is a synaptic adhesion molecule that is a shared component of glutamatergic and GABAergic synapses.
Neuroligins are postsynaptic cell-adhesion proteins that associate with their presynaptic partners, the neurexins. Using small-angle X-ray scattering, we determined the shapes of the extracellular region of several neuroligin isoforms in solution. We conclude that the neuroligins dimerize via the characteristic four-helix bundle observed in cholinesterases, and that the connecting sequence between the globular lobes of the dimer and the cell membrane is elongated, projecting away from the dimer interface. X-ray scattering and neutron contrast variation data show that two neurexin monomers, separated by 107 A, bind at symmetric locations on opposite sides of the long axis of the neuroligin dimer. Using these data, we developed structural models that delineate the spatial arrangements of different neuroligin domains and their partnering molecules. As mutations of neurexin and neuroligin genes appear to be linked to autism, these models provide a structural framework for understanding altered recognition by these proteins in neurodevelopmental disorders.
        
Title: Neurexin-neuroligin signaling in synapse development Craig AM, Kang Y Ref: Current Opinion in Neurobiology, 17:43, 2007 : PubMed
Neurexins and neuroligins are emerging as central organizing molecules for excitatory glutamatergic and inhibitory GABAergic synapses in mammalian brain. They function as cell adhesion molecules, bridging the synaptic cleft. Remarkably, each partner can trigger formation of a hemisynapse: neuroligins trigger presynaptic differentiation and neurexins trigger postsynaptic differentiation. Recent protein interaction assays and cell culture studies indicate a selectivity of function conferred by alternative splicing in both partners. An insert at site 4 of beta-neurexins selectively promotes GABAergic synaptic function, whereas an insert at site B of neuroligin 1 selectively promotes glutamatergic synaptic function. Initial knockdown and knockout studies indicate that neurexins and neuroligins have an essential role in synaptic transmission, particularly at GABAergic synapses, but further studies are needed to assess the in vivo functions of these complex protein families.
The neuroligins are postsynaptic cell adhesion proteins whose associations with presynaptic neurexins participate in synaptogenesis. Mutations in the neuroligin and neurexin genes appear to be associated with autism and mental retardation. The crystal structure of a neuroligin reveals features not found in its catalytically active relatives, such as the fully hydrophobic interface forming the functional neuroligin dimer; the conformations of surface loops surrounding the vestigial active center; the location of determinants that are critical for folding and processing; and the absence of a macromolecular dipole and presence of an electronegative, hydrophilic surface for neurexin binding. The structure of a beta-neurexin-neuroligin complex reveals the precise orientation of the bound neurexin and, despite a limited resolution, provides substantial information on the Ca2+-dependent interactions network involved in trans-synaptic neurexin-neuroligin association. These structures exemplify how an alpha/beta-hydrolase fold varies in surface topography to confer adhesion properties and provide templates for analyzing abnormal processing or recognition events associated with autism.
        
Title: Neuroscience. Autism's cause may reside in abnormalities at the synapse Garber K Ref: Science, 317:190, 2007 : PubMed
Title: Adhesion molecules in the nervous system: structural insights into function and diversity Shapiro L, Love J, Colman DR Ref: Annual Review of Neuroscience, 30:451, 2007 : PubMed
The unparalleled complexity of intercellular connections in the nervous system presents requirements for high levels of both specificity and diversity for the proteins that mediate cell adhesion. Here we describe recent advances toward understanding the molecular mechanisms that underlie adhesive binding, specificity, and diversity for several well-characterized families of adhesion molecules in the nervous system. Although many families of adhesion proteins, including cadherins and immunoglobulin superfamily members, are utilized in neural and nonneural contexts, nervous system-specific diversification mechanisms, such as precisely regulated alternative splicing, provide an important means to enable their function in the complex context of the nervous system.
