Homo sapiens (Human) carboxylesterase CES1 hCE1 & for monocyte/macrophage serine-esterase 1 egasyn
Comment
Mammalian liver carboxylesterases (CESs; EC 3.1.1.1) hydrolyze various xenobiotics and endogenous substrates with ester, thioester, or amide bonds and are thought to function mainly in drug metabolism and detoxication of harmful chemicals. CES1 is also responsible for hydrolysis of stored cholesterol esters in macrophage foam cells and release of free cholesterol for high density lipoprotein-mediated cholesterol efflux. Alternative names: Acyl-coenzyme A:cholesterol acyltransferase (ACAT) Monocyte/macrophage serine esterase (HMSE) Serine esterase 1 Brain carboxylesterase hBr1 Triacylglycerol hydrolase (TGH) Egasyn Retinyl ester hydrolase (REH) Cocaine carboxylesterase.(Also named before human-cxesl human-cxest, -mmse, CES, hCES1,CES1A, hBr1 brain carboxylesterase hBr1 on chromosome 16 There are 3 isoforms some times called Ces1b, Ces1c they are not as diffiernt as the different genes if CE1 in mice (a,b,c,d,ef) ). The region is complex with pseudogene localized head to head with CES1. There are different haplotype and in some the pseudogene is replaced by a complete copy of CES1A1. see Rasmussen et al. 2018 for recent evaluation of genotyping procedures. Aso called monocyte-specific esterase or macrophage esterase
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
A158V : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms A269S : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms Asp260GlufsX39_human-CES1 : Asp260GlufsX39_human-CES1 CES1VAR_human-CES1 : Regulatory effects of genomic translocations at the human carboxylesterase-1 (CES1) gene locus D203E : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms D203E : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms D260EfsX39 : Activation of the antiviral prodrug oseltamivir is impaired by two newly identified carboxylesterase 1 variants E220G : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms G142E : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms G143E : Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis G143H : Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase G147C : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms G173D : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms H284Q : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms L363E : Nerve agent hydrolysis activity designed into a human drug metabolism enzyme L363Q : Nerve agent hydrolysis activity designed into a human drug metabolism enzyme L40stop : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms N340K : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms Q169P : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms R171C : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms R186P : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms R199H : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms S75N/D203E/A269S : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms S75N : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms T167S : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms T290M : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms V146H/L363E : Nerve agent hydrolysis activity designed into a human drug metabolism enzyme V146H/L363Q : Nerve agent hydrolysis activity designed into a human drug metabolism enzyme V146H : Nerve agent hydrolysis activity designed into a human drug metabolism enzyme V146Q/L363E : Nerve agent hydrolysis activity designed into a human drug metabolism enzyme V146H/L363Q : Nerve agent hydrolysis activity designed into a human drug metabolism enzyme V146Q : Nerve agent hydrolysis activity designed into a human drug metabolism enzyme Y170D : A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms rs2244613_human-CES1 : The Influence of the CES1 Genotype on the Pharmacokinetics of Enalapril in Patients with Arterial Hypertension
19 structures(e.g. : 1MX1, 1MX5, 1MX9... more)(less) 1MX1: Crystal Structure of Human Liver Carboxylesterase in complex with tacrine, 1MX5: Crystal Structure of Human Liver Carboxylesterase in complex with homatropine, a cocaine analogue, 1MX9: Crystal Structure of Human Liver Carboxylesterase in complex with naloxone methiodide, a heroin analogue, 1YA4: Crystal structure of human liver carboxylesterase 1 in complex with tamoxifen, 1YA8: Crystal structure of human liver carboxylesterase in complex with mevastatin, 1YAH: Crystal Structure of Human Liver Carboxylesterase complexed to Etyl Acetate; A Fatty Acid Ethyl Ester Analogue, 1YAJ: Crystal Structure of Human Liver Carboxylesterase in complex with benzil, 2DQY: Crystal structure of human carboxylesterase in complex with cholate and palmitate, 2DQZ: Crystal structure of human carboxylesterase in complex with homatropine, coenzyme A, and palmitate, 2DR0: Crystal structure of human carboxylesterase in complex with taurocholate, 2H7C: Crystal structure of human carboxylesterase in complex with Coenzyme A (CASP Target), 2HRQ: Crystal structure of Human Liver Carboxylesterase 1 (hCE1) in covalent complex with the nerve agent Soman (GD), 2HRR: Crystal structure of Human Liver Carboxylesterase 1 (hCE1) in covalent complex with the nerve agent Tabun (GA), 3K9B: Crystal Structure of Human Liver Carboxylesterase 1 (hCE1) in covalent complex with the nerve agent Cyclosarin (GF), 4AB1: Recombinant Human Carboxylesterase 1 Isolated from Whole Cabbage Looper Larvae, 5A7F: Comparison of the structure and activity of glycosylated and aglycosylated Human Carboxylesterase 1, 5A7G: Comparison of the structure and activity of glycosylated and aglycosylated Human Carboxylesterase 1, 5A7H: Comparison of the structure and activity of glycosylated and aglycosylated Human Carboxylesterase 1, 8EOR: Human liver carboxylesterase 1 No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MWLRAFILATLSASAAWGHPSSPPVVDTVHGKVLGKFVSLEGFAQPVAIF LGIPFAKPPLGPLRFTPPQPAEPWSFVKNATSYPPMCTQDPKAGQLLSEL FTNRKENIPLKLSEDCLYLNIYTPADLTKKNRLPVMVWIHGGGLMVGAAS TYDGLALAAHENVVVVTIQYRLGIWGFFSTGDEHSRGNWGHLDQVAALRW VQDNIASFGGNPGSVTIFGESAGGESVSVLVLSPLAKNLFHRAISESGVA LTSVLVKKGDVKPLAEQIAITAGCKTTTSAVMVHCLRQKTEEELLETTLK MKFLSLDLQGDPRESQPLLGTVIDGMLLLKTPEELQAERNFHTVPYMVGI NKQEFGWLIPMQLMSYPLSEGQLDQKTAMSLLWKSYPLVCIAKELIPEAT EKYLGGTDDTVKKKDLFLDLIADVMFGVPSVIVARNHRDAGAPTYMYEFQ YRPSFSSDMKPKTVIGDHGDELFSVFGAPFLKEGASEEEIRLSKMVMKFW ANFARNGNPNGEGLPHWPEYNQKEGYLQIGANTQAAQKLKDKEVAFWTNL FAKKAVEKPPQTEHIEL
The angiotensin-converting enzyme inhibitor enalapril is hydrolysed to an active metabolite, enalaprilat, in the liver via carboxylesterase 1 (CES1). Previous studies show that variant rs71647871 in the CES1 gene affects the pharmacokinetics of enalapril on liver samples as well as healthy volunteers. This study included 286 Caucasian patients with arterial hypertension who received enalapril. The concentrations of enalapril and enalaprilat were determined before subsequent intake of the drug and 4 h after it with high-performance liquid chromatography (HPLC) and mass spectrometric detection. The study included genetic markers as follows: rs2244613, rs71647871 (c.428G>A, p.G143E) and three SNPs indicating the presence of a subtype CES1A1c (rs12149368, rs111604615 and rs201577108). Mean peak and trough enalaprilat concentrations, adjusted by clinical variables, were significantly lower in CES1 rs2244613 heterozygotes (by 16.6% and 19.6%) and in CC homozygotes (by 32.7% and 41.4%) vs. the AA genotype. In CES1A1c homozygotes, adjusted mean enalaprilat concentrations were 75% lower vs. heterozygotes and wild-type (WT) homozygotes. Pharmacogenetic markers of the CES1 gene may be a promising predictor for individualisation when prescribing enalapril.
Remdesivir, an intravenous nucleotide prodrug, has been approved for treating COVID-19 in hospitalized adults and pediatric patients. Upon administration, remdesivir can be readily hydrolyzed to form its active form GS-441524, while the cleavage of the carboxylic ester into GS-704277 is the first step for remdesivir activation. This study aims to assign the key enzymes responsible for remdesivir hydrolysis in humans, as well as to investigate the kinetics of remdesivir hydrolysis in various enzyme sources. The results showed that remdesivir could be hydrolyzed to form GS-704277 in human plasma and the microsomes from human liver (HLMs), lung (HLuMs) and kidney (HKMs), while the hydrolytic rate of remdesivir in HLMs was the fastest. Chemical inhibition and reaction phenotyping assays suggested that human carboxylesterase 1 (hCES1A) played a predominant role in remdesivir hydrolysis, while cathepsin A (CTSA), acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) contributed to a lesser extent. Enzymatic kinetic analyses demonstrated that remdesivir hydrolysis in hCES1A (SHUTCM) and HLMs showed similar kinetic plots and much closed K(m) values to each other. Meanwhile, GS-704277 formation rates were strongly correlated with the CES1A activities in HLM samples from different individual donors. Further investigation revealed that simvastatin (a therapeutic agent for adjuvant treating COVID-19) strongly inhibited remdesivir hydrolysis in both recombinant hCES1A and HLMs. Collectively, our findings reveal that hCES1A plays a predominant role in remdesivir hydrolysis in humans, which are very helpful for predicting inter-individual variability in response to remdesivir and for guiding the rational use of this anti-COVID-19 agent in clinical settings.
Egasyn-beta-glucuronidase complex is located at the luminal site of liver microsomal endoplasmic reticulum. When organophosphorus insecticides (OP) are incorporated into the liver microsomes, they become tightly bound to egasyn, a carboxylesterase isozyme, and subsequently, beta-glucuronidase (BG) is dissociated and released into blood. Consequently, the increase in plasma BG activity becomes a good biomarker of OP exposure. Thus, the single administration of EPN (O-ethyl O-p-nitrophenylphenylphosphonothioate), acephate and chlorpyrifos increased plasma BG activity in approximately 100-fold the control level in rats. The increase in plasma BG activity after OP exposure is a much more sensitive biomarker of acute OP exposure than acetylcholinesterase (AChE) inhibition.
Mammalian carboxylesterase 1 enzymes can hydrolyze many xenobiotic chemicals and endogenous lipids. We here identified and characterized a mouse strain (FVB/NKI) in which three of the eight Ces1 genes were spontaneously deleted, removing Ces1c and Ces1e partly, and Ces1d entirely. We studied the impact of this Ces1c/d/e deficiency on drug and lipid metabolism and homeostasis. Ces1c/d/e(-/-) mice showed strongly impaired conversion of the anticancer prodrug irinotecan to its active metabolite SN-38 in plasma, spleen and lung. Plasma hydrolysis of the oral anticancer prodrug capecitabine to 5-DFCR was also profoundly reduced in Ces1c/d/e(-/-) mice. Our findings resolved previously unexplained FVB/NKI pharmacokinetic anomalies. On a medium-fat diet, Ces1c/d/e(-/-) female mice exhibited moderately higher body weight, mild inflammation in gonadal white adipose tissue (gWAT), and increased lipid load in brown adipose tissue (BAT). Ces1c/d/e(-/-) males showed more pronounced inflammation in gWAT and an increased lipid load in BAT. On a 5-week high-fat diet exposure, Ces1c/d/e deficiency predisposed to developing obesity, enlarged and fatty liver, glucose intolerance and insulin resistance, with severe inflammation in gWAT and increased lipid load in BAT. Hepatic proteomics analysis revealed that the acute phase response, involved in the dynamic cycle of immunometabolism, was activated in these Ces1c/d/e(-/-) mice. This may contribute to the obesity-related chronic inflammation and adverse metabolic disease in this strain. While Ces1c/d/e deficiency clearly exacerbated metabolic syndrome development, long-term (18-week) high-fat diet exposure overwhelmed many, albeit not all, observed phenotypic differences.
        
Title: Hydrolysis of dibutyl phthalate and di(2-ethylhexyl) phthalate in human liver, small intestine, kidney, and lung: An in vitro analysis using organ subcellular fractions and recombinant carboxylesterases Isobe T, Ohkawara S, Mori Y, Jinno H, Tanaka-Kagawa T, Hanioka N Ref: Chemico-Biological Interactions, 372:110353, 2023 : PubMed
Phthalates are widely used plasticizers that are primarily and rapidly metabolized to monoester phthalates in mammals. In the present study, the hydrolysis of dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) in the human liver, small intestine, kidney, and lung was examined by the catalytic, kinetic, and inhibition analyses using organ microsomal and cytosolic fractions and recombinant carboxylesterases (CESs). The V(max) (y-intercept) values based on the Eadie-Hofstee plots of DBP hydrolysis were livers>ssmall intestines>skidneys>slung in microsomes, and livers>ssmall intestines>slungs>skidney in cytosol, respectively. The CL(int) values (x-intercept) were small intestines>slivers>skidneys>slung in both microsomes and cytosol. The V(max) and CL(int) or CL(max) values of DEHP hydrolysis were small intestines>slivers>skidneys>slung in both microsomes and cytosol. Bis(4-nitrophenyl) phosphate (BNPP) effectively inhibited the activities of DBP and DEHP hydrolysis in the microsomes and cytosol of liver, small intestine, kidney, and lung. Although physostigmine also potently inhibited DBP and DEHP hydrolysis activities in both the microsomes and cytosol of the small intestine and kidney, the inhibitory effects in the liver and lung were weak. In recombinant CESs, the V(max) values of DBP hydrolysis were CES1 (CES1b, CES1c)s>sCES2, whereas the CL(max) values were CES2s>sCES1 (CES1b, CES1c). On the other hand, the V(max) and CL(max) values of DEHP hydrolysis were CES2s>sCES1 (CES1b, CES1c). These results suggest an extensive organ-dependence of DBP and DEHP hydrolysis due to CES expression, and that CESs are responsible for the metabolic activation of phthalates.
        
Title: Human carboxylesterase 1A plays a predominant role in hydrolysis of the anti-dyslipidemia agent fenofibrate in humans Li HX, Sun MR, Zhang Y, Song LL, Zhang F, Song YQ, Hou XD, Ge GB Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, :, 2023 : PubMed
Fenofibrate, a marketed peroxisome proliferator-activated receptor-alpha (PPARalpha) agonist, has been widely used for treating severe hypertriglyceridemia and mixed dyslipidemia. As a canonical prodrug, fenofibrate can be rapidly hydrolyzed to release the active metabolite (fenofibric acid) in vivo, but the crucial enzyme(s) responsible for fenofibrate hydrolysis and the related hydrolytic kinetics have not been well-investigated. This study aimed to assign the key organs and crucial enzymes involved in fenofibrate hydrolysis in humans, as well as reveal the impact of fenofibrate hydrolysis on its non-PPAR mediated biological activities. Our results demonstrated that fenofibrate could be rapidly hydrolyzed in the preparations from both human liver and lung to release fenofibric acid. Reaction phenotyping assays coupling with chemical inhibition assays showed that human carboxylesterase 1A (hCES1A) played a predominant role in fenofibrate hydrolysis in human liver and lung, while human carboxylesterase 2A (hCES2A) and human monoacylglycerol esterase (hMAGL) contributed to a very lesser extent. Kinetic analyses showed that fenofibrate could be rapidly hydrolyzed by hCES1A in human liver preparations, while the inherent clearance of hCES1A-catalyzed fenofibrate hydrolysis is much higher (>200-fold) than much higher than that of hCES2A or hMAGL. Biological assays demonstrated that both fenofibrate and fenofibric acid showed very closed Nrf2 agonist effects, but fenofibrate hydrolysis strongly weaken its inhibitory effects against both hCES2A and hNtoum. Collectively, our findings reveal that the liver is the major organ and hCES1A is the predominant enzyme catalyzing fenofibrate hydrolysis in humans, while fenofibrate hydrolysis significantly reduces inhibitory effects of fenofibrate against serine hydrolases. Significance Statement Fenofibrate can be completely converted to fenofibric acid in humans and subsequently exert its pharmacological effects, but the hydrolytic pathways of fenofibrate in humans have not been well investigated. This study reported that the liver was the predominant organ and human carboxylesterase 1A was the crucial enzyme involved in fenofibrate hydrolysis in humans.
        
Title: Identification of regulatory variants of carboxylesterase 1 (CES1): A proof-of-concept study for the application of the Allele-Specific Protein Expression (ASPE) assay in identifying cis-acting regulatory genetic polymorphisms Her L, Shi J, Wang X, He B, Smith L, Jiang H, Zhu HJ Ref: Proteomics, :e2200176, 2022 : PubMed
It is challenging to study regulatory genetic variants as gene expression is affected by both genetic polymorphisms and non-genetic regulators. The mRNA allele-specific expression (ASE) assay has been increasingly used for the study of cis-acting regulatory variants because cis-acting variants affect gene expression in an allele-specific manner. However, poor correlations between mRNA and protein expressions were observed for many genes, highlighting the importance of studying gene expression regulation at the protein level. In the present study, we conducted a proof-of-concept study to utilize a recently developed allele-specific protein expression (ASPE) assay to identify the cis-acting regulatory variants of CES1 using a large set of human liver samples. The CES1 gene encodes for carboxylesterase 1 (CES1), the most abundant hepatic hydrolase in humans. Two cis-acting regulatory variants were found to be significantly associated with CES1 ASPE, CES1 protein expression, and its catalytic activity on enalapril hydrolysis in human livers. Compared to conventional gene expression-based approaches, ASPE demonstrated an improved statistical power to detect regulatory variants with small effect sizes since allelic protein expression ratios are less prone to the influence of non-genetic regulators (e.g., diseases and inducers). This study suggests that the ASPE approach is a powerful tool for identifying cis-regulatory variants. This article is protected by copyright. All rights reserved.
The angiotensin-converting enzyme inhibitor enalapril is hydrolysed to an active metabolite, enalaprilat, in the liver via carboxylesterase 1 (CES1). Previous studies show that variant rs71647871 in the CES1 gene affects the pharmacokinetics of enalapril on liver samples as well as healthy volunteers. This study included 286 Caucasian patients with arterial hypertension who received enalapril. The concentrations of enalapril and enalaprilat were determined before subsequent intake of the drug and 4 h after it with high-performance liquid chromatography (HPLC) and mass spectrometric detection. The study included genetic markers as follows: rs2244613, rs71647871 (c.428G>A, p.G143E) and three SNPs indicating the presence of a subtype CES1A1c (rs12149368, rs111604615 and rs201577108). Mean peak and trough enalaprilat concentrations, adjusted by clinical variables, were significantly lower in CES1 rs2244613 heterozygotes (by 16.6% and 19.6%) and in CC homozygotes (by 32.7% and 41.4%) vs. the AA genotype. In CES1A1c homozygotes, adjusted mean enalaprilat concentrations were 75% lower vs. heterozygotes and wild-type (WT) homozygotes. Pharmacogenetic markers of the CES1 gene may be a promising predictor for individualisation when prescribing enalapril.
Variants in the CES1 gene encoding carboxylesterase 1 may affect the metabolism of enalapril to the active metabolite enalaprilat. It was shown that the A allele of rs71647871 and the C allele of rs2244613 led to a decrease in plasma enalaprilat concentrations. This study aimed to estimate the effect of structural haplotypes of CES1 containing the pseudogene CES1P1, or a hybrid of the gene and the pseudogene CES1A2, on the pharmacokinetics of enalapril. We included 286 Caucasian patients with arterial hypertension treated with enalapril. Genotyping was performed using real-time PCR and long-range PCR. Peak and trough plasma enalaprilat concentrations were lower in carriers of CES1A2. The studied haplotypes were in linkage disequilibrium with rs2244613: generally, the A allele was in the haplotype containing the CES1P1, and the C allele was in the haplotype with the CES1A2. Thus, carriers of CES1A2 have reduced CES1 activity against enalapril. Linkage disequilibrium of the haplotype containing the CES1P1 or CES1A2 with rs2244613 should be taken into account when genotyping the CES1 gene.
The number of studies and reviews conducted for the Carboxylesterase gene is limited in comparison with other enzymes. Carboxylesterase (CES) gene or human carboxylesterases (hCES) is a multigene protein belonging to the alpha/beta-hydrolase family. Over the last decade, two major carboxylesterases (CES1 and CES2), located at 16q13-q22.1 on human chromosome 16 have been extensively studied as important mediators in the metabolism of a wide range of substrates. hCES1 is the most widely expressed enzyme in humans, and it is found in the liver. In this review, details regarding CES1 substrates include both inducers (e.g. Rifampicin) and inhibitors (e.g. Enalapril, Diltiazem, Simvastatin) and different types of hCES1 polymorphisms (nsSNPs) such as rs2244613 and rs71647871. along with their effects on various CES1 substrates were documented. Few instances where the presence of nsSNPs exerted a positive influence on certain substrates which are hydrolyzed via hCES1, such as anti-platelets like Clopidogrel when co-administered with other medications such as angiotensin-converting enzyme (ACE) inhibitors were also recorded. Remdesivir, an ester prodrug is widely used for the treatment of COVID-19, being a CES substrate, it is a potent inhibitor of CES2 and is hydrolyzed via CES1. The details provided in this review could give a clear-cut idea or information that could be used for further studies regarding the safety and efficacy of CES1 substrate.
The ability to adapt to low-nutrient microenvironments is essential for tumor-cell survival and progression in solid cancers, such as colorectal carcinoma (CRC). Signaling by the NF-kappaB transcription-factor pathway associates with advanced disease stages and shorter survival in CRC patients. NF-kappaB has been shown to drive tumor-promoting inflammation, cancer-cell survival and intestinal epithelial cell (IEC) dedifferentiation in mouse models of CRC. However, whether NF-kappaB affects the metabolic adaptations that fuel aggressive disease in CRC patients is unknown. Here, we identified carboxylesterase 1 (CES1) as an essential NF-kappaB-regulated lipase linking obesity-associated inflammation with fat metabolism and adaptation to energy stress in aggressive CRC. CES1 promoted CRC-cell survival via cell-autonomous mechanisms that fuel fatty-acid oxidation (FAO) and prevent the toxic build-up of triacylglycerols. We found that elevated CES1 expression correlated with worse outcomes in overweight CRC patients. Accordingly, NF-kappaB drove CES1 expression in CRC consensus molecular subtype (CMS)4, associated with obesity, stemness and inflammation. CES1 was also upregulated by gene amplifications of its transcriptional regulator, HNF4A, in CMS2 tumors, reinforcing its clinical relevance as a driver of CRC. This subtype-based distribution and unfavourable prognostic correlation distinguished CES1 from other intracellular triacylglycerol lipases and suggest CES1 could provide a route to treat aggressive CRC.
        
Title: Clock gene Bmal1 controls diurnal rhythms in expression and activity of intestinal carboxylesterase 1 Chen X, Yu F, Guo X, Su C, Li SS, Wu B Ref: J Pharm Pharmacol, 73:52, 2021 : PubMed
OBJECTIVES: We aimed to characterize diurnal rhythms in CES1 expression and activity in mouse intestine, and to investigate a potential role of the core clock gene Bmal1 in generating diurnal rhythms. METHODS: The regulatory effects of intestinal Bmal1 on diurnal CES1 expression were assessed using intestine-specific Bmal1 knockout (Bmal1iKO) mice and colon cancer cells. The relative mRNA and protein levels were determined by qPCR and Western blotting, respectively. Metabolic activity of CES1 in vitro and in vivo were determined by microsomal assays and pharmacokinetic studies, respectively. Transcriptional gene regulation was investigated using luciferase reporter assay. KEY FINDINGS: Total CES1 protein varied significantly according to time of the day in wild-type (Bmal1fl/fl) mice, peaking at ZT6. Of detectable Ces1 genes, Ces1d mRNA displayed a robust diurnal rhythm with a peak level at ZT6, whereas mRNAs of Ces1e, 1f and 1g showed no rhythms in wild-type mice. Loss of intestinal Bmal1 reduced the levels of total CES1 protein and Ces1d mRNA, and blunted their diurnal rhythms in mice. In vitro microsomal assays indicated that intestinal metabolism of mycophenolate mofetil (MMF, a known CES1 substrate) was more extensive at ZT6 than at ZT18. ZT6 dosing of MMF to wild-type mice generated a higher systemic exposure of mycophenolic acid (the active metabolite of MMF) as compared with ZT18 dosing. Intestinal ablation of Bmal1 down-regulated CES1 metabolism at ZT6, and abolished its time-dependency both in vitro and in vivo. Furthermore, Ces1d/CES1 rhythmicity and positive regulation of Ces1d/CES1 by BMAL1 were confirmed in CT26 and Caco-2 cells. Mechanistically, BMAL1 trans-activated Ces1d/CES1 probably via binding to the E-box elements in the gene promoters. CONCLUSIONS: Bmal1 controls diurnal rhythms in expression and activity of intestinal CES1. Our findings have implications for understanding the crosstalk between circadian clock and xenobiotic metabolism in the intestine.
A recent genome-wide copy number variations (CNVs) scan identified a 16q12.2 deletion that included the carboxylesterase 1 (CES1) gene, which is important in the metabolism of fatty acids and cholesterol. We aimed to investigate whether CES1 CNVs was associated with susceptibility to non-alcoholic fatty liver disease (NAFLD) in a Chinese Han population. A case-control study was conducted among 303 patients diagnosed with NAFLD and 303 age (+/- 5) and sex-matched controls from the Affiliated Nanping First Hospital of Fujian Medical University in China. The copy numbers of CES1 were measured using TaqMan quantitative real-time polymerase chain reaction (qPCR) and serum CES1 was measured using enzyme-linked immunosorbent assays. The Chi-squared test and a logistic regression model were used to evaluate the association between CES1 CNVs and NAFLD susceptibility. The distribution of CES1 CNVs showed a higher frequency of CNVs loss (< 2) among patients; however, the difference was not significant (P = 0.05). After controlling for other known or suspected risk factors for NAFLD, CES1 CNVs loss was significantly associated with greater risk of NAFLD (adjusted OR = 2.75, 95% CI 1.30-5.85, P = 0.01); while CES1 CNVs gain (> 2) was not. There was a suggestion of an association between increased CES1 serum protein levels and CNVs losses among cases, although this was not statistically significant (P = 0.07). Copy number losses (< 2) of CES1 contribute to susceptibility to NAFLD in the Chinese Han population.
        