Autism spectrum disorders (ASDs) are characterized by impairments in social behaviors that are sometimes coupled to specialized cognitive abilities. A small percentage of ASD patients carry mutations in genes encoding neuroligins, which are postsynaptic cell-adhesion molecules. We introduced one of these mutations into mice: the Arg451-->Cys451 (R451C) substitution in neuroligin-3. R451C mutant mice showed impaired social interactions but enhanced spatial learning abilities. Unexpectedly, these behavioral changes were accompanied by an increase in inhibitory synaptic transmission with no apparent effect on excitatory synapses. Deletion of neuroligin-3, in contrast, did not cause such changes, indicating that the R451C substitution represents a gain-of-function mutation. These data suggest that increased inhibitory synaptic transmission may contribute to human ASDs and that the R451C knockin mice may be a useful model for studying autism-related behaviors.
Recently, neuroligins (NLs)3 and 4X have received much attention as autism-related genes. Here, we identified syntrophin-gamma2 (SNTG2) as a de novo binding partner of NL3. SNTG2 also bound to NL4X and NL4Y. Interestingly, the binding was influenced by autism-related mutations, implying that the impaired interaction between NLs and SNTG2 contributes to the etiology of autism.
Jamain [2003: Nat Genet 34:27-29] recently reported mutations in two neuroligin genes in sib-pairs affected with autism. In order to confirm these causative mutations in our autistic population and to determine their frequency we screened 96 individuals affected with autism. We found no mutations in these X-linked genes. These results indicate that mutations in NLGN3 and NLGN4 genes are responsible for at most a small fraction of autism cases and additional screenings in other autistic populations are needed to better determine the frequency with which mutations in NLGN3 and NLGN4 occur in autism.
The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.
Neuroligins are cell-adhesion molecules located at the postsynaptic side of the synapse. Neuroligins interact with beta-neurexins and this interaction is involved in the formation of functional synapses. Mutations in two X-linked neuroligin genes, NLGN3 and NLGN4, have recently been implicated in pathogenesis of autism. The neuroligin gene family consists of five members (NLGN1 at 3q26, NLGN2 at 17p13, NLGN3 at Xq13, NLGN4 at Xp22, and NLGN4Y at Yq11), of which NLGN1 and NLGN3 are located within the best loci observed in our previous genome-wide scan for autism in the Finnish sample. Here, we report a detailed molecular genetic analysis of NLGN1, NLGN3, NLGN4, and NLNG4Y in the Finnish autism sample. Mutation analysis of 30 probands selected from families producing linkage evidence for Xq13 and/or 3q26 loci revealed several polymorphisms, but none of these seemed to be functional. Family-based association analysis in 100 families with autism spectrum disorders yielded only modest associations at NLGN1 (rs1488545, P=0.002), NLGN3 (DXS7132, P=0.014), and NLGN4 (DXS996, P=0.031). We conclude that neuroligin mutations most probably represent rare causes of autism and that it is unlikely that the allelic variants in these genes would be major risk factors for autism.
A large French family including members affected by nonspecific X-linked mental retardation, with or without autism or pervasive developmental disorder in affected male patients, has been found to have a 2-base-pair deletion in the Neuroligin 4 gene (NLGN4) located at Xp22.33. This mutation leads to a premature stop codon in the middle of the sequence of the normal protein and is thought to suppress the transmembrane domain and sequences important for the dimerization of neuroligins that are required for proper cell-cell interaction through binding to beta-neurexins. As the neuroligins are mostly enriched at excitatory synapses, these results suggest that a defect in synaptogenesis may lead to deficits in cognitive development and communication processes. The fact that the deletion was present in both autistic and nonautistic mentally retarded males suggests that the NLGN4 gene is not only involved in autism, as previously described, but also in mental retardation, indicating that some types of autistic disorder and mental retardation may have common genetic origins.
As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.
Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.