Title: Transcriptional regulation of carboxylesterase 1 (CES1) in human liver: role of the nuclear receptor NR1H3 (LXRalpha) and its splice isoforms Collins JM, Lu R, Wang X, Zhu HJ, Wang D Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, :, 2021 : PubMed
Carboxylesterase 1 (CES1) is the predominant carboxylesterase in the human liver, involved in metabolism of both xenobiotics and endogenous substrates. Genetic or epigenetic factors that alter CES1 activity or expression are associated with changes in drug response, lipid, and glucose homeostasis. However, the transcriptional regulation of CES1 in the human liver remains uncertain. By applying both the random forest and Sobol's Sensitivity Indices (SSI) to analyze existing liver RNA expression microarray data (GSE9588), we identified NR1H3 (LXRalpha) as a key factor regulating constitutive CES1 expression. This model prediction was validated using siRNA knockdown and CRISPR-mediated transcriptional activation of NR1H3 in Huh7 and HepG2 cells. We found that NR1H3's activation of CES1 is splice isoform-specific, namely that increased expression of the NR1H3-211 isoform increased CES1 expression while NR1H3-201 did not. Also, in human liver samples, expression of NR1H3-211 and CES1 are correlated, while NR1H3-201 and CES1 are not. This trend also occurs during differentiation of induced pluripotent stem cells (iPSCs) to hepatocytes, where only expression of the NR1H3-211 isoform parallels expression of CES1 Moreover, we found that treatment with the NR1H3 agonist T0901317 in HepG2 cells had no effect on CES1 expression. Overall, our results demonstrate a key role of NR1H3 in maintaining the constitutive expression of CES1 in the human liver. Furthermore, our results support that the effect of NR1H3 is splice isoform-specific and appears to be ligand independent. Significance Statement Despite the central role of CES1 in metabolism of numerous medications, little is known about its transcriptional regulation. Here we identify NR1H3 as a key regulator of constitutive CES1 expression, and therefore is a potential target for future studies to understand inter-person variabilities in CES1 activity and drug metabolism.
BACKGROUND AND AIMS: Histone deacetylase inhibitors (HDACi) exert potent anti-inflammatory effects. Because of the ubiquitous expression of HDACs, clinical utility of HDACi is limited by off-target effects. Esterase-sensitive motif (ESM) technology aims to deliver ESM-conjugated compounds to human mononuclear myeloid cells, based on their expression of carboxylesterase 1 (CES1). This study aims to investigate utility of an ESM-tagged HDACi in inflammatory bowel disease (IBD). METHODS: CES1 expression was assessed in human blood, in vitro differentiated macrophage and dendritic cells and Crohn's disease (CD) colon mucosa by mass cytometry, quantitative PCR and immunofluorescence staining respectively. ESM-HDAC528 intracellular retention was evaluated by mass spectrometry. Clinical efficacy of ESM-HDAC528 was tested in DSS-induced colitis and T cell transfer colitis models using transgenic mice expressing human CES1 under the CD68 promotor. RESULTS: CES1 mRNA was highly expressed in human blood CD14 + monocytes, in vitro differentiated and LPS stimulated macrophages and dendritic cells. Specific hydrolysis and intracellular retention of ESM-HDAC528 in CES1 + cells was demonstrated. ESM-HDAC528 inhibited LPS-stimulated IL-6 and TNF-alpha production 1000 times more potently than its control, HDAC800, in CES1 high monocytes. In healthy donors peripheral blood, CES1 expression was significantly higher in CD14 ++CD16 - monocytes compared to CD14 +CD16 ++ monocytes. In CD inflamed colon, a higher number of mucosal CD68 + macrophages expressed CES1 compared to non-inflamed mucosa. In vivo, ESM-HDAC528 reduced monocyte differentiation in the colon and significantly improved colitis in a T cell transfer model, whilst having limited potential in ameliorating DSS-induced colitis. CONCLUSIONS: We demonstrate that monocytes and inflammatory macrophages specifically express CES1, and can be preferentially targeted by ESM-HDAC528 to achieve therapeutic benefit in IBD.
        
Title: Contributions of Cathepsin A and Carboxylesterase 1 to the hydrolysis of Tenofovir Alafenamide in the Human Liver, and the Effect of CES1 Genetic Variation on Tenofovir Alafenamide Hydrolysis Li J, Shi J, Xiao J, Tran L, Wang X, Zhu HJ Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, :, 2021 : PubMed
The prodrug tenofovir alafenamide (TAF) is a first-line antiviral agent for the treatment of chronic hepatitis B infection. TAF activation involves multiple steps, and the first step is an ester hydrolysis reaction catalyzed by hydrolases. This study was to determine the contributions of carboxylesterase 1 (CES1) and cathepsin A (CatA) to TAF hydrolysis in the human liver. Our in vitro incubation studies showed that both CatA and CES1 catalyzed TAF hydrolysis in a pH-dependent manner. At their physiological pH environment, the activity of CatA (pH 5.2) was approximately 1,000-fold higher than that of CES1 (pH 7.2). Given that the hepatic protein expression of CatA was approximately 200-fold lower than that of CES1, the contribution of CatA to TAF hydrolysis in the human liver was estimated to be much greater than that of CES1, which is contrary to the previous perception that CES1 is the primary hepatic enzyme hydrolyzing TAF. The findings were further supported by a TAF incubation study with the CatA inhibitor telaprevir and the CES1 inhibitor bis-(p-nitrophenyl) phosphate. Moreover, an in vitro study revealed that the CES1 variant G143E (rs71647871) is a loss-of-function variant for CES1-mediated TAF hydrolysis. In summary, our results suggest that CatA may play a more important role in the hepatic activation of TAF than CES1. Additionally, TAF activation in the liver could be affected by CES1 genetic variation, but the magnitude of impact appears to be limited due to the major contribution of CatA to hepatic TAF activation. Significance Statement Contrary to the general perception that carboxylesterase 1 (CES1) is the major enzyme responsible for tenofovir alafenamide (TAF) hydrolysis in the human liver, the present study demonstrated that cathepsin A (CatA) may play a more significant role in TAF hepatic hydrolysis. Furthermore, the CES1 variant G143E (rs71647871) was found to be a loss-of-function variant for CES1-mediated TAF hydrolysis.
Remdesivir, an intravenous nucleotide prodrug, has been approved for treating COVID-19 in hospitalized adults and pediatric patients. Upon administration, remdesivir can be readily hydrolyzed to form its active form GS-441524, while the cleavage of the carboxylic ester into GS-704277 is the first step for remdesivir activation. This study aims to assign the key enzymes responsible for remdesivir hydrolysis in humans, as well as to investigate the kinetics of remdesivir hydrolysis in various enzyme sources. The results showed that remdesivir could be hydrolyzed to form GS-704277 in human plasma and the microsomes from human liver (HLMs), lung (HLuMs) and kidney (HKMs), while the hydrolytic rate of remdesivir in HLMs was the fastest. Chemical inhibition and reaction phenotyping assays suggested that human carboxylesterase 1 (hCES1A) played a predominant role in remdesivir hydrolysis, while cathepsin A (CTSA), acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) contributed to a lesser extent. Enzymatic kinetic analyses demonstrated that remdesivir hydrolysis in hCES1A (SHUTCM) and HLMs showed similar kinetic plots and much closed K(m) values to each other. Meanwhile, GS-704277 formation rates were strongly correlated with the CES1A activities in HLM samples from different individual donors. Further investigation revealed that simvastatin (a therapeutic agent for adjuvant treating COVID-19) strongly inhibited remdesivir hydrolysis in both recombinant hCES1A and HLMs. Collectively, our findings reveal that hCES1A plays a predominant role in remdesivir hydrolysis in humans, which are very helpful for predicting inter-individual variability in response to remdesivir and for guiding the rational use of this anti-COVID-19 agent in clinical settings.
BACKGROUND: Androgen deprivation therapy (ADT) is the main clinical treatment for patients with advanced prostate cancer (PCa). However, PCa eventually progresses to castration-resistant prostate cancer (CRPC), largely because of androgen receptor variation and increased intratumoral androgen synthesis. Several studies have reported that one abnormal lipid accumulation is significantly related to the development of PCa. Melatonin (MLT) is a functionally pleiotropic indoleamine molecule and a key regulator of energy metabolism. The aim of our study is finding the links between CRPC and MLT and providing the basis for MLT treatment for CRPC. METHODS: We used animal CRPC models with a circadian rhythm disorder, and PCa cell lines to assess the role of melatonin in PCa. RESULTS: We demonstrated that MLT treatment inhibited tumor growth and reversed enzalutamide resistance in animal CRPC models with a circadian rhythm disorder. A systematic review and meta-analysis demonstrated that MLT is positively associated with an increased risk of developing advanced PCa. Restoration of carboxylesterase 1 (CES1) expression by MLT treatment significantly reduced lipid droplet (LD) accumulation, thereby inducing apoptosis by increasing endoplasmic reticulum stress, reducing de novo intratumoral androgen synthesis, repressing CRPC progression and reversing the resistance to new endocrine therapy. Mechanistic investigations demonstrated that MLT regulates the epigenetic modification of CES1. Ces1-knockout (Ces(-/-) ) mice verified the important role of endogenous Ces1 in PCa. CONCLUSIONS: Our findings provide novel preclinical and clinical information about the role of melatonin in advanced PCa and characterize the importance of enzalutamide combined with MLT administration as a therapy for advanced PCa.
        
Title: Carboxylesterase 1 and Precision Pharmacotherapy: Pharmacogenetics and Nongenetic Regulators Her L, Zhu HJ Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 48:230, 2020 : PubMed
Carboxylesterase (CES) 1 is the most abundant drug-metabolizing enzyme in human livers, comprising approximately 1% of the entire liver proteome. CES1 is responsible for 80%-95% of total hydrolytic activity in the liver and plays a crucial role in the metabolism of a wide range of drugs (especially ester-prodrugs), pesticides, environmental pollutants, and endogenous compounds. Expression and activity of CES1 vary markedly among individuals, which is a major contributing factor to interindividual variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs metabolized by CES1. Both genetic and nongenetic factors contribute to CES1 variability. Here, we discuss genetic polymorphisms, including single-nucleotide polymorphisms (SNPs), and copy number variants and nongenetic contributors, such as developmental status, genders, and drug-drug interactions, that could influence CES1 functionality and the PK and PD of CES1 substrates. Currently, the loss-of-function SNP G143E (rs71647871) is the only clinically significant CES1 variant identified to date, and alcohol is the only potent CES1 inhibitor that could alter the therapeutic outcomes of CES1 substrate medications. However, G143E and alcohol can only explain a small portion of the interindividual variability in the CES1 function. A better understanding of the regulation of CES1 expression and activity and identification of biomarkers for CES1 function in vivo could lead to the development of a precision pharmacotherapy strategy to improve the efficacy and safety of many CES1 substrate drugs. SIGNIFICANCE STATEMENT: The clinical relevance of CES1 has been well demonstrated in various clinical trials. Genetic and nongenetic regulators can affect CES1 expression and activity, resulting in the alteration of the metabolism and clinical outcome of CES1 substrate drugs, such as methylphenidate and clopidogrel. Predicting the hepatic CES1 function can provide clinical guidance to optimize pharmacotherapy of numerous medications metabolized by CES1.
We previously reported that human carboxylesterase 1 (CES1), a serine esterase containing a unique N-linked glycosyl group at Asn79 (N79 CES1), is a candidate serological marker of hepatocellular carcinoma (HCC). CES1 is normally present at low-to-undetectable levels in normal human plasma, HCC tumors, and major liver cancer cell lines. To investigate the potential mechanism underlying the suppression of CES1 expression in liver cancer cells, we took advantage of the low detectability of this marker in tumors by overexpressing CES1 in multiple HCC cell lines, including stable Hep3B cells. We found that the population of CES1-overexpressing (OE) cells decreased and that their doubling time was longer compared with mock control liver cancer cells. Using interactive transcriptome, proteome, and subsequent Gene Ontology enrichment analysis of CES1-OE cells, we found substantial decreases in the expression levels of genes involved in cell cycle regulation and proliferation. This antiproliferative function of the N79 glycan of CES1 was further supported by quantitative real-time polymerase chain reaction, flow cytometry, and an apoptosis protein array assay. An analysis of the levels of key signaling target proteins via Western blotting suggested that CES1 overexpression exerted an antiproliferative effect via the PKD1/PKCmicro signaling pathway. Similar results were also seen in another HCC cell line (PLC/RFP/5) after transient transfection with CES1 but not in similarly treated non-HCC cell lines (e.g., HeLa and Tera-1 cells), suggesting that CES1 likely exerts a liver cell-type-specific suppressive effect. Given that the N-linked glycosyl group at Asn79 (N79 glycan) of CES1 is known to influence CES1 enzyme activity, we hypothesized that the post-translational modification of CES1 at N79 may be linked to its antiproliferative activity. To investigate the regulatory effect of the N79 glycan on cellular growth, we mutated the single N-glycosylation site in CES1 from Asn to Gln (CES1-N79Q) via site-directed mutagenesis. Fluorescence 2-D difference gel electrophoresis protein expression analysis of cell lysates revealed an increase in cell growth and a decrease in doubling time in cells carrying the N79Q mutation. Thus our results suggest that CES1 exerts an antiproliferative effect in liver cancer cells and that the single N-linked glycosylation at Asn79 plays a potential regulatory role. These functions may underlie the undetectability of CES1 in human HCC tumors and liver cancer cell lines. Mass spectrometry data are available via ProteomeXchange under the identifier PXD021573.
        
Title: Inactivation of CES1 Blocks Prostaglandin D(2) Glyceryl Ester Catabolism in Monocytes/Macrophages and Enhances Its Anti-inflammatory Effects, Whereas the Pro-inflammatory Effects of Prostaglandin E(2) Glyceryl Ester Are Attenuated Scheaffer HL, Borazjani A, Szafran BN, Ross MK Ref: ACS Omega, 5:29177, 2020 : PubMed
Human monocytic cells in blood have important roles in host defense and express the enzyme carboxylesterase 1 (CES1). This metabolic serine hydrolase plays a critical role in the metabolism of many molecules, including lipid mediators called prostaglandin glyceryl esters (PG-Gs), which are formed during cyclooxygenase-mediated oxygenation of the endocannabinoid 2-arachidonoylglycerol. Some PG-Gs have been shown to exhibit anti-inflammatory effects; however, they are unstable compounds, and their hydrolytic breakdown generates pro-inflammatory prostaglandins. We hypothesized that by blocking the ability of CES1 to hydrolyze PG-Gs in monocytes/macrophages, the beneficial effects of anti-inflammatory prostaglandin D(2)-glyceryl ester (PGD(2)-G) could be augmented. The goals of this study were to determine whether PGD(2)-G is catabolized by CES1, evaluate the degree to which this metabolism is blocked by small-molecule inhibitors, and assess the immunomodulatory effects of PGD(2)-G in macrophages. A human monocytic cell line (THP-1 cells) was pretreated with increasing concentrations of known small-molecule inhibitors that block CES1 activity [chlorpyrifos oxon (CPO), WWL229, or WWL113], followed by incubation with PGD(2)-G (10 M). Organic solvent extracts of the treated cells were analyzed by liquid chromatography with tandem mass spectrometry to assess levels of the hydrolysis product PGD(2). Further, THP-1 monocytes with normal CES1 expression (control cells) and "knocked-down" CES1 expression (CES1KD cells) were employed to confirm CES1's role in PGD(2)-G catabolism. We found that CES1 has a prominent role in PGD(2)-G hydrolysis in this cell line, accounting for about 50% of its hydrolytic metabolism, and that PGD(2)-G could be stabilized by the inclusion of CES1 inhibitors. The inhibitor potency followed the rank order: CPO > WWL113 > WWL229. THP-1 macrophages co-treated with WWL113 and PGD(2)-G prior to stimulation with lipopolysaccharide exhibited a more pronounced attenuation of pro-inflammatory cytokine levels (interleukin-6 and TNFalpha) than by PGD(2)-G treatment alone. In contrast, prostaglandin E(2)-glyceryl ester (PGE(2)-G) had opposite effects compared to those of PGD(2)-G, which appeared to be dependent on the hydrolysis of PGE(2)-G to PGE(2). These results suggest that the anti-inflammatory effects induced by PGD(2)-G can be further augmented by inactivating CES1 activity with specific small-molecule inhibitors, while pro-inflammatory effects of PGE(2)-G are attenuated. Furthermore, PGD(2)-G (and/or its downstream metabolites) was shown to activate the lipid-sensing receptor PPARgamma, resulting in altered "alternative macrophage activation" response to the Th2 cytokine interleukin-4. These findings suggest that inhibition of CES1 and other enzymes that regulate the levels of pro-resolving mediators such as PGD(2)-G in specific cellular niches might be a novel anti-inflammatory approach.
        
Title: In Vitro Inhibition of Carboxylesterase 1 by Major Cannabinoids and Selected Metabolites Qian Y, Wang X, Markowitz JS Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 47:465, 2019 : PubMed
The escalating use of medical cannabis and significant recreational use of cannabis in recent years has led to a higher potential for metabolic interactions between cannabis or one or more of its components and concurrently used medications. Although there have been a significant number of in vitro and in vivo assessments of the effects of cannabis on cytochrome P450 and UDP-glucuronosyltransferase enzyme systems, there is limited information regarding the effects of cannabis on the major hepatic esterase, carboxylesterase 1 (CES1). In this study, we investigated the in vitro inhibitory effects of the individual major cannabinoids and metabolites 9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), 11-nor-THC-carboxylic acid, and 11-hydroxy-THC on CES1 activity. S9 fractions from human embryonic kidney 293 cells stably expressing CES1 were used in the assessment of cannabinoid inhibitory effects. THC, CBD, and CBN each exhibited substantial inhibitory potency, and were further studied to determine their mechanism of inhibition and kinetic parameters. The inhibition of CES1 by THC, CBD, and CBN was reversible and appears to proceed through a mixed competitive-noncompetitive mechanism. The inhibition constant (K i) values for THC, CBD, and CBN inhibition were 0.541, 0.974, and 0.263 microM (0.170, 0.306, and 0.0817 microg/ml), respectively. Inhibition potency was increased when THC, CBD, and CBN were combined. Compared with the potential unbound plasma concentrations attainable clinically, the K i values suggest a potential for clinically significant inhibition of CES1 by THC and CBD. CBN, however, is expected to have a limited impact on CES1. Carefully designed clinical studies are warranted to establish the clinical significance of these in vitro findings.
PURPOSE: Clopidogrel is a thienopyridine prodrug that inhibits platelet aggregation. It is prescribed to prevent atherothrombotic and thromboembolic events in patients receiving a stent implant in carotid, vertebral, or cranial arteries. The influence of cytochrome P-450 (CYP) 2C19 on the response to clopidogrel has been widely studied; however, the effect of other genes involved in clopidogrel absorption and metabolism has not been established in this cohort of patients. METHODS: This observational retrospective study assessed the antiplatelet response and the prevalence of hemorrhagic or ischemic events after percutaneous neurointervention in clopidogrel-treated patients, related to 35 polymorphisms in the genes encoding the clopidogrel-metabolizing enzymes (CYP2C19, CYP1A2, CYP2B6, CYP2C9, CYP2C9, CYP3A4, CYP3A5, carboxylesterase-1 [CES1], and paraoxonase-1 [PON1]), P-glycoprotein transporter (ABCB1), and platelet receptor P2Y12. Polymorphisms were analyzed by quantitative real-time polymerase chain reaction and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Antiplatelet response was documented with the VerifyNow system (Accriva, San Diego, California). FINDINGS: We confirmed that CYP2C19 is the most important enzyme involved in clopidogrel response. The carriage of the CYP2C19*2 allele was strongly associated with hyporesponse to clopidogrel, while the CYP2C19*17 allele was a protective factor for the development of ischemic events (odds ratio = 0.149; P = 0.002) but a risk factor for bleeding (odds ratio = 3.60; P = 0.038). Patients carrying ABCB1 mutated alleles showed lower aggregation values, suggesting that clopidogrel absorption is influenced by P-glycoprotein. In fact, the percentage of responders was significantly higher in the group carrying the mutated haplotype compared to the wild type (80.8% vs 43.3%; P = 0.009). Patients with the CES1 G143E C/T genotype showed a considerably lower, aggregation value versus wild-type patients, although the difference was not significant likely due to the small sample size (59.0 [21.2] vs 165.2 [86.0] PRU; P = 0.084), which suggests an increased active metabolite formation. No relationship was found between polymorphisms in other CYP genes, PON1, or P2RY12 and response to clopidogrel in patients subjected to neurointervention procedures. IMPLICATIONS: Therapeutic guidelines recommend that CYP2C19 intermediate and poor metabolizers with acute coronary syndromes undergoing percutaneous coronary intervention receive an alternative antiplatelet therapy; however, genotype-guided therapy is not a standard recommendation for neurovascular conditions. This is the first study to carry out a joint analysis of CYP2C19 and other genes involved in clopidogrel treatment in patients receiving percutaneous neurointervention. Our findings support routine genotyping in clopidogrel-treated patients. Moreover, we encourage considering an alternative antiplatelet therapy in CYP2C19 intermediate, poor and ultrarapid metabolizers. Additionally, ABCB1 polymorphisms could be considered for a better pharmacogenetic approach.
The present clinical trial investigated the impact of selected SNPs in CES1 on the metabolic activity of the enzyme. For this purpose, we used methylphenidate (MPH) as a pharmacological probe and the d-RA/d-MPH (metabolite/parent drug) ratios as a measure of enzymatic activity. This metabolic ratio (MR) was validated against the AUC ratios (AUCd -RA /AUCd -MPH ). CES1 SNPs from 120 volunteers were identified, and 12 SNPs fulfilling predefined inclusion criteria were analysed separately, comparing the effect of each genotype on the metabolic ratios. The SNP criteria were as follows: presence of Hardy-Weinberg equilibrium, a minor allele frequency >/= 0.01 and a clearly interpretable sequencing result in at least 30% of the individuals. Each participant ingested 10 mg of racemic methylphenidate, and blood samples were drawn prior to and 3 hours after drug administration. The SNP analysis confirmed the considerable impact of rs71647871 (G143E) in exon 4 on drug metabolism. In addition, three volunteers with markedly lower median MR, indicating decreased CES1 activity, harboured the same combination of three SNPs in intron 5. The median MR for these SNPs was 8.2 for the minor allele compared to 16.4 for the major alleles (P = 0.04). Hence, one of these or the combination of these SNPs could be of clinical significance considering that the median MR of the G143E group was 5.4. The precise genetic relationship of this finding is currently unknown, as is the clinical significance.
This study was aimed to investigate the prevalence of the CES1 gene (c.1168-33A > C, rs2244613) polymorphism among 12 different ethnic groups living in Russia to provide a basis for future clinical studies concerning genetic determinants of dabigatran safety. The study involved 1630 apparently healthy, unrelated, and chronic medication-free volunteers of both genders from 12 different ethnic groups in Russia: 136 Russians, 90 Avars, 50 Dargins, 46 Laks, 120 Kabardians, 112 Balkars, 244 Ossetians, 206 Mari, 204 Mordvinians, 238 Chuvashes, 114 Buryats and 70 Nanays. Genotyping was performed by using real-time polymerase chain reaction-based methods. The allelic prevalence of the ethnic groups was compared with Caucasus population participating in the RE-LY study. Statistically significant differences for the following gene polymorphism were found between all ethnic groups and RE-LY participants. Based on obtained results, it can be assumed that patients of all ethnic groups living in Russia taking dabigatran have a lower risk of bleeding.
2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid with anti-inflammatory properties. Blocking 2-AG hydrolysis to enhance CB2 signaling has proven effective in mouse models of inflammation. However, the expression of 2-AG lipases has never been thoroughly investigated in human leukocytes. Herein, we investigated the expression of seven 2-AG hydrolases by human blood leukocytes and alveolar macrophages (AMs) and found the following protein expression pattern: monoacylglycerol (MAG lipase; eosinophils, AMs, monocytes), carboxylesterase (CES1; monocytes, AMs), palmitoyl-protein thioesterase (PPT1; AMs), alpha/beta-hydrolase domain (ABHD6; mainly AMs), ABHD12 (all), ABHD16A (all), and LYPLA2 (lysophospholipase 2; monocytes, lymphocytes, AMs). We next found that all leukocytes could hydrolyze 2-AG and its metabolites derived from cyclooxygenase-2 (prostaglandin E2 -glycerol [PGE2 -G]) and the 15-lipoxygenase (15-hydroxy-eicosatetraenoyl-glycerol [15-HETE-G]). Neutrophils and eosinophils were consistently better at hydrolyzing 2-AG and its metabolites than monocytes and lymphocytes. Moreover, the efficacy of leukocytes to hydrolyze 2-AG and its metabolites was 2-AG >/= 15-HETE-G >> PGE2 -G for each leukocyte. Using the inhibitors methylarachidonoyl-fluorophosphonate (MAFP), 4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxyla te (JZL184), Palmostatin B, 4'-carbamoylbiphenyl-4-yl methyl(3-(pyridin-4-yl)benzyl)carbamate, N-methyl-N-[[3-(4-pyridinyl)phenyl]methyl]-4'-(aminocarbonyl)[1,1'-biphenyl]-4-yl ester carbamic acid (WWL70), 4'-[[[methyl[[3-(4-pyridinyl)phenyl]methyl]amino]carbonyl]oxy]-[1,1'-biphenyl]-4- carboxylic acid, ethyl ester (WWL113), tetrahydrolipstatin, and ML349, we could not pinpoint a specific hydrolase responsible for the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by these leukocytes. Furthermore, JZL184, a selective MAG lipase inhibitor, blocked the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by neutrophils and the hydrolysis of PGE2 -G and 15-HETE-G by lymphocytes, two cell types with limited/no MAG lipase. Using an activity-based protein profiling (ABPP) probe to label hydrolases in leukocytes, we found that they express many MAFP-sensitive hydrolases and an unknown JZL184-sensitive hydrolase of approximately 52 kDa. Altogether, our results indicate that human leukocytes are experts at hydrolyzing 2-AG and its metabolites via multiple lipases and probably via a yet-to-be characterized 52 kDa hydrolase. Blocking 2-AG hydrolysis in humans will likely abrogate the ability of human leukocytes to degrade 2-AG and its metabolites and increase their anti-inflammatory effects in vivo.
        
Title: Catalytic Hydrolysis Mechanism of Cocaine by Human Carboxylesterase 1: An Orthoester Intermediate Slows Down the Reaction Yan M, Zhang Z, Liu Z, Zhang C, Zhang J, Fan S, Yang Z Ref: Molecules, 24:, 2019 : PubMed
Human carboxylesterase 1 (hCES1) is a major carboxylesterase in the human body and plays important roles in the metabolism of a wide variety of substances, including lipids and drugs, and therefore is attracting more and more attention from areas including lipid metabolism, pharmacokinetics, drug-drug interactions, and prodrug activation. In this work, we studied the catalytic hydrolysis mechanism of hCES1 by the quantum mechanics computation method, using cocaine as a model substrate. Our results support the four-step theory of the esterase catalytic hydrolysis mechanism, in which both the acylation stage and the deacylation stage include two transition states and a tetrahedral intermediate. The roles and cooperation of the catalytic triad, S221, H468, and E354, were also analyzed in this study. Moreover, orthoester intermediates were found in hCES1-catalyzed cocaine hydrolysis reaction, which significantly elevate the free energy barrier and slow down the reaction. Based on this finding, we propose that hCES1 substrates with beta-aminocarboxylester structure might form orthoester intermediates in hCES1-catalyzed hydrolysis, and therefore prolong their in vivo half-life. Thus, this study helps to clarify the catalytic mechanism of hCES1 and elucidates important details of its catalytic process, and furthermore, provides important insights into the metabolism of hCES1 substrates and drug designing.
        
Title: Clinical implications of genetic variation in carboxylesterase drug metabolism Chen F, Zhang B, Parker RB, Laizure SC Ref: Expert Opin Drug Metab Toxicol, 14:131, 2018 : PubMed
INTRODUCTION: Mammalian carboxylesterase enzymes are a highly conserved metabolic pathway involved in the metabolism of endogenous and exogenous compounds including many widely prescribed therapeutic agents. Recent advances in our understanding of genetic polymorphisms affecting enzyme activity have exposed potential therapeutic implications. Areas covered: The aims of this review are to provide an overview of carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) gene structure, to summarize the known polymorphism affecting substrate-drug metabolism, and to assess the potential therapeutic implications of genetic variations affecting enzyme function. Expert opinion: Genetic variability in carboxylesterase drug metabolism is a nascent area of research with only a handful of the thousands of SNPs investigated for their potential effects of enzyme activity or carboxylesterase-substrate disposition and therapeutics. It remains to be determined if the wide variability in enzyme activity can be explained by genetic variation, and used in personalized medicine to improve clinical outcomes.
        
Title: Potent, Irreversible Inhibition of Human Carboxylesterases by Tanshinone Anhydrides Isolated from Salvia miltiorrhiza (Danshen) Hatfield MJ, Binder RJ, Gannon R, Fratt EM, Bowling J, Potter PM Ref: Journal of Natural Products, 81:2410, 2018 : PubMed
The roots of Salvia miltiorrhiza ("Danshen") have been used in Chinese herbal medicine for centuries for a host of different conditions. While the exact nature of the active components of this material are unknown, large amounts of tanshinones are present in extracts derived from these samples. Recently, the tanshinones have been demonstrated to be potent human carboxylesterase (CE) inhibitors, with the ability to modulate the biological activity of esterified drugs. During the course of these studies, we also identified more active, irreversible inhibitors of these enzymes. We have purified, identified, and synthesized these molecules and confirmed them to be the anhydride derivatives of the tanshinones. These compounds are exceptionally potent inhibitors ( Ki < 1 nM) and can inactivate human CEs both in vitro and in cell culture systems and can modulate the metabolism of the esterified drug oseltamivir. Therefore, the coadministration of Danshen extracts with drugs that contain the ester chemotype should be minimized since, not only is transient inhibition of CEs observed with the tanshinones, but also prolonged irreversible inhibition arises via interaction with the anhydrides.
        
Title: Carboxylesterases in lipid metabolism: from mouse to human Lian J, Nelson R, Lehner R Ref: Protein Cell, 9:178, 2018 : PubMed
Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (over)expression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.
Obesity often leads non-alcoholic fatty liver disease, insulin resistance and hyperlipidemia. Expression of carboxylesterase CES1 is positively correlated with increased lipid storage and plasma lipid concentration. Here we investigated structural and metabolic consequences of a single nucleotide polymorphism in CES1 gene that results in p.Gly143Glu amino acid substitution. We generated a humanized mouse model expressing CES1(WT) (control), CES1(G143E) and catalytically dead CES1(S221A) (negative control) in the liver in the absence of endogenous expression of the mouse orthologous gene. We show that the CES1(G143E) variant exhibits only 20% of the wild-type lipolytic activity. High-fat diet fed mice expressing CES1(G143E) had reduced liver and plasma triacylglycerol levels. The mechanism by which decreased CES1 activity exerts this hypolipidemic phenotype was determined to include decreased very-low density lipoprotein secretion, decreased expression of hepatic lipogenic genes and increased fatty acid oxidation as determined by increased plasma ketone bodies and hepatic mitochondrial electron transport chain protein abundance. We conclude that attenuation of human CES1 activity provides a beneficial effect on hepatic lipid metabolism. These studies also suggest that CES1 is a potential therapeutic target for non-alcoholic fatty liver disease management.
        
Title: Silencing carboxylesterase 1 in human THP-1 macrophages perturbs genes regulated by PPARgamma/RXR and RAR/RXR: down-regulation of CYP27A1-LXRalpha signaling Mangum LC, Hou X, Borazjani A, Lee JH, Ross MK, Crow JA Ref: Biochemical Journal, 475:621, 2018 : PubMed
Macrophage foam cells store excess cholesterol as cholesteryl esters, which need to be hydrolyzed for cholesterol efflux. We recently reported that silencing expression of carboxylesterase 1 (CES1) in human THP-1 macrophages [CES1KD (THP-1 cells with CES1 expression knocked down) macrophages] reduced cholesterol uptake and decreased expression of CD36 and scavenger receptor-A in cells loaded with acetylated low-density lipoprotein (acLDL). Here, we report that CES1KD macrophages exhibit reduced transcription of cytochrome P45027A1 (CYP27A1) in nonloaded and acLDL-loaded cells. Moreover, levels of CYP27A1 protein and its enzymatic product, 27-hydroxycholesterol, were markedly reduced in CES1KD macrophages. Transcription of LXRalpha (liver X receptor alpha) and ABCA1 (ATP-binding cassette transporter A1) was also decreased in acLDL-loaded CES1KD macrophages, suggesting reduced signaling through PPARgamma-CYP27A1-LXRalpha. Consistent with this, treatment of CES1KD macrophages with agonists for PPARgamma, RAR, and/or RAR/RXR partially restored transcription of CYP27A1 and LXRalpha, and repaired cholesterol influx. Conversely, treatment of control macrophages with antagonists for PPARgamma and/or RXR decreased transcription of CYP27A1 and LXRalpha Pharmacologic inhibition of CES1 in both wild-type THP-1 cells and primary human macrophages also decreased CYP27A1 transcription. CES1 silencing did not affect transcript levels of PPARgamma and RXR in acLDL-loaded macrophages, whereas it did reduce the catabolism of the endocannabinoid 2-arachidonoylglycerol. Finally, the gene expression profile of CES1KD macrophages was similar to that of PPARgamma knockdown cells following acLDL exposures, further suggesting a mechanistic link between CES1 and PPARgamma. These results are consistent with a model in which abrogation of CES1 function attenuates the CYP27A1-LXRalpha-ABCA1 signaling axis by depleting endogenous ligands for the nuclear receptors PPARgamma, RAR, and/or RXR that regulate cholesterol homeostasis.
Several single nucleotide variations (SNVs) affect carboxylesterase 1 (CES1) activity, but the effects of genetic variants on CES1 gene expression have not been systematically investigated. Therefore, our aim was to investigate effects of genetic variants on CES1 gene expression in two independent whole blood sample cohorts of 192 (discovery) and 88 (replication) healthy volunteers and in a liver sample cohort of 177 patients. Furthermore, we investigated possible effects of the found variants on clopidogrel pharmacokinetics (n = 106) and pharmacodynamics (n = 46) in healthy volunteers, who had ingested a single 300 mg or 600 mg dose of clopidogrel. Using massively parallel sequencing, we discovered two CES1 SNVs, rs12443580 and rs8192935, to be strongly and independently associated with a 39% (p = 4.0 x 10(-13) ) and 31% (p = 2.5 x 10(-8) ) reduction in CES1 whole blood expression per copy of the minor allele. These findings were replicated in the replication cohort. However, these SNVs did not affect CES1 liver expression, or clopidogrel pharmacokinetics or pharmacodynamics. Conversely, the CES1 c.428G>A missense SNV (rs71647871) impaired the hydrolysis of clopidogrel, increased exposure to clopidogrel active metabolite and enhanced its antiplatelet effects. In conclusion, the rs12443580 and rs8192935 variants reduce CES1 expression in whole blood but not in the liver. These tissue-specific effects may result in substrate-dependent effects of the two SNVs on CES1-mediated drug metabolism.
        
Title: Carboxylesterase 1 genes: systematic review and evaluation of existing genotyping procedures Rasmussen HB, Madsen MB Ref: Drug Metab Pers Ther, 33:3, 2018 : PubMed
The carboxylesterase 1 gene (CES1) encodes a hydrolase that metabolizes commonly used drugs. The CES1-related pseudogene, carboxylesterase 1 pseudogene 1 (CES1P1), has been implicated in gene exchange with CES1 and in the formation of hybrid genes including the carboxylesterase 1A2 gene (CES1A2). Hence, the CES1 region is complex. Using in silico PCR and alignment, we assessed the specificity of PCR-assisted procedures for genotyping CES1, CES1A2 and CES1P1 in studies identified in PubMed. We identified 33 such studies and excluded those that were not the first to use a procedure or lacked sequence information. After this 17 studies remained. Ten of these used haplotype-specific amplification, restriction enzyme treatment or amplicon sequencing, and included five that were predicted to lack specificity. All procedures for genotyping of single nucleotide polymorphisms in eight studies lacked specificity. One of these studies also used amplicon sequencing, thus being present in the group above. Some primers and their intended targets were mismatched. We provide experimental evidence that one of the procedures lacked specificity. Additionally, a complex pattern of segmental duplications in the CES1 region was revealed. In conclusion, many procedures for CES1, CES1A2 and CES1P1 genotyping appear to lack specificity. Knowledge about the segmental duplications may improve the typing of these genes.
        
Title: Novel procedure with improved resolution and specificity for amplification and differentiation of variants of the gene encoding carboxylesterase 1 Bjerre D, Rasmussen HB Ref: Pharmacogenet Genomics, 27:155, 2017 : PubMed
Carboxylesterase 1 (CES1) is implicated in the metabolism of several commonly used drugs and other xenobiotics. The gene encoding this enzyme, CES1, is duplicated in some individuals. The original gene copy is called CES1A1. The duplicated version, CES1A2, is a hybrid of CES1A1 and the CES1-related pseudogene, CES1P1. Variants of CES1A2 with a weak and a strong promoter, respectively, have been reported. In addition, there are chimeric subtypes of CES1A1 that contain a segment of CES1P1. Collectively, this represents challenges to the genotyping of CES1 that previous procedures have had difficulties in solving, frequently leading to loss of specificity and inaccurate genotyping. Here, we report a novel and specific procedure that can selectively amplify CES1A1 and CES1A2 and accurately determine their variants. This procedure may be useful for personalization of treatments with drugs metabolized by CES1.
An important concern with the anticancer drug capecitabine (Cp), an oral prodrug of 5-fluorouracil, are dose-limiting adverse effects, in particular hand-foot syndrome (HFS) and diarrhea. Here we evaluated the association of genetic variability in all enzymes of the Cp-activation pathway to 5-fluorouracil with Cp-related early-onset toxicity in 144 patients receiving Cp. We identified a haplotype encompassing five variants in the carboxylesterase 1 (CES1) gene region including an expression quantitative trait locus associated with early-onset Cp-toxicity (Haplotype A3: ORadditive = 2.2, 95% CI 1.2-4.0, Padjusted = 0.012; ORrecessive = 10.3, 95% CI 2.1-49.4, Padjusted = 0.0038). Furthermore, the association of two linked cytidine deaminase (CDA) promoter variants (c.1-451C>T: ORdominant = 4.3, 95% CI 1.3-14.2, Padjusted = 0.017; and c.1-92A>G: ORdominant = 4.4, 95% CI 1.3-14.5, Padjusted = 0.015) with Cp-related diarrhea was replicated. This first study identifying an association of genetic variation in CES1 with Cp-related toxicity provides further evidence for the existence of a functional noncoding CES1-variant with a possible regulatory impact.
        
Title: Predominant contributions of carboxylesterase 1 and 2 in hydrolysis of anordrin in humans Jiang J, Chen X, Zhong D Ref: Xenobiotica, :1, 2017 : PubMed
1. Anordrin (2alpha, 17alpha-diethynyl-A-nor-5alpha-androstane-2beta, 17beta-diol diproprionate) is post-coital contraceptive drug that is on the market in China for more than 30 years. This study aims to elucidate enzymes involved in anordrin hydrolysis, and to evaluate the significant role of carboxylesterases in anordrin hydrolysis in humans. 2. Human liver and intestinal microsomes, recombinant human carboxylesterase were selected as enzyme sources. In human liver microsomes, intrinsic clearance was 684 +/- 83 muL/min/mg protein, which was considerably higher than the value of intestine microsomes (94.6 +/- 13.3 muL/min/mg protein). Carboxylesterase (CES) 1 has more contribution than CES2 in human liver. 3. Inhibition studies were performed using representative esterase inhibitors to confirm esterase isoforms involved in anordrin hydrolysis. Simvastatin strongly inhibited hydrolytic process of anordrin in liver and intestine microsomes, with IC50 values of 10.9 +/- 0.1 and 6.94 +/- 0.03 muM, respectively. 4. The present study investigated for the first time hydrolytic enzyme phenotypes of anordrin. Anordrin is predominantly catalyzed by CES1 and CES2 to generate the main active metabolite, anordiol. Moreover, anordrin and its metabolite anordiol can be altered by esterase inhibitors, such as simvastatin, upon exposure in vivo.
Pulmonary arterial hypertension is a complication of methamphetamine use (METH-PAH) but the pathogenic mechanisms are unknown. Given that cytochrome P450 2D6 (CYP2D6) and carboxylesterase 1 (CES1) are involved in metabolism of METH and other amphetamine-like compounds, we postulated that loss of function variants could contribute to METH-PAH. While no difference in CYP2D6 expression was seen by lung immunofluorescence, CES1 expression was significantly reduced in endothelium of METH-PAH microvessels. Mass spectrometry analysis showed that healthy pulmonary microvascular endothelial cells (PMVECs) have the capacity to both internalize and metabolize METH. Furthermore, whole exome sequencing data from 18 METH-PAH patients revealed that 94.4% of METH-PAH patients were heterozygous carriers of a single nucleotide variant (SNV, rs115629050) predicted to reduce CES1 activity. PMVECs transfected with this CES1 variant demonstrated significantly higher rates of METH-induced apoptosis. METH exposure results in increased formation of reactive oxygen species (ROS) and a compensatory autophagy response. Compared to healthy cells, CES1-deficient PMVECs lack a robust autophagy response despite higher ROS, which correlates with increased apoptosis. We propose that reduced CES1 expression/activity could promote development of METH-PAH by increasing PMVEC apoptosis and small vessel loss.
        
Title: Nomenclature for alleles of the human carboxylesterase 1 gene Rasmussen HB, Madsen MB, Hansen PR Ref: Pharmacogenet Genomics, 27:78, 2017 : PubMed
AIMS: This study investigated the influence of CES1 variations, including the single nucleotide polymorphism (SNP) rs71647871 (G143E) and variation in copy number, on the pharmacokinetics of a single oral dose of 10 mg methylphenidate. METHODS: CES1 genotype was obtained from 200 healthy Danish Caucasian volunteers. Based on the genotype, 44 (19 males and 25 females) were invited to participate in an open, prospective trial involving six predefined genotypes: three groups with two, three and four CES1 copies, respectively; a group of carriers of the CES1 143E allele; a group of individuals homozygous for CES1A1c (CES1VAR); and a group having three CES1 copies, in which the duplication, CES1A2, had increased transcriptional activity. Plasma concentrations of methylphenidate and its primary metabolites were determined at scheduled time points. RESULTS: Median AUC of d-methylphenidate was significantly larger in the group carrying the 143E allele (53.3 ng ml-1 h-1 , range 38.6-93.9) than in the control group (21.4 ng ml-1 h-1 , range 15.7-34.9) (P < 0.0001). Median AUC of d-methylphenidate was significantly larger in the group with four CES1 copies (34.5 ng ml-1 h-1 , range 21.3-62.8) than in the control group (P = 0.01) and the group with three CES1 copies (23.8 ng ml-1 h-1 , range 15.3-32.0, P = 0.03). There was no difference between the groups with two and three copies of CES1. CONCLUSIONS: The 143E allele resulted in an increased AUC, suggesting a significantly decreased CES1 enzyme activity. Surprisingly, this was also the case in subjects with homozygous duplication of CES1, perhaps reflecting an undiscovered mutation affecting the activity of the enzyme.
This study investigated the influence of variations in the carboxylesterase 1 gene (CES1) on the pharmacokinetics of enalapril. Forty-three healthy, Danish, Caucasian volunteers representing different pre-defined genotypes each received 10 mg of enalapril. At specified time-points, plasma concentrations of enalapril and the active metabolite enalaprilat were measured. The volunteers were divided into six different groups according to their genetic profile of CES1: group 1 (control group, n = 16) with two CES1 copies without non-synonymous SNPs in the exons; group 2 (n = 5) with four copies of CES1; group 3 (n = 6) harbouring the G143E polymorphism; group 4 (n = 2) with three CES1 copies and increased transcriptional activity of the duplication (CES1A2); group 5 (n = 4) harbouring the CES1A1c variant; and group 6 (n = 10) with three CES1 copies and the common promoter with low transcriptional activity of the duplication. The median AUC of enalaprilat in the control group was not significantly different from any of the other five groups (297 ng/ml x h in the control group versus 310, 282, 294, 344 and 306 ng/ml x h in groups 2-6, respectively). The terminal half-life of enalaprilat was significantly longer in group 6 compared with the control group (26.7 hr versus 12.7 hr, respectively). However, this was not considered clinically relevant. In conclusion, none of the selected variations of CES1 had a clinically relevant impact on the metabolism of enalapril.
        
Title: A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms Wang X, Rida N, Shi J, Wu AH, Bleske BE, Zhu HJ Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 45:1149, 2017 : PubMed
Carboxylesterase 1 (CES1) is the predominant human hepatic hydrolase responsible for the metabolism of many clinically important medications. CES1 expression and activity vary markedly among individuals; and genetic variation is a major contributing factor to CES1 interindividual variability. In this study, we comprehensively examined the functions of CES1 nonsynonymous single nucleotide polymorphisms (nsSNPs) and haplotypes using transfected cell lines and individual human liver tissues. The 20 candidate variants include CES1 nsSNPs with a minor allele frequency >0.5% in a given population or located in close proximity to the CES1 active site. Five nsSNPs, including L40Ter (rs151291296), G142E (rs121912777), G147C (rs146456965), Y170D (rs148947808), and R171C (rs201065375), were loss-of-function variants for metabolizing the CES1 substrates clopidogrel, enalapril, and sacubitril. In addition, A158V (rs202121317), R199H (rs2307243), E220G (rs200707504), and T290M (rs202001817) decreased CES1 activity to a lesser extent in a substrate-dependent manner. Several nsSNPs, includingL40Ter (rs151291296), G147C (rs146456965), Y170D (rs148947808), and R171C (rs201065375), significantly reduced CES1 protein and/or mRNA expression levels in the transfected cells. Functions of the common nonsynonymous haplotypes D203E-A269S and S75N-D203E-A269S were evaluated using cells stably expressing the haplotypes and a large set of the human liver. Neither CES1 expression nor activity was affected by the two haplotypes. In summary, this study revealed several functional nsSNPs with impaired activity on the metabolism of CES1 substrate drugs. Clinical investigations are warranted to determine whether these nsSNPs can serve as biomarkers for the prediction of therapeutic outcomes of drugs metabolized by CES1.
Carboxylesterase 1 (CES1) hydrolyzes the prodrug clopidogrel to an inactive carboxylic acid metabolite. The effects of CES1 S75N (rs2307240,C>T) on clopidogrel response among 851 acute coronary syndrome patients who came from the north, central and south of China were studied. The occurrence ratios of each endpoint in the CC group were significantly higher than in the CT + TT group for cerebrovascular events (14% vs 4.8%, p < 0.001, OR = 0.31), acute myocardial infarction (15.1% vs 6.1%, p < 0.001, OR = 0.37) and unstable angina (62.8% vs 37.7%, p < 0.001, OR = 0.36). The results showed that there was a significant association between CES1 S75N (rs2307240) and the outcome of clopidogrel therapy. Moreover, the frequency of the T allele of rs2307240 in acute coronary syndrome patients (MAF = 0.22) was more than four times higher than that in the general public (MAF = 0.05).
        
Title: Biotransformation Capacity of Carboxylesterase in Skin and Keratinocytes for the Penta-Ethyl Ester Prodrug of DTPA Fu J, Sadgrove M, Marson L, Jay M Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 44:1313, 2016 : PubMed
The penta-ethyl ester prodrug of the chelating agent diethylene triamine pentaacetic acid (DTPA), referred to as C2E5, effectively accelerated clearance of americium after transdermal delivery. Carboxylesterases (CESs) play important roles in facilitating C2E5 hydrolysis. However, whether CESs in human skin hydrolyze C2E5 remains unknown. We evaluated the gene and protein expression of CESs in distinctive human epidermal cell lines: HEKa, HEKn, HaCaT, and A431. The substrates p-nitrophenyl acetate (pNPA) and 4-nitrophenyl valerate (4-NPV) were used to access esterase and CES activity. C2E5 hydrolysis was measured by radiometric high-performance liquid chromatography after incubation of [(14)C]C2E5 with supernatant fractions after centrifugation at 9000g (S9) prepared from skin cell lines. CES-specific inhibitors were used to access metabolism in human skin S9 fractions with analysis by liquid chromatography-tandem mass spectrometry. We identified the human carboxylesterase 1 and 2 (CES1 and CES2) bands in a Western blot. The gene expression of these enzymes was supported by a real-time polymerase chain reaction (qPCR). pNPA and 4-NPV assays demonstrated esterase and CES activity in all the cell lines that were comparable to human skin S9 fractions. The prodrug C2E5 was hydrolyzed by skin S9 fractions, resulting in a primary metabolite, C2E4. In human skin S9 fractions, inhibition of C2E5 hydrolysis was greatest with a pan-CES inhibitor (benzil). CES1 inhibition (troglitazone) was greater than CES2 (loperamide), suggesting a primary metabolic role for CES1. These results indicate that human keratinocyte cell lines are useful for the evaluation of human cutaneous metabolism and absorption of ester-based prodrugs. However, keratinocytes from skin provide a small contribution to the overall metabolism of C2E5.
        