        
Title: Identification of a novel neuroligin in humans which binds to PSD-95 and has a widespread expression Bolliger MF, Frei K, Winterhalter KH, Gloor SM Ref: Biochemical Journal, 356:581, 2001 : PubMed
Neuroligins, first discovered in rat brain, form a family of three synaptically enriched membrane proteins. Using reverse transcription-PCR of human brain polyadenylated RNA and extensive database searches, we identified the human homologues of the three rat neuroligins and a cDNA encoding a fourth member, which we named neuroligin 4. Neuroligin 4 has 63-73% amino acid identity with the other members of the human neuroligin family, and the same predicted domain structure. DNA database analyses, furthermore, indicated that a possible fifth neuroligin gene may be present in the human genome. Northern-blot analysis revealed expression of neuroligin 4 in heart, liver, skeletal muscle and pancreas, but barely at all in brain. Overexpression of neuroligin 4 cDNA in COS-7 cells led to the production of a 110 kDa protein. Immunofluorescence analysis demonstrated that the protein was integrated into the plasma membrane. Overexpression of cDNAs encoding neuroligin 4 and the PDZ-domain protein, PSD-95, in COS-7 cells resulted in the formation of detergent-resistant complexes. Neuroligin 4 did not bind to ZO-1, another PDZ-domain protein. Together, our data show that the human neuroligin family is composed of at least one additional member, and suggest that neuroligin 4 may also be produced outside the central nervous system.
A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
As a part of our cDNA project for deducing the coding sequence of unidentified human genes, we newly determined the sequences of 100 cDNA clones from a set of size-fractionated human brain cDNA libraries, and predicted the coding sequences of the corresponding genes, named KIAA0919 to KIAA1018. The sequencing of these clones revealed that the average sizes of the inserts and corresponding open reading frames were 4.9 kb and 2.6 kb (882 amino acid residues), respectively. A computer search of the sequences against the public databases indicated that predicted coding sequences of 87 genes contained sequences similar to known genes, 53% of which (46 genes) were categorized as proteins relating to cell signaling/communication, cell structure/motility and nucleic acid management. The chromosomal locations of the genes were determined by using human-rodent hybrid panels unless their mapping data were already available in the public databases. The expression profiles of all the genes among 10 human tissues, 8 brain regions (amygdala, corpus callosum, cerebellum, caudate nucleus, hippocampus, substania nigra, subthalamic nucleus, and thalamus), spinal cord, fetal brain and fetal liver were also examined by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.
        
Title: Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro Nagase T, Ishikawa K, Kikuno R, Hirosawa M, Nomura N, Ohara O Ref: DNA Research, 6:337, 1999 : PubMed
In order to obtain information on the coding sequences of unidentified human genes, we newly determined the sequences of 100 cDNA clones of unknown human genes, which we named KIAA1193 to KIAA1292, from two sets of size-fractionated human adult and fetal brain cDNA libraries. The results of our particular strategy to select cDNA clones which have the potentiality of coding for large proteins in vitro revealed that the average sizes of the inserts and the corresponding open reading frames reached 5.2 kb and 2.8 kb (933 amino acid residues), respectively. By the computational analysis of the predicted amino acid sequences against the OWL and Pfam databases, 58 predicted gene products were classified into the following five functional categories: cell signaling/communication, cell structure/motility, nucleic acid management, protein management and metabolism. It was also found that 30 gene products had homologues in the public databases which were similar in sequence throughout almost their entire regions to the newly identified genes. The chromosomal loci of the genes were assigned by using human-rodent hybrid panels unless their mapping data were already available in the public databases. The expression profiles of the genes were studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.
PSD-95 is a component of postsynaptic densities in central synapses. It contains three PDZ domains that localize N-methyl-D-aspartate receptor subunit 2 (NMDA2 receptor) and K+ channels to synapses. In mouse forebrain, PSD-95 bound to the cytoplasmic COOH-termini of neuroligins, which are neuronal cell adhesion molecules that interact with beta-neurexins and form intercellular junctions. Neuroligins bind to the third PDZ domain of PSD-95, whereas NMDA2 receptors and K+ channels interact with the first and second PDZ domains. Thus different PDZ domains of PSD-95 are specialized for distinct functions. PSD-95 may recruit ion channels and neurotransmitter receptors to intercellular junctions formed between neurons by neuroligins and beta-neurexins.