Title: Age-Dependent Human Hepatic Carboxylesterase 1 (CES1) and Carboxylesterase 2 (CES2) Postnatal Ontogeny Hines RN, Simpson PM, McCarver DG Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 44:959, 2016 : PubMed
Human hepatic carboxylesterase 1 and 2 (CES1 and CES2) are important for the disposition of ester- and amide-bond-containing pharmaceuticals and environmental chemicals. CES1 and CES2 ontogeny has not been well characterized, causing difficulty in addressing concerns regarding juvenile sensitivity to adverse outcomes associated with exposure to certain substrates. To characterize postnatal human hepatic CES1 and CES2 expression, microsomal and cytosolic fractions were prepared using liver samples from subjects without liver disease (N = 165, aged 1 day to 18 years). Proteins were fractionated, detected, and quantitated by Western blotting. Median microsomal CES1 was lower among samples from subjects younger than 3 weeks (n = 36) compared with the rest of the population (n = 126; 6.27 vs. 17.5 pmol/mg microsomal protein, respectively; P < 0.001; Kruskal-Wallis test). Median cytosolic CES1 expression was lowest among samples from individuals between birth and 3 weeks of age (n = 36), markedly greater among those aged 3 weeks to 6 years (n = 90), and modestly greater still among those older than 6 years (n = 36; median values = 4.7, 15.8, and 16.6 pmol/mg cytosolic protein, respectively; P values < 0.001 and 0.05, respectively; Kruskal-Wallis test). Median microsomal CES2 expression increased across the same three age groups with median values of 1.8, 2.9, and 4.2 pmol/mg microsomal protein, respectively (P < 0.001, both). For cytosolic CES2, only the youngest age group differed from the two older groups (P < 0.001; median values = 1.29, 1.93, 2.0, respectively). These data suggest that infants younger than 3 weeks of age would exhibit significantly lower CES1- and CES2-dependent metabolic clearance compared with older individuals.
The aim of this study was to identify demographic and genetic factors that significantly affect methylphenidate (MPH) pharmacokinetics (PK), and may help explain interindividual variability and further increase the safety of MPH. d-MPH plasma concentrations, demographic covariates, and carboxylesterase 1 (CES1) genotypes were gathered from 122 healthy adults and analyzed using nonlinear mixed effects modeling. The structural model that best described the data was a two-compartment disposition model with absorption transit compartments. Novel effects of rs115629050 and CES1 diplotypes, as well as previously reported effects of rs71647871 and body weight, were included in the final model. Assessment of the independent and combined effect of CES1 covariates identified several specific risk factors that may result in severely increased d-MPH plasma exposure.
OBJECTIVE: Most angiotensin-converting enzyme inhibitors (ACEIs) are prodrugs activated by carboxylesterase 1 (CES1). We investigated the prognostic importance of CES1 gene (CES1) copy number variation and the rs3815583 single-nucleotide polymorphism in CES1 among ACEI-treated patients with congestive heart failure (CHF). METHODS: Danish patients with chronic CHF enrolled in the previously reported Echocardiography and Heart Outcome Study were categorized according to their CES1 variants and followed up for up to 10 years. Risk for cardiovascular death and all-cause death was modeled by Cox proportional hazard analyses. RESULTS: A total of 491 ACEI-treated patients were included in the analyses. After a mean follow-up of 5.5 years, we found no difference in the risk for cardiovascular death and all-cause death between patients having three [hazard ratios (HRs) 1.06 (95% confidence interval (CI) 0.77-1.45) and 1.16 (95% CI 0.88-1.52)] or four [HRs 0.88 (95% CI 0.39-2.01) and 1.37 (95% CI 0.74-2.54)] CES1 copies and those with two copies, respectively. Similarly, no difference in the risk for cardiovascular and all-cause death was found for patients heterozygous [HRs 0.91 (95% CI 0.70-1.19) and 0.88 (95% CI 0.69-1.12)] or homozygous [HRs 0.58 (95% CI 0.30-1.15) and 0.82 (95% CI 0.48-1.39)] for the rs3815583 minor allele versus patients homozygous for the major allele. The active promoter of CES1A2 and the rs71647871 single-nucleotide polymorphism minor allele were detected at very low frequencies. CONCLUSION: This study did not support the use of CES1 copy number variation or rs3815583 as a predictor of fatal outcomes in ACEI-treated patients with CHF.
Genetic variations in drug-metabolizing enzymes have been reported to influence pharmacokinetics, drug dosage, and other aspects that affect therapeutic outcomes. Most particularly, non-synonymous single-nucleotide polymorphisms (nsSNPs) resulting in amino acid changes disrupt potential functional sites responsible for protein activity, structure, or stability, which can account for individual susceptibility to disease and drug response. Investigating the impact of nsSNPs at a protein's structural level is a key step in understanding the relationship between genetic variants and the resulting phenotypic changes. For this purpose, in silico structure-based approaches have proven their relevance in providing an atomic-level description of the underlying mechanisms. The present review focuses on nsSNPs in human carboxylesterase 1 (hCES1), an enzyme involved in drug metabolism. We highlight how prioritization of functional nsSNPs through computational prediction techniques in combination with structure-based approaches, namely molecular docking and molecular dynamics simulations, is a powerful tool in providing insight into the underlying molecular mechanisms of nsSNPs phenotypic effects at microscopic level. Examples of in silico studies of carboxylesterases (CESs) are discussed, ranging from exploring the effect of mutations on enzyme activity to predicting the metabolism of new hCES1 substrates as well as to guiding rational design of CES-selective inhibitors.
        
Title: Establishment and Characterization of a Novel Caco-2 Subclone with a Similar Low Expression Level of Human Carboxylesterase 1 to Human Small Intestine Ohura K, Nishiyama H, Saco S, Kurokawa K, Imai T Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 44:1890, 2016 : PubMed
Caco-2 cells predominantly express human carboxylesterase 1 (hCE1), unlike the human intestine that predominantly expresses human carboxylesterase 2 (hCE2). Transport experiments using Caco-2 cell monolayers often lead to misestimation of the intestinal absorption of prodrugs because of this difference, as prodrugs designed to increase the bioavailability of parent drugs are made to be resistant to hCE2 in the intestine, so that they can be hydrolyzed by hCE1 in the liver. In the present study, we tried to establish a new Caco-2 subclone, with a similar pattern of carboxylase expression to human intestine, to enable a more accurate estimation of the intestinal absorption of prodrugs. Although no subclone could be identified with high expression levels of only hCE2, two subclones, #45 and #78, with extremely low expression levels of hCE1 were subcloned from parental Caco-2 cells by the limiting dilution technique. Unfortunately, subclone #45 did not form enterocyte-like cell monolayers due to low expression of claudins and beta-actin. However, subclone #78 formed polarized cell monolayers over 4 weeks and showed similar paracellular and transcellular transport properties to parental Caco-2 cell monolayers. In addition, the intestinal transport of oseltamivir, a hCE1 substrate, could be evaluated in subclone #78 cell monolayers, including P-glycoprotein-mediated efflux under nonhydrolysis conditions, unlike parental Caco-2 cells. Consequently, it is proposed that subclone #78 may provide a more effective system in which to evaluate the intestinal absorption of prodrugs that are intended to be hydrolyzed by hCE1.
OBJECTIVE: CES1 encodes carboxylesterase-1, an important drug-metabolizing enzyme with high expression in the liver. Previous studies have reported a genomic translocation of the 5' region from the poorly expressed pseudogene CES1P1, to CES1, yielding the structural variant CES1VAR. The aim of this study was to characterize this translocation and its effect on CES1 expression in the human liver. MATERIALS AND METHODS: Experiments were conducted in human liver tissues and cell culture (HepG2). The promoter and exon 1 of CES1 were sequenced by Sanger and Ion Torrent sequencing to identify gene translocations. The effects of CES1 5'UTRs on mRNA and protein expression were assessed by quantitative real-time PCR, allelic ratio mRNA analysis by primer extension (SNaPshot), quantitative targeted proteomics, and luciferase reporter gene assays. RESULTS: Sequencing of CES1 identified two translocations: first, CES1VAR (17% minor allele frequency) comprising the 5'UTR, exon 1, and part of intron 1. A second shorter translocation, CES1SVAR, was observed excluding exon 1 and intron 1 regions (<0.01% minor allele frequency). CES1VAR is associated with 2.6-fold decreased CES1 mRNA and approximately 1.35-fold lower allelic mRNA. Luciferase reporter constructs showed that CES1VAR decreases luciferase activity 1.5-fold, whereas CES1SVAR slightly increases activity. CES1VAR was not associated with CES1 protein expression or metabolism of the CES1 substrates enalapril, clopidogrel, or methylphenidate in the liver. CONCLUSION: The frequent translocation variant CES1VAR reduces mRNA expression of CES1 in the liver by approximately 30%, but protein expression and metabolizing activity in the liver were not detectably altered - possibly because of variable CES1 expression masking small allelic effects. Whether drug therapies are affected by CES1VAR will require further in-vivo studies.
1. This study investigated the mechanisms of the decreases of carboxylesterases (CES) and cytochrome P4503A4 (CYP3A4) and the enzymatic activities induced by fluoxetine (FLX) in HepG2 cells. We found that FLX decreased the carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) expression and the hydrolytic activity. 2. FLX decreased the pregnane X receptor (PXR) expression which regulated the target genes such as CYP3A4, whereas increased the differentiated embryonic chondrocyte-expressed gene 1 (DEC1) expression. 3. FLX repressed the PXR at transcriptional level. 4. Overexpression of PXR alone increased the expression of CES1, CES2, and CYP3A4 and attenuated the decreases of CES1, CES2, and CYP3A4 induced by FLX. On the contrary, knockdown of PXR alone decreased the expression of CES1, CES2, and CYP3A4 and almost abolished the decreases of CES1, CES2, and CYP3A4 induced by FLX. 5. Knockdown of DEC1 alone increased the expression of PXR and CYP3A4 and almost abolished the decreases of CES1, CES2, and CYP3A4 induced by FLX. 6. Taken together, the decreases of CES and CYP3A4 expression and enzymatic activities induced by FLX are through decreasing PXR and increasing DEC1 in HepG2 cells.
        
Title: Dabigatran etexilate activation is affected by the CES1 genetic polymorphism G143E (rs71647871) and gender Shi J, Wang X, Nguyen JH, Bleske BE, Liang Y, Liu L, Zhu HJ Ref: Biochemical Pharmacology, 119:76, 2016 : PubMed
The oral anticoagulant prodrug dabigatran etexilate (DABE) is sequentially metabolized by intestinal carboxylesterase 2 (CES2) and hepatic carboxylesterase 1 (CES1) to form its active metabolite dabigatran (DAB). A recent genome-wide association study reported that the CES1 single nucleotide polymorphisms (SNPs) rs2244613 and rs8192935 were associated with lower DAB plasma concentrations in the Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) study participants. In addition, gender differences in exposure to DAB were observed in clinical studies. The aim of this study was to examine the effect of CES1 genetic polymorphisms and gender on DABE activation using several in vitro approaches. The genotypes of the CES1 SNPs rs2244613, rs8192935, and the known loss-of-function CES1 variant rs71647871 (G143E), and the activation of DABE and its intermediate metabolites M1 and M2 were determined in 104 normal human liver samples. DABE, M1, and M2 activations were found to be impaired in human livers carrying the G143E variant. However, neither rs2244613 nor rs8192935 was associated with the activation in human livers. The incubation study of DABE with supernatant fractions (S9) prepared from the G143E-transfected cells showed that the G143E is a loss-of-function variant for DABE metabolism. Moreover, hepatic CES1 activity on M2 activation was significantly higher in female liver samples than male. Our data suggest that CES1 genetic variants and gender are important contributing factors to variability in DABE activation in humans. A personalized DABE treatment approach based on patient-specific CES1 genotypes and sex may have the potential to improve the efficacy and safety of DABE pharmacotherapy.
        
Title: Association of Oseltamivir Activation with Gender and Carboxylesterase 1 Genetic Polymorphisms Shi J, Wang X, Eyler RF, Liang Y, Liu L, Mueller BA, Zhu HJ Ref: Basic Clin Pharmacol Toxicol, 119:555, 2016 : PubMed
Oseltamivir, an inactive anti-influenza virus prodrug, is activated (hydrolysed) in vivo by carboxylesterase 1 (CES1) to its active metabolite oseltamivir carboxylate. CES1 functions are significantly associated with certain CES1 genetic variants and some non-genetic factors. The purpose of this study was to investigate the effect of gender and several CES1 genetic polymorphisms on oseltamivir activation using a large set of individual human liver samples. CES1-mediated oseltamivir hydrolysis and CES1 genotypes, including the G143E (rs71647871), rs2244613, rs8192935, the -816A>C (rs3785161) and the CES1P1/CES1P1VAR, were determined in 104 individual human livers. The results showed that hepatic CES1 protein expression in females was 17.3% higher than that in males (p = 0.039), while oseltamivir activation rate in the livers from female donors was 27.8% higher than that from males (p = 0.076). As for CES1 genetic polymorphisms, neither CES1 protein expression nor CES1 activity on oseltamivir activation was significantly associated with the rs2244613, rs8192935, -816A>C or CES1P1/CES1P1VAR genotypes. However, oseltamivir hydrolysis in the livers with the genotype 143G/E was approximately 40% of that with the 143G/G genotype (0.7 +/- 0.2 versus 1.8 +/- 1.1 nmole/mg protein/min, p = 0.005). In summary, the results suggest that hepatic oseltamivir activation appears to be more efficient in females than that in males, and the activation can be impaired by functional CES1 variants, such as the G143E. However, clinical implication of CES1 gender differences and pharmacogenetics in oseltamivir pharmacotherapy warrants further investigations.
        
Title: Sacubitril Is Selectively Activated by Carboxylesterase 1 (CES1) in the Liver and the Activation Is Affected by CES1 Genetic Variation Shi J, Wang X, Nguyen J, Wu AH, Bleske BE, Zhu HJ Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 44:554, 2016 : PubMed
Sacubitril was recently approved by the Food and Drug Administration for use in combination with valsartan for the treatment of patients with heart failure with reduced ejection fraction. As a prodrug, sacubitril must be metabolized (hydrolyzed) to its active metabolite sacubitrilat (LBQ657) to exert its intended therapeutic effects. Thus, understanding the determinants of sacubitril activation will lead to the improvement of sacubitril pharmacotherapy. The objective of this study was to identify the enzyme(s) responsible for the activation of sacubitril, and determine the impact of genetic variation on sacubitril activation. First, an incubation study of sacubitril with human plasma and the S9 fractions of human liver, intestine, and kidney was conducted. Sacubitril was found to be activated by human liver S9 fractions only. Moreover, sacubitril activation was significantly inhibited by the carboxylesterase 1 (CES1) inhibitor bis-(p-nitrophenyl) phosphate in human liver S9. Further incubation studies with recombinant human CES1 and carboxylesterase 2 confirmed that sacubitril is a selective CES1 substrate. The in vitro study of cell lines transfected with wild-type CES1 and the CES1 variant G143E (rs71647871) demonstrated that G143E is a loss-of-function variant for sacubitril activation. Importantly, sacubitril activation was significantly impaired in human livers carrying the G143E variant. In conclusion, sacubitril is selectively activated by CES1 in human liver. The CES1 genetic variant G143E can significantly impair sacubitril activation. Therefore, CES1 genetic variants appear to be an important contributing factor to interindividual variability in sacubitril activation, and have the potential to serve as biomarkers to optimize sacubitril pharmacotherapy.
        
Title: CES1 genetic variation affects the activation of angiotensin-converting enzyme inhibitors Wang X, Wang G, Shi J, Aa JY, Comas R, Liang Y, Zhu HJ Ref: Pharmacogenomics J, 16:220, 2016 : PubMed
The aim of the study was to determine the effect of carboxylesterase 1 (CES1) genetic variation on the activation of angiotensin-converting enzyme inhibitor (ACEI) prodrugs. In vitro incubation study of human liver, intestine and kidney s9 fractions demonstrated that the ACEI prodrugs enalapril, ramipril, perindopril, moexipril and fosinopril are selectively activated by CES1 in the liver. The impact of CES1/CES1VAR and CES1P1/CES1P1VAR genotypes and diplotypes on CES1 expression and activity on enalapril activation was investigated in 102 normal human liver samples. Neither the genotypes nor the diplotypes affected hepatic CES1 expression and activity. Moreover, among several CES1 nonsynonymous variants studied in transfected cell lines, the G143E (rs71647871) was a loss-of-function variant for the activation of all ACEIs tested. The CES1 activity on enalapril activation in human livers with the 143G/E genotype was approximately one-third of that carrying the 143G/G. Thus, some functional CES1 genetic variants (for example, G143E) may impair ACEI activation, and consequently affect therapeutic outcomes of ACEI prodrugs.
        
Title: Carboxylesterase 1 Is Regulated by Hepatocyte Nuclear Factor 4alpha and Protects Against Alcohol- and MCD diet-induced Liver Injury Xu J, Xu Y, Li Y, Jadhav K, You M, Yin L, Zhang Y Ref: Sci Rep, 6:24277, 2016 : PubMed
The liver is a major organ that controls hepatic and systemic homeostasis. Dysregulation of liver metabolism may cause liver injury. Previous studies have demonstrated that carboxylesterase 1 (CES1) regulates hepatic triglyceride metabolism and protects against liver steatosis. In the present study, we investigated whether CES1 played a role in the development of alcoholic liver disease (ALD) and methionine and choline-deficient (MCD) diet-induced liver injury. Both hepatocyte nuclear factor 4alpha (HNF4alpha) and CES1 were markedly reduced in patients with alcoholic steatohepatitis. Alcohol repressed both HNF4alpha and CES1 expression in primary hepatocytes. HNF4alpha regulated CES1 expression by directly binding to the proximal promoter of CES1. Global inactivation of CES1 aggravated alcohol- or MCD diet-induced liver inflammation and liver injury, likely as a result of increased production of acetaldehyde and reactive oxygen species and mitochondrial dysfunctions. Knockdown of hepatic CES1 exacerbated ethanol-induced steatohepatitis. These data indicate that CES1 plays a crucial role in protection against alcohol- or MCD diet-induced liver injury.
        
Title: Impact of genetic polymorphisms related to clopidogrel or acetylsalicylic acid pharmacology on clinical outcome in Chinese patients with symptomatic extracranial or intracranial stenosis Zhao Z, Li X, Sun S, Mei S, Ma N, Miao Z, Zhao M, Peng S Ref: European Journal of Clinical Pharmacology, 72:1195, 2016 : PubMed
PURPOSE: Recurrent ischemic events in Chinese patients with symptomatic extracranial or intracranial stenosis caused by aspirin or clopidogrel resistance are well known. We aimed to identify the contribution of genetic variants to the events. METHODS: Patients with symptomatic extracranial or intracranial stenosis receiving dual antiplatelet treatment for at least 5 days were enrolled in this study. The primary endpoint was a composite of ischemic events, including recurrent transient ischemic attack, stroke, myocardial infarction, and vascular-related mortality. Twenty-four single nucleotide polymorphisms (SNPs) were assessed and genotyped. The clinical characteristics of enrolled patients were collected from medical records. The influence of genetic polymorphisms on the recurrent ischemic events of the patients was examined. RESULTS: A total of 377 patients were included. During a 12-month follow-up, the composite primary endpoint was observed in 64 patients. The CYP2C19*3 (rs4986893) may increase the occurrence of the primary composite endpoint (OR = 2.56, 95 % CI = 1.29-5.10, P = 0.007), and the mutation of CES1 rs8192950 was associated with the decreased recurrence of ischemic events (OR = 0.53, 95 % CI = 0.30-0.94, P = 0.029). The other SNPs that were tested did not have statistically significant associations with the composite endpoint. CONCLUSIONS: For Chinese patients with symptomatic extracranial or intracranial stenosis treated with clopidogrel, CYP2C19*3 mutation was associated with an increased risk of ischemic events, and the mutation of rs8192950 in CES1 is associated with a decreased risk of recurrent ischemic events. Testing these two SNPs could be of value in the identification of patients at risk for recurrent ischemic events.
PURPOSE: The majority of angiotensin-converting enzyme inhibitors (ACEIs) are synthesized as ester prodrugs that must be converted to their active forms in vivo in order to exert therapeutic effects. Hepatic carboxylesterase 1 (CES1) is the primary enzyme responsible for the bioactivation of ACEI prodrugs in humans. The genetic variant -816A>C (rs3785161) is a common variant located in the promoter region of the CES1P1 gene. Previous studies report conflicting results with regard to the association of this variant and therapeutic outcomes of CES1 substrate drugs. The purpose of this study was to determine the effect of the variant -816A>C on the activation of the ACEI prodrug trandolapril in human livers and the blood pressure (BP)-lowering effect of trandolapril in hypertensive patients. METHODS: The -816A>C genotypes and CES1 expression and activity on trandolapril activation were determined in 100 individual human liver samples. Furthermore, the association of the -816A>C variant and the BP lowering effect of trandolapril was evaluated in hypertensive patients who participated in the International Verapamil SR Trandolapril Study (INVEST). RESULTS: Our in vitro study demonstrated that hepatic CES1 expression and activity did not differ among different -816A>C genotypes. Moreover, we were unable to identify a clinical association between the BP lowering effects of trandolapril and -816A>C genotypes. CONCLUSIONS: We conclude that the -816A>C variant is not associated with interindividual variability in CES1 expression and activity or therapeutic response to ACEI prodrugs.
Human Carboxylesterase 1 (hCES1) is the key liver microsomal enzyme responsible for detoxification and metabolism of a variety of clinical drugs. To analyse the role of the single N-linked glycan on the structure and activity of the enzyme, authentically glycosylated and aglycosylated hCES1, generated by mutating asparagine 79 to glutamine, were produced in human embryonic kidney cells. Purified enzymes were shown to be predominantly trimeric in solution by analytical ultracentrifugation. The purified aglycosylated enzyme was found to be more active than glycosylated hCES1 and analysis of enzyme kinetics revealed that both enzymes exhibit positive cooperativity. Crystal structures of hCES1 a catalytically inactive mutant (S221A) and the aglycosylated enzyme were determined in the absence of any ligand or substrate to high resolutions (1.86 A, 1.48 A and 2.01 A, respectively). Superposition of all three structures showed only minor conformational differences with a root mean square deviations of around 0.5 A over all Calpha positions. Comparison of the active sites of these un-liganded enzymes with the structures of hCES1-ligand complexes showed that side-chains of the catalytic triad were pre-disposed for substrate binding. Overall the results indicate that preventing N-glycosylation of hCES1 does not significantly affect the structure or activity of the enzyme.
Tenofovir alafenamide fumarate (TAF) is an oral phosphonoamidate prodrug of the HIV reverse transcriptase nucleotide inhibitor tenofovir (TFV). Previous studies suggested a principal role for the lysosomal serine protease cathepsin A (CatA) in the intracellular activation of TAF. Here we further investigated the role of CatA and other human hydrolases in the metabolism of TAF. Overexpression of CatA or liver carboxylesterase 1 (Ces1) in HEK293T cells increased intracellular TAF hydrolysis 2- and 5-fold, respectively. Knockdown of CatA expression with RNA interference (RNAi) in HeLa cells reduced intracellular TAF metabolism 5-fold. Additionally, the anti-HIV activity and the rate of CatA hydrolysis showed good correlation within a large set of TFV phosphonoamidate prodrugs. The covalent hepatitis C virus (HCV) protease inhibitors (PIs) telaprevir and boceprevir potently inhibited CatA-mediated TAF activation (50% inhibitory concentration [IC50] = 0.27 and 0.16 muM, respectively) in vitro and also reduced its anti-HIV activity in primary human CD4(+) T lymphocytes (21- and 3-fold, respectively) at pharmacologically relevant concentrations. In contrast, there was no inhibition of CatA or any significant effect on anti-HIV activity of TAF observed with cobicistat, noncovalent HIV and HCV PIs, or various prescribed inhibitors of host serine proteases. Collectively, these studies confirm that CatA plays a pivotal role in the intracellular metabolism of TAF, whereas the liver esterase Ces1 likely contributes to the hepatic activation of TAF. Moreover, this work demonstrates that a wide range of viral and host PIs, with the exception of telaprevir and boceprevir, do not interfere with the antiretroviral activity of TAF.
OBJECT Symptomatic intracranial atherosclerotic disease (ICAD) has a high risk of recurrent stroke. Genetic polymorphisms in CYP2C19 and CES1 are associated with adverse outcomes in cardiovascular patients, but have not been studied in ICAD. The authors studied CYP2C19 and CES1 single-nucleotide polymorphisms (SNPs) in symptomatic ICAD patients. METHODS Genotype testing for CYP2C19*2, *3, *8, *17 and CES1 G143E was performed on 188 adult symptomatic ICAD patients from 3 medical centers who were medically managed with clopidogrel and aspirin. Testing was performed prospectively at 1 center, and retrospectively from a DNA sample biorepository at 2 centers. Multiple logistic regression and Cox regression analysis were performed to assess the association of these SNPs with the primary endpoint, which was a composite of transient ischemic attack (TIA), stroke, myocardial infarction, or death within 12 months. RESULTS The primary endpoint occurred in 14.9% of the 188 cases. In multiple logistic regression analysis, the presence of the CYP2C19 loss of function (LOF) alleles *2, *3, and *8 in the medically managed patients was associated with lower odds of primary endpoint compared with wild-type homozygotes (odds ratio [OR] 0.13, 95% CI 0.03-0.62, p = 0.0101). Cox regression analysis demonstrated the CYP2C19 LOF carriers had a lower risk for the primary endpoint, with hazard ratio (HR) of 0.27 (95% CI 0.08-0.95), p = 0.041. A sensitivity analysis of a secondary composite endpoint of TIA, stroke, or death demonstrated a significant trend in multiple logistic regression analysis of CYP2C19 variants, with lower odds of secondary endpoint in patients carrying at least 1 LOF allele (*2, *3, *8) than in wild-type homozygotes (OR 0.27, 95% CI 0.06-1.16, p = 0.078). Cox regression analysis demonstrated that the carriers of CYP2C19 LOF alleles had a lower risk forthe secondary composite endpoint (HR 0.22, 95% CI 0.05-1.04, p = 0.056). CONCLUSIONS This is the first study examining genetic variants and their effects in symptomatic ICAD. Variant alleles of CYP2C19 (*2, *3, *8) were associated with lower odds of the primary and secondary composite endpoints. However, the direction of the association was opposite of what is expected based on this SNP. This may reflect an incomplete understanding of this genetic variation and its effect in symptomatic ICAD and warrants further investigations.
Carboxylesterase 1 (CES1) hydrolyzes the prodrug clopidogrel to an inactive carboxylic acid metabolite. We studied the pharmacokinetics and pharmacodynamics of 600 mg oral clopidogrel in healthy white volunteers, including 10 carriers and 12 noncarriers of CES1 c.428G>A (p.Gly143Glu, rs71647871) single nucleotide variation (SNV). Clopidogrel carboxylic acid to clopidogrel area under the plasma concentration-time curve from 0 hours to infinity (AUC0-infinity ) ratio was 53% less in CES1 c.428G>A carriers than in noncarriers (P = 0.009), indicating impaired hydrolysis of clopidogrel. Consequently, the AUC0-infinity of clopidogrel and its active metabolite were 123% (P = 0.004) and 67% (P = 0.009) larger in the c.428G>A carriers than in noncarriers. Consistent with these findings, the average inhibition of P2Y12 -mediated platelet aggregation 0-12 hours after clopidogrel intake was 19 percentage points higher in the c.428G>A carriers than in noncarriers (P = 0.036). In conclusion, the CES1 c.428G>A SNV increases clopidogrel active metabolite concentrations and antiplatelet effects by reducing clopidogrel hydrolysis to inactive metabolites.
AIM: The aim of the present study was to investigate the effects of the carboxylesterase 1 (CES1) c.428G > A (p.G143E, rs71647871) single nucleotide variation (SNV) on the pharmacokinetics of quinapril and enalapril in a prospective genotype panel study in healthy volunteers. METHODS: In a fixed-order crossover study, 10 healthy volunteers with the CES1 c.428G/A genotype and 12 with the c.428G/G genotype ingested a single 10 mg dose of quinapril and enalapril with a washout period of at least 1 week. Plasma concentrations of quinapril and quinaprilat were measured for up to 24 h and those of enalapril and enalaprilat for up to 48 h. Their excretion into the urine was measured from 0 h to 12 h. RESULTS: The area under the plasma concentration-time curve from 0 h to infinity (AUC0-infinity ) of active enalaprilat was 20% lower in subjects with the CES1 c.428G/A genotype than in those with the c.428G/G genotype (95% confidence interval of geometric mean ratio 0.64, 1.00; P = 0.049). The amount of enalaprilat excreted into the urine was 35% smaller in subjects with the CES1 c.428G/A genotype than in those with the c.428G/G genotype (P = 0.044). The CES1 genotype had no significant effect on the enalaprilat to enalapril AUC0-infinity ratio or on any other pharmacokinetic or pharmacodynamic parameters of enalapril or enalaprilat. The CES1 genotype had no significant effect on the pharmacokinetic or pharmacodynamic parameters of quinapril. CONCLUSIONS: The CES1 c.428G > A SNV decreased enalaprilat concentrations, probably by reducing the hydrolysis of enalapril, but had no observable effect on the pharmacokinetics of quinapril.
Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and preclinical development of ester prodrugs.
        
Title: Multiple Cytochrome P450 Isoforms Are Involved in the Generation of a Pharmacologically Active Thiol Metabolite, whereas Paraoxonase 1 and Carboxylesterase 1 Catalyze the Formation of a Thiol Metabolite Isomer from Ticlopidine Kim MJ, Jeong ES, Park JS, Lee SJ, Ghim JL, Choi CS, Shin JG, Kim DH Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 42:141, 2014 : PubMed
Ticlopidine is a first-generation thienopyridine antiplatelet drug that prevents adenosine 5'-diphosphate (ADP)-induced platelet aggregation. We identified the enzymes responsible for the two-step metabolic bioactivation of ticlopidine in human liver microsomes and plasma. Formation of 2-oxo-ticlopidine, an intermediate metabolite, was NADPH dependent and cytochrome P450 (CYP) 1A2, 2B6, 2C19, and 2D6 were involved in this reaction. Conversion of 2-oxo-ticlopidine to thiol metabolites was observed in both microsomes (M1 and M2) and plasma (M1). These two metabolites were considered as isomers, and mass spectral analysis suggested that M2 was a thiol metabolite bearing an exocyclic double bond, whereas M1 was an isomer in which the double bond was migrated to an endocyclic position in the piperidine ring. The conversion of 2-oxo-ticlopidine to M1 in plasma was significantly increased by the addition of 1 mM CaCl2. In contrast, the activity in microsomes was not changed in the presence of CaCl2. M1 formation in plasma was inhibited by EDTA but not by other esterase inhibitors, whereas this activity in microsomes was substantially inhibited by carboxylesterase (CES) inhibitors such as bis-(p-nitrophenyl)phosphate (BNPP), diisopropylphosphorofluoride (DFP), and clopidogrel. The conversion of 2-oxo-ticlopidine to M1 was further confirmed with recombinant paraoxonase 1 (PON1) and CES1. However, M2 was detected only in NADPH-dependent microsomal incubation, and multiple CYP isoforms were involved in M2 formation with highest contribution of CYP2B6. In vitro platelet aggregation assay demonstrated that M2 was pharmacologically active. These results collectively indicated that the formation of M2 was mediated by CYP isoforms whereas M1, an isomer of M2, was generated either by human PON1 in plasma or by CES1 in the human liver.
        
Title: Identification of carboxylesterase-dependent dabigatran etexilate hydrolysis Laizure SC, Parker RB, Herring VL, Hu ZY Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 42:201, 2014 : PubMed
Dabigatran etexilate (DABE) is an oral prodrug that is rapidly converted to the active thrombin inhibitor, dabigatran (DAB), by serine esterases. The aims of the present study were to investigate the in vitro kinetics and pathway of DABE hydrolysis by human carboxylesterase enzymes, and the effect of alcohol on these transformations. The kinetics of DABE hydrolysis in two human recombinant carboxylesterase enzymes (CES1 and CES2) and in human intestinal microsomes and human liver S9 fractions were determined. The effects of alcohol (a known CES1 inhibitor) on the formation of DABE metabolites in carboxylesterase enzymes and human liver S9 fractions were also examined. The inhibitory effect of bis(4-nitrophenyl) phosphate on the carboxylesterase-mediated metabolism of DABE and the effect of alcohol on the hydrolysis of a classic carboxylesterase substrate (cocaine) were studied to validate the in vitro model. The ethyl ester of DABE was hydrolyzed exclusively by CES1 to M1 (Km 24.9 +/- 2.9 muM, Vmax 676 +/- 26 pmol/min per milligram protein) and the carbamate ester of DABE was exclusively hydrolyzed by CES2 to M2 (Km 5.5 +/- 0.8 muM; Vmax 71.1 +/- 2.4 pmol/min per milligram protein). Sequential hydrolysis of DABE in human intestinal microsomes followed by hydrolysis in human liver S9 fractions resulted in complete conversion to DAB. These results suggest that after oral administration of DABE to humans, DABE is hydrolyzed by intestinal CES2 to the intermediate M2 metabolite followed by hydrolysis of M2 to DAB in the liver by CES1. Carboxylesterase-mediated hydrolysis of DABE was not inhibited by alcohol.
        
Title: Distinct patterns of aging effects on the expression and activity of carboxylesterases in rat liver and intestine Ohura K, Tasaka K, Hashimoto M, Imai T Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 42:264, 2014 : PubMed
The age-associated alteration in expression levels of carboxylesterases (CESs) can affect both intestinal and hepatic first-pass metabolism after oral administration of xenobiotic esters such as prodrugs. In this study, the age-related expression of CES isozymes and hydrolase activities were simultaneously investigated in liver, jejunum, and ileum from 8-, 46-, and 90-week-old rats. Rat liver expresses three major CES1 isozymes, Hydrolase A, Hydrolase B, and Hydrolase C, as well as one minor CES1 (Egasyn) and three minor CES2 isozymes (RL4, AY034877, and D50580). The mRNA and protein levels of major hepatic CES1 isozymes were decreased in an age-dependent manner, while those of minor CESs were maintained in all age groups. The hepatic hydrolase activity for temocapril was decreased in an age-dependent manner, accompanied by downregulation of Hydrolase B/C mRNA, while age-independent hydrolysis of propranolol derivatives was observed in rat liver, due to the contribution of Egasyn. Rat small intestine expresses one major CES2 (RL4) and four minor CESs (Hydrolase B, Hydrolase C, Egasyn, and AY034877). Interestingly, the expression of RL4 was age-dependently increased in both jejunum and ileum, while minor isozymes showed a constant expression across a wide age range. The up-regulation of RL4 expression with aging led to an increase of intestinal hydrolase activities for temocapril and propranolol derivatives. Consequently, age-dependent changes in the expression of CES isozymes affect the hydrolysis of xenobiotics in both rat liver and small intestine.
        
Title: Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase Shimizu M, Fukami T, Nakajima M, Yokoi T Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 42:1103, 2014 : PubMed
Esterases catalyze the hydrolysis of therapeutic drugs containing esters or amides in their structures. Human carboxylesterase (CES) and arylacetamide deacetylase (AADAC) are the major enzymes that catalyze the hydrolysis of drugs in the liver. Characterization of the enzyme(s) responsible for drug metabolism is required in drug development and to realize optimal drug therapy. Because multiple enzymes may show a metabolic potency for a given compound, inhibition studies using chemical inhibitors are useful tools to determine the contribution of each enzyme in human tissue preparations. The purpose of this study was to find specific inhibitors for human CES1, CES2, and AADAC. We screened 542 chemicals for the inhibition potency toward hydrolase activities of p-nitrophenyl acetate by recombinant CES1, CES2, and AADAC. We found that digitonin and telmisartan specifically inhibited CES1 and CES2 enzyme activity, respectively. Vinblastine potently inhibited both AADAC and CES2, but no specific inhibitor of AADAC was found. The inhibitory potency and specificity of these compounds were also evaluated by monitoring the effects on hydrolase activity of probe compounds of each enzyme (CES1: lidocaine, CES2: CPT-11, AADAC: phenacetin) in human liver microsomes. Telmisartan and vinblastine strongly inhibited the hydrolysis of CPT-11 and/or phenacetin, but digitonin did not strongly inhibit the hydrolysis of lidocaine, indicating that the inhibitory potency of digitonin was different between recombinant CES1 and liver microsomes. Although we could not find a specific inhibitor of AADAC, the combined use of telmisartan and vinblastine could predict the responsibility of human AADAC to drug hydrolysis.
        
Title: In vitro drug metabolism by human carboxylesterase 1: focus on Angiotensin-converting enzyme inhibitors Thomsen R, Rasmussen HB, Linnet K Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 42:126, 2014 : PubMed
Carboxylesterase 1 (CES1) is the major hydrolase in human liver. The enzyme is involved in the metabolism of several important therapeutic agents, drugs of abuse, and endogenous compounds. However, no studies have described the role of human CES1 in the activation of two commonly prescribed angiotensin-converting enzyme inhibitors: enalapril and ramipril. Here, we studied recombinant human CES1- and CES2-mediated hydrolytic activation of the prodrug esters enalapril and ramipril, compared with the activation of the known substrate trandolapril. Enalapril, ramipril, and trandolapril were readily hydrolyzed by CES1, but not by CES2. Ramipril and trandolapril exhibited Michaelis-Menten kinetics, while enalapril demonstrated substrate inhibition kinetics. Intrinsic clearances were 1.061, 0.360, and 0.02 ml/min/mg protein for ramipril, trandolapril, and enalapril, respectively. Additionally, we screened a panel of therapeutic drugs and drugs of abuse to assess their inhibition of the hydrolysis of p-nitrophenyl acetate by recombinant CES1 and human liver microsomes. The screening assay confirmed several known inhibitors of CES1 and identified two previously unreported inhibitors: the dihydropyridine calcium antagonist, isradipine, and the immunosuppressive agent, tacrolimus. CES1 plays a role in the metabolism of several drugs used in the treatment of common conditions, including hypertension, congestive heart failure, and diabetes mellitus; thus, there is a potential for clinically relevant drug-drug interactions. The findings in the present study may contribute to the prediction of such interactions in humans, thus opening up possibilities for safer drug treatments.
Carboxylesterase 1 is the enzyme involved in methylphenidate (MPH) metabolism. The aim of this study was to evaluate the association between a -75 T>G polymorphism and appetite reduction in children with attention-deficit/hyperactivity disorder (ADHD). A sample of 213 children with ADHD was investigated. The primary outcome was appetite reduction measured by the Barkley Stimulant Side Effect Rating Scale applied at baseline, at 1 and 3 months of treatment. MPH doses were augmented until no further clinical improvement or significant adverse events occurred. The G allele presented a trend for association with appetite reduction scores (P=0.05). A significant interaction between the G allele and treatment over time for appetite reduction scores was also observed (P=0.03). The G allele carriers presented a higher risk for appetite reduction worsening when compared with T allele homozygotes (odds ratio=3.47, P=0.01). The present results suggest an influence of carboxylesterase 1 -75 T>G polymorphism on the worsening of appetite reduction with MPH treatment in youths with ADHD.
A number of proteins that play key roles in cell signaling are post-translationally modified by the prenylation pathway. The final step in this pathway is methylation of the carboxyl terminus of the prenylated protein by isoprenylcysteine carboxylmethyltransferase. Due to the impact of methylation on Rho function, we sought to determine if the process was reversible and hence could control Rho function in a dynamic fashion. Elevating isoprenylcysteine carboxylmethyltransferase activity in cells has profound effects on MDA-MB-231 cell morphology, implying the presence of a pool of unmethylated prenyl proteins in these cells under normal conditions. Using a knockdown approach, we identified a specific esterase, carboxylesterase 1, whose function had a clear impact not only on the methylation status of RhoA but also RhoA activation and cell morphology. These data provide compelling evidence that C-terminal modification of prenyl proteins, rather than being purely a constitutive process, can serve as a point of regulation of function for this important class of protein.
CONTEXT AND AIMS: Carboxylesterase 1 (CES1) appears to play an important role in the control of the metabolism of triglycerides and cholesterol in adipocytes and other cell types including hepatocytes. Therefore, it is relevant to gain insights into the genetic versus non-genetic mechanisms involved in the control of mRNA expression. Here, we investigated mRNA expression level in adipose tissue and its association with measures of adiposity and metabolic function in a population of elderly twins. Furthermore, the heritability of mRNA expression level in adipose tissue and the effect of gene duplication were assessed. METHODOLOGY: A total of 295 monozygotic and dizygotic twin subjects (62-83 years) with ( = 48) or without ( = 247) type 2 diabetes mellitus were enrolled in the study. They were subjected to a standard oral glucose tolerance test and excision of abdominal subcutaneous fat biopsies during the fasting state. Levels of mRNA and copy number of the gene were assessed by quantitative PCR. RESULTS: mRNA expression level in adipose tissue was positively associated with body-mass index (<0.001), homeostasis model assessment-insulin resistance ( = 0.003) and level of fasting glucose ( = 0.002), insulin ( = 0.006), and triglycerides ( = 0.003). The heritability for the expression of mRNA in adipose tissue was high. gene duplication was positively associated with insulin sensitivity ( = 0.05) as well as glucose tolerance ( = 0.03) and negatively associated with homeostasis model assessment-insulin resistance ( = 0.02). Duplication of was not linked to mRNA level of this gene ( = 0.63). CONCLUSION: CES1 mRNA in adipose tissue appears to be under strong genetic control and was associated with measures of metabolic function raising the possibility of a potential role of this enzyme in the development of type 2 diabetes mellitus. Further studies are needed to understand the potential effect of gene duplication on adipocyte and whole-body metabolic functions.
Abstract Objective: A naturalistic, prospective study of the influence of genetic variation on dose prescribed, clinical response, and side effects related to stimulant medication in 77 children with attention-deficit/hyperactivity disorder (ADHD) was undertaken. The influence of genetic variation of the CES1 gene coding for carboxylesterase 1A1 (CES1A1), the major enzyme responsible for the first-pass, stereoselective metabolism of methylphenidate, was investigated. Methods: Parent- and teacher-rated behavioral questionnaires were collected at baseline when the children were medication naive, and again at 6 weeks while they were on medication. Medication dose, prescribed at the discretion of the treating clinician, and side effects, were recorded at week 6. Blood and saliva samples were collected for genotyping. Single nucleotide polymorphisms (SNPs) were selected in the coding, non-coding and the 3' flanking region of the CES1 gene. Genetic association between CES1 variants and ADHD was investigated in an expanded sample of 265 Irish ADHD families. Analyses were conducted using analysis of covariance (ANCOVA) and logistic regression models. Results: None of the CES1 gene variants were associated with the dose of methylphenidate provided or the clinical response recorded at the 6 week time point. An association between two CES1 SNP markers and the occurrence of sadness as a side effect of short-acting methylphenidate was found. The two associated CES1 markers were in linkage disequilibrium and were significantly associated with ADHD in a larger sample of ADHD trios. The associated CES1 markers were also in linkage disequilibrium with two SNP markers of the noradrenaline transporter gene (SLC6A2). Conclusions: This study found an association between two CES1 SNP markers and the occurrence of sadness as a side effect of short-acting methylphenidate. These markers were in linkage disequilibrium together and with two SNP markers of the noradrenaline transporter gene.
INTRODUCTION: Carboxylesterase 1 (CES1) is the primary enzyme responsible for converting clopidogrel into biologically inactive carboxylic acid metabolites. METHODS: We genotyped a functional variant in CES1, G143E, in participants of the Pharmacogenomics of Anti-Platelet Intervention (PAPI) study (n=566) and in 350 patients with coronary heart disease treated with clopidogrel, and carried out an association analysis of bioactive metabolite levels, on-clopidogrel ADP-stimulated platelet aggregation, and cardiovascular outcomes. RESULTS: The levels of clopidogrel active metabolite were significantly greater in CES1 143E-allele carriers (P=0.001). Consistent with these findings, individuals who carried the CES1 143E-allele showed a better clopidogrel response as measured by ADP-stimulated platelet aggregation in both participants of the PAPI study (P=0.003) and clopidogrel-treated coronary heart disease patients (P=0.03). No association was found between this single nucleotide polymorphism and baseline measures of platelet aggregation in either cohort. CONCLUSION: Taken together, these findings suggest, for the first time, that genetic variation in CES1 may be an important determinant of the efficacy of clopidogrel.
Clopidogrel pharmacotherapy is associated with substantial interindividual variability in clinical response, which can translate into an increased risk of adverse outcomes. Clopidogrel, a recognized substrate of hepatic carboxylesterase 1 (CES1), undergoes extensive hydrolytic metabolism in the liver. Significant interindividual variability in the expression and activity of CES1 exists, which is attributed to both genetic and environmental factors. We determined whether CES1 inhibition and CES1 genetic polymorphisms would significantly influence the biotransformation of clopidogrel and alter the formation of the active metabolite. Coincubation of clopidogrel with the CES1 inhibitor bis(4-nitrophenyl) phosphate in human liver s9 fractions significantly increased the concentrations of clopidogrel, 2-oxo-clopidogrel, and clopidogrel active metabolite, while the concentrations of all formed carboxylate metabolites were significantly decreased. As anticipated, clopidogrel and 2-oxo-clopidogrel were efficiently hydrolyzed by the cell s9 fractions prepared from wild-type CES1 transfected cells. The enzymatic activity of the CES1 variants G143E and D260fs were completely impaired in terms of catalyzing the hydrolysis of clopidogrel and 2-oxo-clopidogrel. However, the natural variants G18V, S82L, and A269S failed to produce any significant effect on CES1-mediated hydrolysis of clopidogrel or 2-oxo-clopidogrel. In summary, deficient CES1 catalytic activity resulting from CES1 inhibition or CES1 genetic variation may be associated with higher plasma concentrations of clopidogrel-active metabolite, and hence may enhance antiplatelet activity. Additionally, CES1 genetic variants have the potential to serve as a biomarker to predict clopidogrel response and individualize clopidogrel dosing regimens in clinical practice.
The use of whole insect larvae as a source of recombinant proteins offers a more cost-effective method of producing large quantities of human proteins than conventional cell-culture approaches. Human carboxylesterase 1 has been produced in and isolated from whole Trichoplusia ni larvae. The recombinant protein was crystallized and its structure was solved to 2.2 resolution. The results indicate that the larvae-produced enzyme is essentially identical to that isolated from cultured Sf21 cells, supporting the use of this expression system to produce recombinant enzymes for crystallization studies.
Bioactivation of the antiviral agent oseltamivir to active oseltamivir carboxylate is catalyzed by carboxylesterase 1 (CES1). After the screening of 860 healthy Finnish volunteers for the CES1 c.428G>A (p.Gly143Glu, rs121912777) polymorphism, a pharmacokinetic study with 75 mg oseltamivir was carried out in c.428G>A carriers and noncarriers. Heterozygous c.428GA carriers (n = 9) had 18% larger values of oseltamivir area under the plasma concentration-time curve from 0 h to infinity (AUC(0-infinity)) (P = 0.025) and 23% smaller carboxylate-to-oseltamivir AUC(0-infinity) ratio (P = 0.006) than noncarriers (n = 12). This shows that the CES1 c.428G>A polymorphism impairs oseltamivir bioactivation in humans.
        
Title: A discriminative analytical method for detection of CES1A1 and CES1A2/CES1A3 genetic variants Zhu HJ, Brinda B, Froehlich TE, Markowitz JS Ref: Pharmacogenet Genomics, 22:215, 2012 : PubMed
Human carboxylesterase 1 (hCES1), encoded by the CES1 gene, is the predominant hepatic hydrolase responsible for the metabolism of many therapeutic agents, toxins, and endogenous substances. Genetic variants of CES1 can affect hCES1 function and expression and ultimately influence clinical response to drugs serving as hCES1 substrates. The CES1 gene consists of three isoforms including the functional CES1A1 and CES1A2 genes and the nonfunctional pseudogene CES1A3. Natural variants of these isoforms exert differing impacts on hCES1 function. However, the existing CES1 genotyping methods are incapable of determining whether these variants belong to CES1A1, CES1A2, or CES1A3 because of the high similarity among these three genes, as a consequence they are unable to discriminate between heterozygotes and homozygotes. We report the development of a novel long-range PCR-based, discriminative genotyping assay capable of specifically detecting the variants among CES1A1, CES1A2, and CES1A3 genes. The comparison of the genotyping results between this novel assay and those previously reported methods highlighted the necessity of applying the discriminative genotyping assay in pharmacogenetic studies involving CES1 gene.
Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning.
Hepatitis C virus (HCV) relies on many interactions with host cell proteins for propagation. Successful HCV infection also requires enzymatic activity of host cell enzymes for key post-translational modifications. To identify such enzymes, we have applied activity-based protein profiling to examine the activity of serine hydrolases during HCV replication. Profiling of hydrolases in Huh7 cells replicating HCV identified CES1 (carboxylesterase 1) as a differentially active enzyme. CES1 is an endogenous liver protein involved in processing of triglycerides and cholesterol. We observe that CES1 expression and activity were altered in the presence of HCV. The knockdown of CES1 with siRNA resulted in lower levels of HCV replication, and up-regulation of CES1 was observed to favor HCV propagation, implying an important role for this host cell protein. Experiments in HCV JFH1-infected cells suggest that CES1 facilitates HCV release because less intracellular HCV core protein was observed, whereas HCV titers remained high. CES1 activity was observed to increase the size and density of lipid droplets, which are necessary for the maturation of very low density lipoproteins, one of the likely vehicles for HCV release. In transgenic mice containing human-mouse chimeric livers, HCV infection also correlates with higher levels of endogenous CES1, providing further evidence that CES1 has an important role in HCV propagation.
BACKGROUND AND PURPOSE Carboxylesterases (CEs) metabolize a wide range of xenobiotic substrates including heroin, cocaine, meperidine and the anticancer agent CPT-11. In this study, we have purified to homogeneity human liver and intestinal CEs and compared their ability with hydrolyse heroin, cocaine and CPT-11.
EXPERIMENTAL APPROACH:
The hydrolysis of heroin and cocaine by recombinant human CEs was evaluated and the kinetic parameters determined. In addition, microsomal samples prepared from these tissues were subjected to chromatographic separation, and substrate hydrolysis and amounts of different CEs were determined.
KEY RESULTS:
In contrast to previous reports, cocaine was not hydrolysed by the human liver CE, hCE1 (CES1), either as highly active recombinant protein or as CEs isolated from human liver or intestinal extracts. These results correlated well with computer-assisted molecular modelling studies that suggested that hydrolysis of cocaine by hCE1 (CES1), would be unlikely to occur. However, cocaine, heroin and CPT-11 were all substrates for the intestinal CE, hiCE (CES2), as determined using both the recombinant protein and the tissue fractions. Again, these data were in agreement with the modelling results.
CONCLUSIONS AND IMPLICATIONS:
These results indicate that the human liver CE is unlikely to play a role in the metabolism of cocaine and that hydrolysis of this substrate by this class of enzymes is via the human intestinal protein hiCE (CES2). In addition, because no enzyme inhibition is observed at high cocaine concentrations, potentially this route of hydrolysis is important in individuals who overdose on this agent.
Organophosphorus (OP) nerve agents are potent toxins that inhibit cholinesterases and produce a rapid and lethal cholinergic crisis. Development of protein-based therapeutics is being pursued with the goal of preventing nerve agent toxicity and protecting against the long-term side effects of these agents. The drug-metabolizing enzyme human carboxylesterase 1 (hCE1) is a candidate protein-based therapeutic because of its similarity in structure and function to the cholinesterase targets of nerve agent poisoning. However, the ability of wild-type hCE1 to process the G-type nerve agents sarin and cyclosarin has not been determined. We report the crystal structure of hCE1 in complex with the nerve agent cyclosarin. We further use stereoselective nerve agent analogs to establish that hCE1 exhibits a 1700- and 2900-fold preference for the P(R) enantiomers of analogs of soman and cyclosarin, respectively, and a 5-fold preference for the P(S) isomer of a sarin analog. Finally, we show that for enzyme inhibited by racemic mixtures of bona fide nerve agents, hCE1 spontaneously reactivates in the presence of sarin but not soman or cyclosarin. The addition of the neutral oxime 2,3-butanedione monoxime increases the rate of reactivation of hCE1 from sarin inhibition by more than 60-fold but has no effect on reactivation with the other agents examined. Taken together, these data demonstrate that hCE1 is only reactivated after inhibition with the more toxic P(S) isomer of sarin. These results provide important insights toward the long-term goal of designing novel forms of hCE1 to act as protein-based therapeutics for nerve agent detoxification.
        
Title: Transcriptional regulation of human carboxylesterase 1A1 by nuclear factor-erythroid 2 related factor 2 (Nrf2) Maruichi T, Fukami T, Nakajima M, Yokoi T Ref: Biochemical Pharmacology, 79:288, 2010 : PubMed
Human carboxylesterase (CES) 1A, which is predominantly expressed in liver and lung, plays an important role in the hydrolysis of endogenous compounds and xenobiotics. CES1A is reported to be induced in human hepatocytes by butylated hydroxyanisole, ticlopidine and diclofenac, and the induction is assumed to be caused by oxidative stress. However, the molecular mechanism remains to be determined. In this study, we sought to investigate whether CES1A is regulated by nuclear factor-erythroid 2 related factor 2 (Nrf2), which is a transcriptional factor activated by oxidative stress, and clarify the molecular mechanism. Real-time reverse transcription-PCR assays revealed that CES1A1 mRNA was significantly induced by tert-butylhydroquinone (tBHQ) and sulforaphane (SFN), which are representative activators of Nrf2 in HepG2, Caco-2 and HeLa cells. The induction was completely suppressed with small interfering RNA for Nrf2. In HepG2 cells, the CES1A protein level and imidapril hydrolase activity, which is specifically catalyzed by CES1A, were also significantly induced by tBHQ and SFN. Luciferase assays revealed that the antioxidant response element (ARE) at -2025 in the CES1A1 gene was responsible for the transactivation by Nrf2. In addition, electrophoretic mobility shift assays and chromatin immunoprecipitation assays revealed that Nrf2 binds to the ARE in the CES1A1 gene. These findings clearly demonstrated that human CES1A1 is induced by Nrf2. This is the first study to demonstrate the molecular mechanism of the inducible regulation of human CES1A1.
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Association of UDP-glucuronosyltransferase 1A1 (UGT1A1) genetic polymorphisms *6 and *28 with reduced clearance of SN-38 and severe neutropenia in irinotecan therapy was demonstrated in Japanese cancer patients. * The detailed gene structure of CES1 has been characterized. * Possible functional SNPs in the promoter region have been reported. WHAT THIS STUDY ADDS * Association of functional CES1 gene number with AUC ratio [(SN-38 + SN-38G)/irinotecan], an in vivo index of CES activity, was observed in patients with irinotecan monotherapy. * No significant effects of major CES1 SNPs on irinotecan PK were detected. AIMS Human carboxylesterase 1 (CES1) hydrolyzes irinotecan to produce an active metabolite SN-38 in the liver. The human CES1 gene family consists of two functional genes, CES1A1 (1A1) and CES1A2 (1A2), which are located tail-to-tail on chromosome 16q13-q22.1 (CES1A2-1A1). The pseudogene CES1A3 (1A3) and a chimeric CES1A1 variant (var1A1) are also found as polymorphic isoforms of 1A2 and 1A1, respectively. In this study, roles of CES1 genotypes and major SNPs in irinotecan pharmacokinetics were investigated in Japanese cancer patients. METHODS CES1A diplotypes [combinations of haplotypes A (1A3-1A1), B (1A2-1A1), C (1A3-var1A1) and D (1A2-var1A1)] and the major SNPs (-75T>G and -30G>A in 1A1, and -816A>C in 1A2 and 1A3) were determined in 177 Japanese cancer patients. Associations of CES1 genotypes, number of functional CES1 genes (1A1, 1A2 and var1A1) and major SNPs, with the AUC ratio of (SN-38 + SN-38G)/irinotecan, a parameter of in vivo CES activity, were analyzed for 58 patients treated with irinotecan monotherapy. RESULTS The median AUC ratio of patients having three or four functional CES1 genes (diplotypes A/B, A/D or B/C, C/D, B/B and B/D; n= 35) was 1.24-fold of that in patients with two functional CES1 genes (diplotypes A/A, A/C and C/C; n= 23) [median (25th-75th percentiles): 0.31 (0.25-0.38) vs. 0.25 (0.20-0.32), P= 0.0134]. No significant effects of var1A1 and the major SNPs examined were observed. CONCLUSION This study suggests a gene-dose effect of functional CES1A genes on SN-38 formation in irinotecan-treated Japanese cancer patients.
        
Title: In silico prediction of human carboxylesterase-1 (hCES1) metabolism combining docking analyses and MD simulations Vistoli G, Pedretti A, Mazzolari A, Testa B Ref: Bioorganic & Medicinal Chemistry, 18:320, 2010 : PubMed
Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted in developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas little has been done to predict the hydrolytic activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES1. The study involves both docking analyses of known substrates to develop predictive models, and molecular dynamics (MD) simulations to reveal the in situ behavior of substrates and products, with particular attention being paid to the influence of their ionization state. The results emphasize some crucial properties of the hCES1 catalytic cavity, confirming that as a trend with several exceptions, hCES1 prefers substrates with relatively smaller and somewhat polar alkyl/aryl groups and larger hydrophobic acyl moieties. The docking results underline the usefulness of the hydrophobic interaction score proposed here, which allows a robust prediction of hCES1 catalysis, while the MD simulations show the different behavior of substrates and products in the enzyme cavity, suggesting in particular that basic substrates interact with the enzyme in their unprotonated form.
Carboxylesterase 1 (CES1) has recently been suggested to play a role in lipolysis. Our aim was to study the regulation of CES1 expression in human adipose tissue. In the SOS Sib Pair Study, CES1 expression was higher in obese compared with lean sisters (n=78 pairs, P=8.7x10(-18)) and brothers (n=12 pairs, P=0.048). CES1 expression was higher in subcutaneous compared with omental adipose tissue in lean (P=0.027) and obese subjects (P=0.00036), and reduced during diet-induced weight loss (n=24, weeks 8, 16, and 18 compared to baseline, P<0.0001 for all time points). CES1 expression was higher in isolated adipocytes compared with intact adipose tissue (P=0.0018) and higher in large compared with small adipocytes (P=4.1x10(-6)). Basal and stimulated lipolysis was not different in individuals with high, intermediate, and low expression of CES1. Thus, CES1 expression was linked to body fat and adipocyte fat content but not to lipolytic activity.
To identify and characterize a serologic glycoprotein biomarker for hepatocellular carcinoma (HCC), multi-lectin affinity chromatography was used to isolate intracellular N-linked glycoprotein fractions from five paired non-tumor and tumor tissues. From the series of 2-D DIGE targeted differentially expressed N-linked glycoproteins, we identified human liver carboxylesterase 1 (hCE1), which was remarkably down-regulated in tumor tissues, a finding confirmed by Western blot, a quantitative real-time RT-PCR, and immunohistochemical staining of non-tumor and tumor tissues from total 58 HCC patients. To investigate whether hCE1 is also present in human plasma, we employed a magnetic bead-based immunoprecipitation followed by nano-LC-MS/MS analysis, and we found for the first time that hCE1 is present in human plasma as opposed to that in liver tissues. That is, from normalization of hCE1 signal by the immunoprecipitation and Western blot analysis, hCE1 levels were increased in plasma specimens from HCC patients than in plasma from other disease patient groups (e.g. liver cirrhosis, chronic hepatitis, cholangiocarcinoma, stomach cancer, and pancreatic cancer). From the receiver operating characteristic analysis in HCC, both sensitivity and specificity were shown to be greater than 70.0 and 85.0%, respectively. Thus, the high-resolution proteomic approach demonstrates that hCE1 is a good candidate for further validation as a serologic glycoprotein biomarker for HCC.
Methylphenidate (MPH) is the most frequently prescribed drug in the treatment of attention deficit hyperactivity disorder (ADHD). Several pharmacogenetic studies suggested that catecholamine candidate genes influence individual MPH-responses, but these results are mostly contradictory. Genetic analyses of MPH metabolizing carboxylesterase 1 enzyme (CES1) have not been carried out, whereas, meta-analysis of CYP2D6 genetic variants has been already indicated significant pharmacogenetic differences in atomoxetine treatment. Here we present an association analysis of the CES1 Gly143Glu functional polymorphism in a Hungarian ADHD group (n = 173). The genotype frequencies were similar to that of the general population (5.8% vs 4.1% of Gly/Glu heterozygote). Pharmacogenetic analysis was conducted among 122 ADHD children treated with MPH. Neither the categorical analysis comparing 90 responders vs 32 non-responders, nor the dimensional analysis of Inattention and Hyperactivity-Impulsivity score reduction showed a significant main genotype effect. However, analyzing the daily dose, we observed an association with the rare 143Glu-variant: 5 patients in the responder group carrying the Glu-allele required lower doses of MPH for symptom reduction (0.410 +/- 0.127 vs 0.572 +/- 0.153 mg/kg, t(1,88) = 2.33, p = 0.022). This result warrants for further investigations of the CES1 gene in larger ADHD samples.
Carboxylesterases belong to Phase I group of drug metabolizing enzymes. They hydrolyze a variety of drug esters, amides, carbamates and similar structures. There are five 'carboxylesterase' genes listed in the Human Genome Organization database. In this review, we will focus on the CES1, CES2 and CES3 genes and their protein products that have been partially characterized. Several variants of these three CESs result from alternate splicing, single nucleotide polymorphisms and multiple copy variants. The three CESs, are largely localized to tissues that are major sites of drug metabolism like the mucosa of the gastrointestinal tract, lungs and liver but, they differ in tissue-specific expression. The amino acid alignment of the three CESs reveals important conserved catalytic and structural residues. There are interesting insertions and deletions that may affect enzymatic function as determined by homology modeling of CES3 using the CES1 three-dimensional structure. A comparison of the substrate specificity of CES1 versus CES2 reveals broad but distinct substrate preferences. There is little information on the substrate specificity of CES3 but it seems to have a lower catalytic efficiency than the other two CESs for selected substrates.
        
Title: Human carboxylesterases HCE1 and HCE2: ontogenic expression, inter-individual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin Yang D, Pearce RE, Wang X, Gaedigk R, Wan YJ, Yan B Ref: Biochemical Pharmacology, 77:238, 2009 : PubMed
Carboxylesterases hydrolyze chemicals containing such functional groups as a carboxylic acid ester, amide and thioester. The liver contains the highest carboxylesterase activity and expresses two major carboxylesterases: HCE1 and HCE2. In this study, we analyzed 104 individual liver samples for the expression patterns of both carboxylesterases. These samples were divided into three age groups: adults (>or= 18 years of age), children (0 days-10 years) and fetuses (82-224 gestation days). In general, the adult group expressed significantly higher HCE1 and HCE2 than the child group, which expressed significantly higher than the fetal group. The age-related expression was confirmed by RT-qPCR and Western immunoblotting. To determine whether the expression patterns reflected the hydrolytic activity, liver microsomes were pooled from each group and tested for the hydrolysis of drugs such as oseltamivir and insecticides such as deltamethrin. Consistent with the expression patterns, adult microsomes were approximately 4 times as active as child microsomes and 10 times as active as fetal microsomes in hydrolyzing these chemicals. Within the same age group, particularly in the fetal and child groups, a large inter-individual variability was detected in mRNA (430-fold), protein (100-fold) and hydrolytic activity (127-fold). Carboxylesterases are recognized to play critical roles in drug metabolism and insecticide detoxication. The findings on the large variability among different age groups or even within the same age group have important pharmacological and toxicological implications, particularly in relation to pharmacokinetic alterations of ester drugs in children and vulnerability of fetuses and children to pyrethroid insecticides.
        
Title: Activation of the antiviral prodrug oseltamivir is impaired by two newly identified carboxylesterase 1 variants Zhu HJ, Markowitz JS Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 37:264, 2009 : PubMed
Oseltamivir phosphate is an ethyl ester prodrug widely used in the treatment and prevention of both Influenzavirus A and B infections. The conversion of oseltamivir to its active metabolite oseltamivir carboxylate is dependent on ester hydrolysis mediated by carboxylesterase 1 (CES1). We recently identified two functional CES1 variants p.Gly143Glu and p.Asp260fs in a research subject who displayed significant impairment in his ability to metabolize the selective CES1 substrate, methylphenidate. In vitro functional studies demonstrated that the presence of either of the two mutations can result in severe reductions in the catalytic efficiency of CES1 toward methylphenidate, which is required for hydrolysis and pharmacological deactivation. The aim of the present study was to investigate the function of these mutations on activating (hydrolyzing) oseltamivir to oseltamivir carboxylate using the cell lines expressing wild type (WT) and each mutant CES1. In vitro incubation studies demonstrated that the S9 fractions prepared from the cells transfected with WT CES1 and human liver tissues rapidly convert oseltamivir to oseltamivir carboxylate. However, the catalytic activity of the mutant hydrolases was dramatically hindered. The V(max) value of p.Gly143Glu was approximately 25% of that of WT enzyme, whereas the catalytic activity of p.Asp260fs was negligible. These results suggest that the therapeutic efficacy of oseltamivir could be compromised in treated patients expressing either functional CES1 mutation. Furthermore, the potential for increased adverse effects or toxicity as a result of exposure to high concentrations of the nonhydrolyzed prodrug should be considered.
        
Title: Role of carboxylesterase 1 and impact of natural genetic variants on the hydrolysis of trandolapril Zhu HJ, Appel DI, Johnson JA, Chavin KD, Markowitz JS Ref: Biochemical Pharmacology, 77:1266, 2009 : PubMed
Carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are the major hydrolytic enzymes responsible for the metabolism of numerous therapeutic agents as well as endogenous substrates. CES1 and CES2 differ distinctly in their substrate specificity and tissue distribution. In this study, we investigated the role of CES1 and CES2 in converting the antihypertensive prodrug trandolapril to its more active form trandolaprilat, and determined the influence of two newly identified CES1 mutations p.Gly143Glu and p.Asp260fs on trandolapril metabolism. Western blot analysis demonstrated that CES1 is expressed in human liver microsomes (HLM) but not in human intestinal microsomes (HIM). In vitro incubation studies were conducted to contrast the enzymatic activity of HLM as well as HIM upon trandolapril hydrolysis. Trandolapril was rapidly hydrolyzed to its principal active metabolite trandolaprilat after incubation with HLM. In contrast, in HIM, where CES2 is predominantly expressed, incubations did not produce any detectable trandolapril hydrolysis. Furthermore, hydrolysis of trandolapril catalyzed by wild type (WT) and mutant CES1 were assessed utilizing transfected Flp-In-293 cells stably expressing WT CES1 and two variants. WT CES1 efficiently hydrolyzed trandolapril to trandolaprilat with V(max) and K(m) values of 103.6+/-2.2 nmole/min/mg protein and 639.9+/-32.9muM, respectively. However, no appreciable trandolapril hydrolysis could be found after incubation with both p.Gly143Glu and p.Asp260fs variants. Thus, trandolapril appears to be a CES1 selective substrate while CES2 exerts little to no catalytic activity towards this compound. CES1 mutations p.Gly143Glu and p.Asp260fs are essentially dysfunctional enzymes with regard to the conversion of trandolapril to its more active metabolite trandolaprilat.
Cholesteryl esters are hydrolyzed by cholesteryl ester hydrolase (CEH) yielding free cholesterol for export from macrophages. Hence, CEH has an important regulatory role in macrophage reverse cholesterol transport (RCT). CEH and human carboxylesterase 1 (CES1) appear to be the same enzyme. CES1 is inhibited by oxons, the bioactive metabolites of organophosphate (OP) pesticides. Here, we show that CES1 protein is robustly expressed in human THP-1 monocytes/macrophages and its biochemical activity inhibited following treatment of cell lysates and intact cells with chlorpyrifos oxon, paraoxon, or methyl paraoxon (with nanomolar IC(50) values) or after immunodepletion of CES1 protein. CES1 protein expression in cells is unaffected by a 24-h paraoxon treatment, suggesting that the reduced hydrolytic activity is due to covalent inhibition of CES1 by oxons and not down-regulation of expression. Most significantly, treatment of cholesterol-loaded macrophages with either paraoxon (a non-specific CES inhibitor) or benzil (a specific CES inhibitor) caused enhanced retention of intracellular cholesteryl esters and a "foamy" phenotype, consistent with reduced cholesteryl ester mobilization. Thus, exposure to OP pesticides, which results in the inhibition of CES1, may also inhibit macrophage RCT, an important process in the regression of atherosclerosis.
OBJECTIVE: Human carboxylesterase (CES) 1A1 gene (14 exons) and CES1A3 pseudogene (six exons) are inverted and duplicated genes in a reference sequence (NT_010498). In contrast, earlier studies reported the CES1A2 gene (14 exons) instead of the CES1A3 pseudogene. The sequences of the CES1A2 gene downstream and upstream of intron 1 are identical with those of the CES1A1 and CES1A3 genes, respectively. A CES1A1 variant of which exon 1 is converted with that of the CES1A3 gene (the transcript is CES1A2) has recently been identified. We sought to clarify the confusing gene structure of human CES1A. METHODS: A panel of 55 human liver as well as 318 blood samples (104 Caucasians, 107 African-Americans, and 107 Japanese) was used to clarify the gene structures of CES1A1, CES1A2, and CES1A3. Real-time reverse transcription-PCR and western blot analysis were carried out. Imidapril hydrolase activity in human liver microsomes and cytosol was determined by liquid chromatography-mass spectrometry (LC-MS)/MS. RESULTS: By PCR analyses, we found that the CES1A2 gene is a variant of the CES1A3 gene. Four haplotypes, A (CES1A1 wild type and CES1A3), B (CES1A1 wild type and CES1A2), C (CES1A1 variant and CES1A3), and D (CES1A1 variant and CES1A2), were demonstrated. Ethnic differences were observed in allele frequencies of CES1A1 variant (17.3% in Caucasians and African-Americans and 25.2% in Japanese) and CES1A2 gene (14.4% in Caucasians, 5.1% in African-Americans, and 31.3% in Japanese). In human livers whose diplotype was A/A and C/C or C/D, no CES1A2 and CES1A1 mRNA was detected, respectively. In the other participants, the CES1A1 mRNA levels were higher than the CES1A2 mRNA levels. The CES1A proteins translated from CES1A1 mRNA and CES1A2 mRNA were detected in both human liver microsomes and cytosol fractions suggesting that the differences in exon 1 encoding a signal peptide did not affect the subcellular localization. Imidapril hydrolase activities reflected the CES1A protein levels. CONCLUSION: We found that the CES1A2 gene is a variant of the CES1A3 pseudogene. The findings presented here significantly increase our understanding about the gene structure and expression properties of human CES1A.
Mammalian carboxylesterases comprise a multigene family, the gene products of which are localized in the endoplasmic reticulum. The carboxylesterases catalyze the hydrolysis of various xenobiotics and endogenous substrates such as ester, amide and thioester bonds and are thought to function mainly in drug metabolism. We have suggested the possibility that individual variation of human liver carboxylesterase activity causes the difference in expression levels of CES1A isozymes. However, little is known about the transcriptional regulation of human carboxylesterase genes. In the present study, we isolated two CES genes encoding human carboxylesterase CES1A, which were designated as CES1A1 (AB119997) and CES1A2 (AB119998). These genes were identical except for exon 1 and the 5' regulatory element. We investigated the transcriptional regulation of these two CES genes. A reporter gene assay and electrophoretic mobility shift assay demonstrated that Sp1 and C/EBPalpha could bind to each responsive element of the CES1A1 promoter but that the Sp1 and C/EBP could not bind to the responsive element of the CES1A2 promoter. Thus, CES1A1 mRNA expression level is much higher than the expression level of CES1A2 mRNA in the liver and lung. It is thought that these results provide information on individual variation of human carboxylesterase isozymes.
Carboxylesterase 1 (CES1) is involved in metabolic activation of a variety of prodrugs into active derivatives and plays an important role in pharmacokinetics. We previously reported that a single nucleotide polymorphism (SNP), -816A/C of the CES1A2 gene associates with the responsiveness to an angiotensin-converting enzyme (ACE) inhibitor, imidapril, whose activity is achieved by CES1. To identify relevant functional polymorphisms, we re-sequenced the CES1A2 promoter region ( approximately 1kb) in 100 Japanese hypertensive patients. Altogether 10 SNPs and one insertion/deletion (I/D) were identified, among which seven SNPs and one I/D residing between -62 and -32 were in almost complete linkage disequilibrium (D'=1.00, r2=0.97). They consisted a minor and a major haplotype, the allele frequencies of which were 22% and 74%, respectively. The minor haplotype possessed two putative Sp1 binding sites while the major haplotype did not have any Sp1 binding site. The minor haplotype had a higher transcription and Sp1 binding activities than the major haplotype, invitro. The original -816A/C was in high linkage disequilibrium with these haplotypes (D'=0.92, r2=0.85), and well agreed with the efficacy of imidapril medication. These results suggest that the Sp1 binding site variation in the CES1A2 promoter is functional, and are good candidates for the pharmacogenetic studies of CES1-activated drugs.
        
Title: Hepatic overexpression of cholesteryl ester hydrolase enhances cholesterol elimination and in vivo reverse cholesterol transport Zhao B, Song J, Ghosh S Ref: J Lipid Res, 49:2212, 2008 : PubMed
Neutral cholesteryl ester hydrolase (CEH)-mediated hydrolysis of cellular cholesteryl esters (CEs) is required not only to generate free cholesterol (FC) for efflux from macrophages but also to release FC from lipoprotein-delivered CE in the liver for bile acid synthesis or direct secretion into the bile. We hypothesized that hepatic expression of CEH would regulate the hydrolysis of lipoprotein-derived CE and enhance reverse cholesterol transport (RCT). Adenoviral-mediated CEH overexpression led to a significant increase in bile acid output. To assess the role of hepatic CEH in promoting flux of cholesterol from macrophages to feces, cholesterol-loaded and [3H]cholesterol-labeled J774 macrophages were injected intraperitoneally into mice and the appearance of [3H]cholesterol in gallbladder bile and feces over 48 h was quantified. Mice overexpressing CEH had significantly higher [3H]cholesterol radiolabel in bile and feces, and it was associated with bile acids. This CEH-mediated increased movement of [3H]cholesterol from macrophages to bile acids and feces was significantly attenuated in SR-BI(-/-) mice. These studies demonstrate that similar to macrophage CEH that rate-limits the first step, hepatic CEH regulates the last step of RCT by promoting the flux of cholesterol entering the liver via SR-BI and increasing hepatic bile acid output.
The human carboxylesterase 1 (CES1) gene encodes for the enzyme carboxylesterase 1, a serine esterase governing both metabolic deactivation and activation of numerous therapeutic agents. During the course of a study of the pharmacokinetics of the methyl ester racemic psychostimulant methylphenidate, profoundly elevated methylphenidate plasma concentrations, unprecedented distortions in isomer disposition, and increases in hemodynamic measures were observed in a subject of European descent. These observations led to a focused study of the subject's CES1 gene. DNA sequencing detected two coding region single-nucleotide mutations located in exons 4 and 6. The mutation in exon 4 is located in codon 143 and leads to a nonconservative substitution, p.Gly143Glu. A deletion in exon 6 at codon 260 results in a frameshift mutation, p.Asp260fs, altering residues 260-299 before truncating at a premature stop codon. The minor allele frequency of p.Gly143Glu was determined to be 3.7%, 4.3%, 2.0%, and 0% in white, black, Hispanic, and Asian populations, respectively. Of 925 individual DNA samples examined, none carried the p.Asp260fs, indicating it is an extremely rare mutation. In vitro functional studies demonstrated the catalytic functions of both p.Gly143Glu and p.Asp260fs are substantially impaired, resulting in a complete loss of hydrolytic activity toward methylphenidate. When a more sensitive esterase substrate, p-nitrophenyl acetate was utilized, only 21.4% and 0.6% catalytic efficiency (V(max)/K(m)) were determined in p.Gly143Glu and p.Asp260fs, respectively, compared to the wild-type enzyme. These findings indicate that specific CES1 gene variants can lead to clinically significant alterations in pharmacokinetics and drug response of carboxylesterase 1 substrates.
The organophosphorus nerve agents sarin, soman, tabun, and VX exert their toxic effects by inhibiting the action of human acetylcholinesterase, a member of the serine hydrolase superfamily of enzymes. The current treatments for nerve agent exposure must be administered quickly to be effective, and they often do not eliminate long-term toxic side effects associated with organophosphate poisoning. Thus, there is significant need for effective prophylactic methods to protect at-risk personnel from nerve agent exposure, and protein-based approaches have emerged as promising candidates. We present the 2.7 A resolution crystal structures of the serine hydrolase human carboxylesterase 1 (hCE1), a broad-spectrum drug metabolism enzyme, in covalent acyl-enzyme intermediate complexes with the chemical weapons soman and tabun. The structures reveal that hCE1 binds stereoselectively to these nerve agents; for example, hCE1 appears to react preferentially with the 10(4)-fold more lethal PS stereoisomer of soman relative to the PR form. In addition, structural features of the hCE1 active site indicate that the enzyme may be resistant to dead-end organophosphate aging reactions that permanently inactivate other serine hydrolases. Taken together, these data provide important structural details toward the goal of engineering hCE1 into an organophosphate hydrolase and protein-based therapeutic for nerve agent exposure.
        
Title: Interleukin-6 alters the cellular responsiveness to clopidogrel, irinotecan, and oseltamivir by suppressing the expression of carboxylesterases HCE1 and HCE2 Yang J, Shi D, Yang D, Song X, Yan B Ref: Molecular Pharmacology, 72:686, 2007 : PubMed
Carboxylesterases constitute a class of enzymes that play important roles in the hydrolytic metabolism of drugs and other xenobiotics. Patients with liver conditions such as cirrhosis show increased secretion of proinflammatory cytokines [e.g., interleukin-6 (IL-6)] and decreased capacity of hydrolysis. In this study, we provide a molecular explanation linking cytokine secretion directly to the decreased capacity of hydrolytic biotransformation. In both primary hepatocytes and HepG2 cells, treatment with IL-6 decreased the expression of human carboxyl-esterases HCE1 and HCE2 by as much as 60%. The decreased expression occurred at both mRNA and protein levels, and it was confirmed by enzymatic assay. In cotransfection experiments, both HCE1 and HCE2 promoters were significantly repressed, and the repression was comparable with the decrease in HCE1 and HCE2 mRNA, suggesting that transrepression is responsible for the suppressed expression. In addition, pretreatment with IL-6 altered the cellular responsiveness in an opposite manner of overexpression of HCE1 and HCE2 toward various ester therapeutic agents (e.g., clopidogrel). Transfection of HCE1, for example, decreased the cytotoxicity induced by antithrombogenic agent clopidogrel, whereas pretreatment with IL-6 increased the cytotoxicity. Such a reversal was observed with other ester drugs, including anticancer agent irinotecan and anti-influenza agent oseltamivir. The altered cellular responsiveness was observed when drugs were assayed at sub- and low-micromolar concentrations, suggesting that suppressed expression of carboxylesterases by IL-6 has profound pharmacological consequences, particularly with those that are hydrolyzed in an isoform-specific manner.
        
Title: Stable overexpression of human macrophage cholesteryl ester hydrolase results in enhanced free cholesterol efflux from human THP1 macrophages Zhao B, Song J, St Clair RW, Ghosh S Ref: American Journal of Physiology Cell Physiol, 292:C405, 2007 : PubMed
Reduction of the lipid burden of atherosclerotic lesion-associated macrophage foam cells is a logical strategy to reduce the plaque volume. Since extracellular cholesterol acceptor-mediated cholesterol efflux is the only recognized mechanism of cholesterol removal from foam cells and this process is rate limited at the level of intracellular cholesterol ester hydrolysis, a reaction catalyzed by neutral cholesteryl ester hydrolase (CEH), we examined the hypothesis that CEH overexpression in the human macrophage monocyte/macrophage cell line THP1 results in increased cholesterol efflux, as well as decreased cellular cholesterol ester accumulation. We generated THP1-CEH cells with stable integration of human macrophage CEH cDNA driven by the cytomegalovirus promoter. Compared with wild-type THP1 cells (THP1-WT), THP1-CEH cells showed increased CEH mRNA expression and increased CEH activity. Efflux of free or unesterified cholesterol by acetylated LDL-loaded THP1-CEH cells to ApoA-I by an ABCA1-dependent pathway or to HDL by an ABCG1-dependent pathway was significantly higher than that in THP1-WT cells. In addition, THP1-CEH cells accumulated significantly lower amount of esterified cholesterol. CEH overexpression, therefore, not only enhances cholesterol efflux but also reduces cellular accumulation of cholesteryl esters. Taken together, these data provide evidence for evaluating CEH expression in human macrophages as a potential target for attenuation of foam cell formation and regression of atherosclerotic plaques.
        
Title: Mutation of F417 but not of L418 or L420 in the lipid binding domain decreases the activity of triacylglycerol hydrolase Alam M, Gilham D, Vance DE, Lehner R Ref: J Lipid Res, 47:375, 2006 : PubMed
Human triacylglycerol hydrolase (hTGH) has been shown to play a role in hepatic lipid metabolism. Triacylglycerol hydrolase (TGH) hydrolyzes insoluble carboxylic esters at lipid/water interfaces, although the mechanism by which the enzyme adsorbs to lipid droplets is unclear. Three-dimensional modeling of hTGH predicts that catalytic residues are adjacent to an alpha-helix that may mediate TGH/lipid interaction. The helix contains a putative neutral lipid binding domain consisting of the octapeptide FLDLIADV (amino acid residues 417-424) with the consensus sequence FLXLXXXn (where n is a nonpolar residue and X is any amino acid except proline) identified in several other proteins that bind or metabolize neutral lipids. Deletion of this alpha-helix abolished the lipolytic activity of hTGH. Replacement of F417 with alanine reduced activity by 40% toward both insoluble and soluble esters, whereas replacement of L418 and L420 with alanine did not. Another potential mechanism of increasing TGH affinity for lipid is via reversible acylation. Molecular modeling predicts that C390 is available for covalent acylation. However, neither chemical modification of C390 nor mutation to alanine affected activity. Our findings indicate that F417 but not L418, L420, or C390 participates in substrate hydrolysis by hTGH.
Human carboxylesterase 1 (hCE1) is a drug and endobiotic-processing serine hydrolase that exhibits relatively broad substrate specificity. It has been implicated in a variety of endogenous cholesterol metabolism pathways including the following apparently disparate reactions: cholesterol ester hydrolysis (CEH), fatty acyl Coenzyme A hydrolysis (FACoAH), acyl-Coenzyme A:cholesterol acyltransfer (ACAT), and fatty acyl ethyl ester synthesis (FAEES). The structural basis for the ability of hCE1 to perform these catalytic actions involving large substrates and products has remained unclear. Here we present four crystal structures of the hCE1 glycoprotein in complexes with the following endogenous substrates or substrate analogues: Coenzyme A, the fatty acid palmitate, and the bile acids cholate and taurocholate. While the active site of hCE1 was known to be promiscuous and capable of interacting with a variety of chemically distinct ligands, these structures reveal that the enzyme contains two additional ligand-binding sites and that each site also exhibits relatively non-specific ligand-binding properties. Using this multisite promiscuity, hCE1 appears structurally capable of assembling several catalytic events depending, apparently, on the physiological state of the cellular environment. These results expand our understanding of enzyme promiscuity and indicate that, in the case of hCE1, multiple non-specific sites are employed to perform distinct catalytic actions.
        
Title: Human carboxylesterase isozymes: catalytic properties and rational drug design Imai T Ref: Drug Metab Pharmacokinet, 21:173, 2006 : PubMed
Human carboxylesterase 1 (hCE-1, CES1A1, HU1) and carboxylesterase 2 (hCE-2, hiCE, HU3) are a serine esterase involved in both drug metabolism and activation. Although both hCE-1 and hCE-2 are present in several organs, the hydrolase activity of liver and small intestine is predominantly attributed to hCE-1 and hCE-2, respectively. The substrate specificity of hCE-1 and hCE-2 is significantly different. hCE-1 mainly hydrolyzes a substrate with a small alcohol group and large acyl group, but its wide active pocket sometimes allows it to act on structurally distinct compounds of either large or small alcohol moiety. In contrast, hCE-2 recognizes a substrate with a large alcohol group and small acyl group, and its substrate specificity may be restricted by a capability of acyl-hCE-2 conjugate formation due to the presence of conformational interference in the active pocket. Furthermore, hCE-1 shows high transesterification activity, especially with hydrophobic alcohol, but negligible for hCE-2. Transesterification may be a reason for the substrate specificity of hCE-1 that hardly hydrolyzes a substrate with hydrophobic alcohol group, because transesterification can progress at the same time when a compound is hydrolyzed by hCE-1. From the standpoint of drug absorption, the intestinal hydrolysis by CES during drug absorption is evaluated in rat intestine and Caco2-cell line. The rat in situ single-pass perfusion shows markedly extensive hydrolysis in the intestinal mucosa. Since the hydrolyzed products are present at higher concentration in the epithelial cells rather than blood vessels and intestinal lumen, hydrolysates are transported by a specific efflux transporter and passive diffusion according to pH-partition. The expression pattern of CES in Caco-2 cell monolayer, a useful in vitro model for rapid screening of human intestinal drug absorption, is completely different from that in human small intestine but very similar to human liver that expresses a much higher level of hCE-1 and lower level of hCE-2. Therefore, the prediction of human intestinal absorption using Caco-2 cell monolayers should be carefully monitored in the case of ester and amide-containing drugs such as prodrugs. Further experimentation for an understanding of detailed substrate specificity for CES and development of in vitro evaluation systems for absorption of prodrug and its hydrolysates will help us to design the ideal prodrug.
        
Title: Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine Imai T, Taketani M, Shii M, Hosokawa M, Chiba K Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 34:1734, 2006 : PubMed
Hydrolase activity from human liver and small intestine microsomes was compared with that of recombinant human carboxylesterases, hCE-1 and hCE-2. Although both hCE-1 and hCE-2 are present in human liver, the dominant component was found to be hCE-1, whereas the hydrolase activity of the human small intestine was found to be predominantly hCE-2. hCE-2 has a limited ability to hydrolyze large acyl compound substrates. Interestingly, propranolol derivatives, good substrates for hCE-2, were easily hydrolyzed by substitution of the methyl group on the 2-position of the acyl moiety, but were barely hydrolyzed when the methyl group was substituted on the 3-position. These findings suggest that hCE-2 does not easily form acylated intermediates because of conformational interference in its active site. In contrast, hCE-1 could hydrolyze a variety of substrates. The hydrolytic activity of hCE-2 increased with increasing alcohol chain length in benzoic acid derivative substrates, whereas hCE-1 preferentially catalyzed the hydrolysis of substrates with short alcohol chains. Kinetic data showed that the determining factor for the rate of hydrolysis of p-aminobenzoic acid esters was V(max) for hCE-1 and K(m) for hCE-2. Furthermore, the addition of hydrophobic alcohols to the reaction mixture with p-aminobenzoic acid propyl ester induced high and low levels of transesterification by hCE-1 and hCE-2, respectively. When considering the substrate specificities of hCE-1, it is necessary to consider the transesterification ability of hCE-1, in addition to the binding structure of the substrate in the active site of the enzyme.
        
Title: Characterization of pyrethroid hydrolysis by the human liver carboxylesterases hCE-1 and hCE-2 Nishi K, Huang H, Kamita SG, Kim IH, Morisseau C, Hammock BD Ref: Archives of Biochemistry & Biophysics, 445:115, 2006 : PubMed
Carboxylesterases hydrolyze a large array of endogenous and exogenous ester-containing compounds, including pyrethroid insecticides. Herein, we report the specific activities and kinetic parameters of human carboxylesterase (hCE)-1 and hCE-2 using authentic pyrethroids and pyrethroid-like, fluorescent surrogates. Both hCE-1 and hCE-2 hydrolyzed type I and II pyrethroids with strong stereoselectivity. For example, the trans-isomers of permethrin and cypermethrin were hydrolyzed much faster than corresponding cis-counterparts by both enzymes. Kinetic values of hCE-1 and hCE-2 were determined using cypermethrin and 11 stereoisomers of the pyrethroid-like, fluorescent surrogates. K(m) values for the authentic pyrethroids and fluorescent surrogates were in general lower than those for other ester-containing substrates of hCEs. The pyrethroid-like, fluorescent surrogates were hydrolyzed at rates similar to the authentic pyrethroids by both enzymes, suggesting the potential of these compounds as tools for high throughput screening of esterases that hydrolyze pyrethroids.
        
Title: Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol Tang M, Mukundan M, Yang J, Charpentier N, LeCluyse EL, Black C, Yang D, Shi D, Yan B Ref: Journal of Pharmacology & Experimental Therapeutics, 319:1467, 2006 : PubMed
Aspirin (acetylsalicylic acid) and clopidogrel are two major antithrombogenic agents that are widely used for the treatment and prevention of cerebro- and cardiovascular conditions such as stroke. Combined use produces enhanced therapeutic effect. Aspirin and clopidogrel both are esters, and hydrolysis leads to decreased or inactivated therapeutic activity. The aim of the study was to determine whether aspirin and clopidogrel are hydrolyzed by the same enzyme(s), thus reciprocally prolonging the antithrombogenic activity. To test this possibility, microsomes from the liver and intestine were assayed for the hydrolysis of aspirin and clopidogrel. In contrary to the hypothesis, aspirin and clopidogrel were hydrolyzed in a tissue-differential manner. Liver microsomes hydrolyzed both drugs, whereas intestinal microsomes hydrolyzed aspirin only. Consistent with the tissue distribution of two carboxylesterases human carboxylesterase (HCE) 1 and HCE2, recombinant HCE1 hydrolyzed clopidogrel, whereas recombinant HCE2 hydrolyzed aspirin. In addition, hydrolysis of clopidogrel among liver samples was correlated well with the level of HCE1, and hydrolysis of aspirin with HCE2. Certain natural variants differed from the wild-type enzymes on the hydrolysis of aspirin or clopidogrel. In the presence of ethyl alcohol, clopidogrel is converted to ethyl clopidogrel. Carboxylesterases are important pharmacological determinants for drugs containing ester linkages and exhibit a large interindividual variation. The isoform-specific hydrolysis of aspirin and clopidogrel suggests that these two antithrombogenic agents may have pharmacokinetic interactions with different sets of ester drugs, and the altered hydrolysis by polymorphic mutants provides a molecular explanation to the interindividual variation.
Human carboxylesterase 1 (hCE1) exhibits broad substrate specificity and is involved in xenobiotic processing and endobiotic metabolism. We present and analyze crystal structures of hCE1 in complexes with the cholesterol-lowering drug mevastatin, the breast cancer drug tamoxifen, the fatty acyl ethyl ester (FAEE) analogue ethyl acetate, and the novel hCE1 inhibitor benzil. We find that mevastatin does not appear to be a substrate for hCE1, and instead acts as a partially non-competitive inhibitor of the enzyme. Similarly, we show that tamoxifen is a low micromolar, partially non-competitive inhibitor of hCE1. Further, we describe the structural basis for the inhibition of hCE1 by the nanomolar-affinity dione benzil, which acts by forming both covalent and non-covalent complexes with the enzyme. Our results provide detailed insights into the catalytic and non-catalytic processing of small molecules by hCE1, and suggest that the efficacy of clinical drugs may be modulated by targeted hCE1 inhibitors.
Egasyn-beta-glucuronidase complex is located at the luminal site of liver microsomal endoplasmic reticulum. When organophosphorus insecticides (OP) are incorporated into the liver microsomes, they become tightly bound to egasyn, a carboxylesterase isozyme, and subsequently, beta-glucuronidase (BG) is dissociated and released into blood. Consequently, the increase in plasma BG activity becomes a good biomarker of OP exposure. Thus, the single administration of EPN (O-ethyl O-p-nitrophenylphenylphosphonothioate), acephate and chlorpyrifos increased plasma BG activity in approximately 100-fold the control level in rats. The increase in plasma BG activity after OP exposure is a much more sensitive biomarker of acute OP exposure than acetylcholinesterase (AChE) inhibition.
Imidapril is an angiotensin-converting enzyme inhibitor that is widely used in treating hypertension, although the responses vary among individuals. We investigated whether a single nucleotide polymorphism at position -816 of the carboxylesterase 1 (CES1) gene, which activates imidapril in the liver, is involved in the responsiveness to imidapril medication. A total of 105 Japanese hypertensives with systolic/diastolic blood pressures (SBP/DBP) of 140/90 mmHg or higher were prescribed 5-10 mg/day of imidapril. At baseline, blood pressure levels were not different between patients with and those without the -816C allele (AA vs. AC+ CC groups). After 8 weeks of treatment, we classified the responders and non-responders based on the decline in their blood pressures, and found that the responder rate was significantly higher in the AC+CC group than in the AA group (p=0.0331). Also, the reduction in SBP was significantly greater in the AC+CC group than in the AA group (24.7+/-11.8 vs. 17.6+/-16.8 mmHg, p=0.0184). Furthermore, an in vitro reporter assay revealed that the -816C construct had significantly higher promoter activity (p<0.0001). These findings suggest that the A(-816)C polymorphism affects the transcriptional activity, and that this may account for the responsiveness to imidapril.
        
Title: Hydrolysis of capecitabine to 5'-deoxy-5-fluorocytidine by human carboxylesterases and inhibition by loperamide Quinney SK, Sanghani SP, Davis WI, Hurley TD, Sun Z, Murry DJ, Bosron WF Ref: Journal of Pharmacology & Experimental Therapeutics, 313:1011, 2005 : PubMed
Capecitabine is an oral prodrug of 5-fluorouracil that is indicated for the treatment of breast and colorectal cancers. A three-step in vivo-targeted activation process requiring carboxylesterases, cytidine deaminase, and thymidine phosphorylase converts capecitabine to 5-fluorouracil. Carboxylesterases hydrolyze capecitabine's carbamate side chain to form 5'-deoxy-5-fluorocytidine (5'-DFCR). This study examines the steady-state kinetics of recombinant human carboxylesterase isozymes carboxylesterase (CES) 1A1, CES2, and CES3 for hydrolysis of capecitabine with a liquid chromatography/mass spectroscopy assay. Additionally, a spectrophotometric screening assay was utilized to identify drugs that may inhibit carboxylesterase activation of capecitabine. CES1A1 and CES2 hydrolyze capecitabine to a similar extent, with catalytic efficiencies of 14.7 and 12.9 min(-1) mM(-1), respectively. Little catalytic activity is detected for CES3 with capecitabine. Northern blot analysis indicates that relative expression in intestinal tissue is CES2 > CES1A1 > CES3. Hence, intestinal activation of capecitabine may contribute to its efficacy in colon cancer and toxic diarrhea associated with the agent. Loperamide is a strong inhibitor of CES2, with a K(i) of 1.5 muM, but it only weakly inhibits CES1A1 (IC(50) = 0.44 mM). Inhibition of CES2 in the gastrointestinal tract by loperamide may reduce local formation of 5'-DFCR. Both CES1A1 and CES2 are responsible for the activation of capecitabine, whereas CES3 plays little role in 5'-DFCR formation.
Recent scientific advances have revealed the identity of several enzymes involved in the synthesis, storage and catabolism of intracellular neutral lipid storage droplets. An enzyme that hydrolyzes stored triacylglycerol (TG), triacylglycerol hydrolase (TGH), was purified from porcine, human and murine liver microsomes. In rodents, TGH is highly expressed in liver as well as heart, kidney, small intestine and adipose tissues, while in humans TGH is mainly expressed in the liver, adipose and small intestine. TGH localizes to the endoplasmic reticulum and lipid droplets. The TGH genes are located within a cluster of carboxylesterase genes on human and mouse chromosomes 16 and 8, respectively. TGH hydrolyzes stored TG, and in the liver, the lipolytic products are made available for VLDL-TG synthesis. Inhibition of TGH activity also inhibits TG and apolipoprotein B secretion by primary hepatocytes. A role for TGH in basal TG lipolysis in adipocytes has been proposed. TGH expression and activity is both developmentally and hormonally regulated. A model for the function of TGH is presented and discussed with respect to tissue specific functions.
Human carboxylesterases 1 and 2 (CES1 and CES2) catalyze the hydrolysis of many exogenous compounds. Alterations in carboxylesterase sequences could lead to variability in both the inactivation of drugs and the activation of prodrugs. We resequenced CES1 and CES2 in multiple populations (n = 120) to identify single-nucleotide polymorphisms and confirmed the novel SNPs in healthy European and African individuals (n = 190). Sixteen SNPs were found in CES1 (1 per 300 bp) and 11 in CES2 (1 per 630 bp) in at least one population. Allele frequencies and estimated haplotype frequencies varied significantly between African and European populations. No association between SNPs in CES1 or CES2 was found with respect to RNA expression in normal colonic mucosa; however, an intronic SNP (IVS10-88) in CES2 was associated with reduced CES2 mRNA expression in colorectal tumors. Functional analysis of the novel polymorphisms described in this study is now warranted to identify putative roles in drug metabolism.
Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,670 aligned transcripts, 19 transfer RNA genes, 341 pseudogenes and three RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukaemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. Whereas the segmental duplications of chromosome 16 are enriched in the relatively gene-poor pericentromere of the p arm, some are involved in recent gene duplication and conversion events that are likely to have had an impact on the evolution of primates and human disease susceptibility.
As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.
Human carboxylesterase 1 (hCE1) is a broad-spectrum bioscavenger that plays important roles in narcotic metabolism, clinical prodrug activation, and the processing of fatty acid and cholesterol derivatives. We determined the 2.4 A crystal structure of hCE1 in complex with tacrine, the first drug approved for treating Alzheimer's disease, and compare this structure to the Torpedo californica acetylcholinesterase (AcChE)-tacrine complex. Tacrine binds in multiple orientations within the catalytic gorge of hCE1, while it stacks in the smaller AcChE active site between aromatic side chains. Our results show that hCE1's promiscuous action on distinct substrates is enhanced by its ability to interact with ligands in multiple orientations at once. Further, we use our structure to identify tacrine derivatives that act as low-micromolar inhibitors of hCE1 and may provide new avenues for treating narcotic abuse and cholesterol-related diseases.
We present the first crystal structures of a human protein bound to analogs of cocaine and heroin. Human carboxylesterase 1 (hCE1) is a broad-spectrum bioscavenger that catalyzes the hydrolysis of heroin and cocaine, and the detoxification of organophosphate chemical weapons, such as sarin, soman and tabun. Crystal structures of the hCE1 glycoprotein in complex with the cocaine analog homatropine and the heroin analog naloxone provide explicit details about narcotic metabolism in humans. The hCE1 active site contains both specific and promiscuous compartments, which enable the enzyme to act on structurally distinct chemicals. A selective surface ligand-binding site regulates the trimer-hexamer equilibrium of hCE1 and allows each hCE1 monomer to bind two narcotic molecules simultaneously. The bioscavenger properties of hCE1 can likely be used to treat both narcotic overdose and chemical weapon exposure.
        
Title: Human carboxylesterase 1: from drug metabolism to drug discovery Redinbo MR, Bencharit S, Potter PM Ref: Biochemical Society Transactions, 31:620, 2003 : PubMed
Human carboxylesterase 1 (hCE1) is a serine esterase involved in both drug metabolism and activation, as well as other biological processes. hCE1 catalyses the hydrolysis of heroin and cocaine, and the transesterification of cocaine in the presence of ethanol to the toxic metabolite cocaethylene. We have determined the crystal structures of hCE1 in complex with either the cocaine analogue homatropine or the heroin analogue naloxone. These are the first structures of a human carboxylesterase, and they provide details about narcotic metabolism in humans. hCE1's active site contains rigid and flexible pockets, explaining the enzyme's ability to act both specifically and promiscuously. hCE1 has also been reported to contain cholesteryl ester hydrolase, fatty acyl-CoA hydrolase and acyl-CoA:cholesterol acyltransferase activities, and thus appears to be involved in cholesterol metabolism. Since the enzyme may be useful as a treatment for cocaine overdose, and may afford protection against chemical weapons like Sarin, Soman and VX gas, hCE1 could serve as both a drug and a drug target. Selective hCE1 inhibitors targeted to several sites on the enzyme may also pave the way for novel clinical tools to manage cholesterol homoeostasis in humans.
        
Title: Structure-function analysis of human triacylglycerol hydrolase by site-directed mutagenesis: identification of the catalytic triad and a glycosylation site Alam M, Vance DE, Lehner R Ref: Biochemistry, 41:6679, 2002 : PubMed
Triacylglycerol hydrolase is a microsomal enzyme that hydrolyzes stored cytoplasmic triacylglycerol in the liver and participates in the lipolysis/re-esterification cycle during the assembly of very-low-density lipoproteins. The structure-activity relationship of the enzyme was investigated by site-directed mutagenesis and heterologous expression. Expression of human TGH in Escherichia coli yields a protein without enzymatic activity, which suggests that posttranslational processing is necessary for the catalytic activity. Expression in baculovirus-infected Sf-9 cells resulted in correct processing of the N-terminal signal sequence and yielded a catalytically active enzyme. A putative catalytic triad consisting of a nucleophilic serine (S221), glutamic acid (E354), and histidine (H468) was identified. Site-directed mutagenesis of the residues (S221A, E354A, and H468A) yielded a catalytically inactive enzyme. CD spectra of purified mutant proteins were very similar to that of the wild-type enzyme, which suggests that the mutations did not affect folding. Human TGH was glycosylated in the insect cells. Mutagenesis of the putative N-glycosylation site (N79A) yielded an active nonglycosylated enzyme. Deletion of the putative C-terminal endoplasmic reticulum retrieval signal (HIEL) did not result in secretion of the mutant protein. A model of human TGH structure suggested a lipase alpha/beta hydrolase fold with a buried active site and two disulfide bridges (C87-C116 and C274-C285).
        
Title: Heterologous expression, purification, and characterization of human triacylglycerol hydrolase Alam M, Ho S, Vance DE, Lehner R Ref: Protein Expr Purif, 24:33, 2002 : PubMed
Triacylglycerol hydrolase mobilizes stored triacylglycerol some of which is used for very-low-density lipoprotein assembly in the liver. A full-length cDNA coding for a human triacylglycerol hydrolase (hTGH) was isolated from a human liver cDNA library. The cDNA has an open reading frame of 576 amino acids with a cleavable 18-amino-acid signal sequence. The deduced amino acid sequence shows that the protein belongs to the carboxylesterase family. The hTGH was highly expressed in Escherichia coli as a 6xHis-tagged fusion protein, with the tag at the N-terminus in place of the signal peptide. However, the expressed protein was insoluble and inactive. Expression was confirmed by immunoblotting and N-terminal amino acid sequencing of the purified protein. Expression of hTGH with its native signal sequence and a C-terminal 6xHis-tag in Sf9 cells using the baculovirus expression system yielded active enzyme. N-terminal amino acid sequencing of the purified expressed protein showed correct processing of the signal peptide. The enzyme also undergoes glycosylation within the endoplasmic reticulum lumen. The results suggest that hTGH expressed in insect cells is properly folded. Therefore, baculovirus expression of hTGH and facile purification of the His-tagged enzyme will allow detailed characterization of the structure/activity relationship.
        
Title: Cholesteryl ester hydrolase in human monocyte/macrophage: cloning, sequencing, and expression of full-length cDNA Ghosh S Ref: Physiol Genomics, 2:1, 2000 : PubMed
The sensitive technique of RT-PCR was used to identify cholesteryl ester hydrolase (CEH) expressed in human macrophages. This enzyme is thought to regulate the availability of intracellular free cholesterol for efflux. The expected 667-bp product was obtained starting with RNA from human peripheral blood and THP-1 monocytes and macrophages. The cDNA for human macrophage CEH was then cloned by PCR-based screening of a lambda-gt11 cDNA library. The full-length cDNA was sequenced and found to exhibit 76% homology (at the nucleotide and conceptually translated protein level) to hepatic CEH, an enzyme shown to be involved in hepatic cholesterol homeostasis and regulated by cholesterol at the transcription level via sterol response elements in the proximal promoter. Identification of the conserved catalytic triad (Ser(221, His(468), and Glu354)) and the SEDCLY motif places human macrophage CEH in the family of carboxylesterases. A greater than 20-fold increase in CEH activity was observed when COS-1 and COS-7 cells were transiently transfected with an eukaryotic expression vector, pcDNA3.1/V5/His-TOPO, containing the cDNA for human macrophage CEH. Using this full-length cDNA as a probe, a 2.2-kb transcript was identified by Northern blot analysis of total RNA from human peripheral blood and THP -1 macrophages. Overexpression of human macrophage CEH resulted in an impairment of upregulation of low-density lipoprotein (LDL) receptor mRNA in Chinese hamster ovary (CHO-K1) cells grown in cholesterol-deficient environment. These data identify the human macrophage CEH, demonstrate its expression in human peripheral blood macrophage and human macrophage cell line, THP-1, and suggest its role in the intracellular cholesteryl ester metabolism.
        
Title: Organophosphates and their impact on the global environment Satoh T, Hosokawa M Ref: Neurotoxicology, 21:223, 2000 : PubMed
Serious intoxications and incidences due to misuse of organophosphorus insecticides (OP) have been reported for over three decades. In this meeting I am talking about the following three topics. (1) Epidemiological studies on the use of OP in Japan, Taiwan and Thailand. The National Research Institute of Police Science (NRIPS) in Japan has published the annual report of the epidemiological studies on the criminal and suicide events. The numbers of the incidence of pesticides are approximately 22%-30% of the total incidences, during 1991 and 1996. The incidence of pesticides has been gradually reduced for past six years. This seems to be influenced by the decrease of the incidences of paraquat having extremely high toxicity. According to the epidemiological data in the National Poison Center in Taiwan, unlike the prevalence of drug poisoning exposures in most western countries, pesticides poisoning exposures are numerous in Taiwan. The number of pesticide intoxication cases is 6,872 out of 23,436 of total case numbers of various intoxications during the 1985 and 1997. The fatality rate is much higher in Taiwan than in most western countries, with 5.65% of all poisoning exposures resulted in death. Paraquot is the leading cause of death in Taiwan. The ratio of death to total OP intoxication cases is 11.5% including accidental exposure and suicide. According to the report of the Division of Epidemiology, Ministry of Public Health, Thailand during the 1990-1995, the overall morbidity due to poisoning was 30 per 100,000 population with 300 deaths per year. The morbidity rate of reported pesticide poisoning in the whole country was 10 per 100,000 population. (2) Sarin victims in Tokyo. On March 20, 1995, a terrorist attack using sarin (isopropylmethylphosphonofluoridate) occurred on the Tokyo subway. Many people inhaled the sarin gas and collapsed in the train. Eventually, 12 people died and over 5,000 were injured. The results of the forensic studies showed that methylphosphonic acid, the hydrolysis product of sarin, bound to AChE in the cerebellums of the victims was separated and identified using GCMS. (3) A sensitive and rapid biomarker of OP-poisoning. Beta-glucuronidase (beta-G) is loosely bound to egasyn which is one of carboxylesterase isozymes in the liver microsomes. The oxon formed from OP in the liver microsomes is covalently bound to egasyn and causes the cleavage of the egasyn-glucuronidase complex, leading to the release of beta-G into the blood. In fact, plasma beta-G activities is a much more sensitive and rapid biomarker than the blood cholinesterase inhibition. In conclusion, OPs cause serious toxicity in both acute and chronic exposures. The epidemiological data in Taiwan and Thailand show that paraquat intoxication cause the most serious irreversible damage in the patients. In 1995, terrorists attack using sarin which is one of the most toxic OP, on the Tokyo subway, and 12 people died. This is an example of the acute intoxication of OP and some people have been still in hospitalized. Recently, the present authors have reported that the plasma beta-G activity is a novel biomarker of OP intoxication. The plasma beta-G is rapidly and significantly increased after OP exposure, and this is a much more sensitive to OP intoxication than ChE inhibition.
The monocyte-specific (carboxyl)esterase (MSE) is a marker enzyme which is well-known to hematologists as its detection is part of the traditional cytochemical stainings of leukemia cells. There are a variety of synonyms for MSE among hematologists and biochemists. Biochemically, MSE is well-characterized, but should be discerned from other esterases with similar or identical substrate specificities and other features. Intensive analysis of normal and malignant hematopoietic cells and leukemia-lymphoma cell lines using isoelectric focusing established the specificity of this enzyme for monocytes and related cells, hence its designation as monocyte-specific esterase. Cloning of the gene led to its molecular characterization and provided new opportunities to examine MSE expression also at the RNA level which confirmed the monocyte/macrophage specificity. The availability of the gene sequences of various serine esterases and lipases which also hydrolyze ester bonds allowed for the identification of identical isolates from different tissues and the construction of an unrooted dendrogram based on sequence homologies of 22 enzymes. The detailed regulation of the gene and the functional role of MSE have remained largely unknown as of yet. However, DNA binding sites for various transcription factors have already been detected. Some evidence suggests involvement in physiological detoxification processes and in the immune defense against tumor cells. A more thorough understanding of the in vivo function of this truly unique enzyme should be helped by characterizing the signals and signal transduction mechanisms which lead to MSE expression.
        
Title: Human egasyn binds beta-glucuronidase but neither the esterase active site of egasyn nor the C terminus of beta-glucuronidase is involved in their interaction Islam MR, Waheed A, Shah GN, Tomatsu S, Sly WS Ref: Archives of Biochemistry & Biophysics, 372:53, 1999 : PubMed
Lysosomal beta-glucuronidase shows a dual localization in mouse liver, where a significant fraction is retained in the endoplasmic reticulum (ER) by interaction with an ER-resident carboxyl esterase called egasyn. This interaction of mouse egasyn (mEg) with murine beta-glucuronidase (mGUSB) involves binding of the C-terminal 8 residues of the mGUSB to the carboxylesterase active site of the mEg. We isolated the recombinant human homologue of the mouse egasyn cDNA and found that it too binds human beta-glucuronidase (hGUSB). However, the binding appears not to involve the active site of the human egasyn (hEg) and does not involve the C-terminal 18 amino acids of hGUSB. The full-length cDNA encoding hEg was isolated from a human liver cDNA library using full-length mEg cDNA as a probe. The 1941-bp cDNA differs by only a few bases from two previously reported cDNAs for human liver carboxylesterase, allowing the anti-human carboxylesterase antiserum to be used for immunoprecipitation of human egasyn. The cDNA expressed bis-p-nitrophenyl phosphate (BPNP)-inhibitable esterase activity in COS cells. When expressed in COS cells, it is localized to the ER. The intracellular hEg coimmunoprecipitated with full-length hGUSB and with a truncated hGUSB missing the C-terminal 18-amino-acid residue when extracts of COS cells expressing both proteins were treated with anti-hGUSB antibody. It did not coimmunoprecipitate with mGUSB from extracts of coexpressing COS cells. Unlike mEg, hEg was not released from the hEg-GUSB complex with BPNP. Thus, hEg resembles mEg in that it binds hGUSB. However, it differs from mEg in that (i) it does not appear to use the esterase active site for binding since treatment with BPNP did not release hEg from hGUSB and (ii) it does not use the C terminus of GUSB for binding, since a C-terminal truncated hGUSB (the C-terminal 18 amino acids are removed) bound as well as nontruncated hGUSB. Evidence is presented that an internal segment of 51 amino acids between 228 and 279 residues contributes to binding of hGUSB by hEg.
The DNA sequence encoding a novel human brain carboxylesterase (CES) has been determined. The protein is predicted to have 567 amino acids, including conserved motifs, such as GESAGG, GXXXXEFG, and GDHGD which comprise a catalytic triad, and the endoplasmic reticulum retention motif (HXEL-COOH) observed in CES families. Their gene products exhibited hydrolase activity towards temocapril, p-nitrophenyl-acetate and long-chain acyl-CoA. Since the molecular masses of these gene products are similar to those that exist in capillary endothelial cells of the human brain [Yamamda et al. (1994) Brain Res. 658, 163-167], these CES isozymes may function as a blood-brain barrier to protect the central nervous system from ester or amide compounds.
The expression and androgen regulation of egasyn, the endoplasmic reticulum-targeting protein of beta-D-glucuronidase, was examined in the mouse-epididymis. The proximal (caput) and distal (corpus & cauda) epididymal tissue extracts were prepared by homogenization and sonication in buffered Triton X-100 solution, and high speed centrifugation. The supernatant when resolved by 2D-PAGE under non-denaturing conditions and stained for esterase activity showed that the distal (but not proximal) epididymis of the normal mouse contain several specific forms of esterases. These forms include a series of four variants (pI 5.2-5.75) with high mobility (HM) and esterase activity, and three faintly staining variants (beginning at pI 6.0) with low mobility (LM). Several lines of evidence indicate that the specific esterases seen in the corpus/cauda epididymidis are egasyn-esterases. Firstly, these molecular forms were not seen in the distal epididymal extracts from the egasyn-deficient mouse. Secondly, the HM forms can be immunoprecipitated with anti-egasyn antibody, suggesting the presence of free egasyn. Finally, the LM forms disappeared after heat treatment (56 degrees C for 8 min), a condition known to dissociate egasyn:beta-D-glucuronidase complex. This result indicates that a small amount of egasyn is complexed with beta-D-glucuronidase. Immunoblotting (Western blot) studies (using anti-egasyn antibody) following resolution of egasyn released from the egasyn:beta-D-glucuronidase complex revealed a single band of an apparent molecular weight 64 kDa in the distal (but not proximal) epididymis, indicating that the mouse epididymal egasyn is identical or very similar to the liver egasyn. Castration of mice lead to the appearance of free and complexed egasyn forms in the proximal epididymis. Testosterone supplementation to the castrated mice resulted in the disappearance of the induced egasyn forms from the caput epididymidis. Taken together, these results indicate that the expression of egasyn in the epididymis is region-specific and is differentially regulated by androgens.
        
Title: Purification and characterization of retinyl ester hydrolase as a member of the non-specific carboxylesterase supergene family Schindler R, Mentlein R, Feldheim W Ref: European Journal of Biochemistry, 251:863, 1998 : PubMed
Hepatic retinyl ester hydrolase (REH) activity was isolated from porcine and human liver and characterized, and some of its properties were compared with those of other retinyl-ester-splitting enzymes. Sequence analysis revealed that the REH proteins are structurally similar to non-specific carboxylesterases and distinct from bile salt-activated lipases and cholesterol esterases. Pig REH, a 64-kDa protein, hydrolyzed retinyl palmitate at a rate of 595 nmol x h(-1) x mg(-1) protein in the presence of 100 mM Chaps with an apparent Km value for retinyl palmitate of 27.5 microM. The pH optimum was 7.0-9.2. Its human counterpart has a molecular mass of 65 kDa and a pH optimum near 6.5. In the presence of Chaps, pig REH activity was stimulated up to 1.7-fold by various non-ionic detergents. The ranking order of retinyl palmitate cleavage initiated by the stimuli was n-dodecylglucoside > octanoyl-N-methylglucamide > n-octyglucoside > n-dodecylmaltoside > Triton X-114 > Triton X-100. Porcine REH was effectively inhibited by alpha-tocopherol and bis-(4-nitrophenyl) phosphate [(Np)2P]. The structural, immunological and catalytic features, pH dependence, and the effect of (Np)2P on enzyme activity of pig REH are similar to those reported for the non-specific carboxylesterase ES-4. However, ES-4 differed from REH in molecular mass and the requirement of Chaps or Chaps-like detergents as cofactor. Judging from these results, pig REH may be a non-specific carboxylesterase isoform.
A human liver carboxylesterase (hCE-2) that catalyzes the hydrolysis of the benzoyl group of cocaine and the acetyl groups of 4-methylumbelliferyl acetate, heroin, and 6-monoacetylmorphine was purified from human liver. The purified enzyme exhibited a single band on SDS-polyacrylamide gel electrophoresis with a subunit mass of approximately 60 kDa. The native enzyme was monomeric. The isoelectric point of hCE-2 was approximately 4.9. Treatment with endoglycosidase H caused an increase in electrophoretic mobility indicating that the liver carboxylesterase was a glycoprotein of the high mannose type. The complete cDNA nucleotide sequence was determined. The authenticity of the cDNA was confirmed by a perfect sequence match of 78 amino acids derived from the hCE-2 purified from human liver. The mature 533-amino acid enzyme encoded by this cDNA shared highest sequence identity with the rabbit liver carboxylesterase form 2 (73%) and the hamster liver carboxylesterase AT51p (67%). Carboxylesterases with high sequence identity to hCE-2 have not been reported in mouse and rat liver. hCE-2 exhibited different drug ester substrate specificity from the human liver carboxylesterase called hCE-1, which hydrolyzes the methyl ester of cocaine. hCE-2 had higher catalytic efficiencies for hydrolysis of 4-methylumbelliferyl acetate, heroin, and 6-monoacetylmorphine and greater inhibition by eserine than hCE-1. hCE-2 may play an important role in the degradation of cocaine and heroin in human tissues.
The expression and androgen regulation of beta-glucuronidase molecular forms were examined in mouse epididymis, liver, and kidney. Two-dimensional polyacrylamide gel electrophoresis performed under nondenaturing conditions showed that, compared to liver and kidney, which contain four microsomal (M1-M4) and a major lysosomal (L) form of beta-glucuronidase, the epididymis revealed regional differences and tissue specificity in the expression of the various molecular forms of the enzyme. Only the lysosomal form (pI 5.4-6.1) is present in the caput epididymidis while the corpus/cauda contains the lysosomal form, the free X form (pI 5.9-6.3) and the four microsomal forms (X form complexed with egasyn). Mutant mice that lack egasyn have no microsomal forms in the distal epididymis. In epididymal fluid, the lysosomal form is found throughout the epididymis, whereas the X form appears only in the corpus/cauda epididymidis. Sodium dodecyl Sulfate (SDS)-gel electrophoresis and western blot analysis of immunoprecipitated beta-glucuronidase revealed only one band corresponding to the L form (apparent molecular weight 74 kDa) in the caput epididymidis and two bands in the corpus/cauda (apparent molecular weights 73 and 75 kDa), corresponding to L and X forms, respectively. Castration of mice led to the suppression of the regional differences in the appearance of X and M forms in the epididymis. Testosterone supplementation to castrated mice restored the characteristic electrophoretic pattern of beta-glucuronidase in the caput epididymidis. In the liver and kidney, castration has no effect on the expression of the molecular forms, whereas androgen treatment induced the X form in the kidney. Histochemical localization of beta-glucuronidase confirmed the region specificity seen in the epididymis and in addition revealed cell specificity in the expression of beta-glucuronidase. These results indicate that beta-glucuronidase shows tissue specificity and, in the case of the epididymis, region and cell specificity. In addition, the enzyme in the different tissues responds differentially to androgens.
        
Title: Bile salt stimulated cholesterol esterase increases uptake of high density lipoprotein-associated cholesteryl esters by HepG2 cells Li F, Huang Y, Hui DY Ref: Biochemistry, 35:6657, 1996 : PubMed
Bile salt stimulated cholesterol esterase is predominantly synthesized in the pancreas. However, this enzyme is also synthesized by the liver and was found to be present in plasma. The physiologic role of the systemic cholesterol esterase has not been clearly defined. In the current study, the human hepatoma cell line HepG2 was used as a model to determine the role of cholesterol esterase on hepatic uptake of high density lipoprotein (HDL)-associated cholesteryl esters. The results showed that hepatic uptake of the cholesteryl esters analog [3H]cholesteryl ether on reconstituted HDL was inhibited by anti-cholesterol esterase antibodies. The HDL-associated cholesteryl ester transported to HepG2 cells was also increased 2-fold in the presence of taurocholate, an activator of the cholesterol esterase. These results suggest that liver-derived cholesterol esterase may play an important role in cellular uptake of cholesteryl esters from HDL. This hypothesis was supported by demonstrating the ability of exogenously added cholesterol esterase to further enhance hepatic uptake of HDL-associated cholesteryl esters. The results of the current study also showed that cholesterol esterase increased free-to-esterified cholesterol ratio in the lipoprotein. Thus, alteration of HDL structure and composition contributes to the cholesterol esterase-induced cellular uptake of HDL-associated cholesteryl esters. On the basis of these observations, we propose that liver-derived cholesterol esterase may play an important role in lipoprotein metabolism.
        
Title: Molecular aspects of carboxylesterase isoforms in comparison with other esterases Satoh T, Hosokawa M Ref: Toxicol Lett, 82-83:439, 1995 : PubMed
The involvement of carboxylesterase, acetylcholinesterase, butyrylcholinesterase and cholesterol esterase in pharmacology and toxicology are well recognized. However, there are few papers concerning the comparative studies of these serine hydrolases in terms of molecular level. Recently, we have studied various aspects of carboxylesterases using cDNAs of carboxylesterase isozymes purified from 9 animal species and human liver microsomes, and found that there is high homology of the N-terminal amino acid sequences of the isozymes tested. On the other hand, we compared the amino acid sequences at the active site of the individual esterases and found that the sequences of all esterases tested are strictly conserved. These results strongly suggest that the esterases involved are classified into the serine hydrolase super family.
        
Title: Rat serum carboxylesterase. Cloning, expression, regulation, and evidence of secretion from liver Yan B, Yang D, Bullock P, Parkinson A Ref: Journal of Biological Chemistry, 270:19128, 1995 : PubMed
Multiple forms of carboxylesterase have been identified in rat liver, and five carboxylesterases (designated hydrolases A, B, C, S, and egasyn) have been cloned. Hydrolases A, B, C, and egasyn all have a C-terminal consensus sequence (HXEL) for retaining proteins in the endoplasmic reticulum, and these carboxylesterases are found in rat liver microsomes. In contrast, hydrolase S lacks this C-terminal consensus sequence and is presumed to be secreted. In order to test this hypothesis, a polyclonal antibody was raised against recombinant hydrolase S from cDNA-directed expression in Escherichia coli. In addition to hydrolases A, B, and C (57-59 kDa), this antibody recognized a 67-kDa protein in rat liver microsomes and a 71-kDa protein in rat serum. The 71-kDa protein detected in rat serum was also detected in the extracellular medium from primary cultures of rat hepatocytes. Non-denaturing gel electrophoresis with staining for esterase activity showed that a serum carboxylesterase comigrated with the 71-kDa protein. Immunoprecipitation of the 71-kDa enzyme from rat serum decreased esterase activity toward 1-naphthylacetate and para-nitrophenylacetate. The 71-kDa protein immunoprecipitated from rat serum had an N-terminal amino acid sequence identical to that predicted from the cDNA encoding hydrolase S, providing further evidence that hydrolase S is synthesized in and secreted by the liver. The levels of the 67-kDa protein in rat liver microsomes and the levels of the 71-kDa protein in rat serum were co-regulated. Deglycosylation of microsomes and serum converted the 67- and 71-kDa proteins to a 58-kDa peptide, which matches the molecular mass calculated from the cDNA for hydrolase S. These results suggest that the 67-kDa protein in liver microsomes is a precursor form of hydrolase S that undergoes further glycosylation before being secreted into serum. In rats, liver appears to be the only source of hydrolase S because no mRNA encoding hydrolase S could be detected in several extrahepatic tissues. Serum carboxylesterases have been found to play an important role in lipid metabolism and detoxication of organophosphates, therefore, the secretion of hydrolase S and the modulation of its expression by xenobiotics may have physiological as well as toxicological significance.
        
Title: The beta-glucuronidase propeptide contains a serpin-related octamer necessary for complex formation with egasyn esterase and for retention within the endoplasmic reticulum Zhen L, Rusiniak ME, Swank RT Ref: Journal of Biological Chemistry, 270:11912, 1995 : PubMed
beta-Glucuronidase is retained within the endoplasmic reticulum (ER) via complex formation with esterase-22 (egasyn), which in turn has a COOH-terminal HTEL ER retention sequence. To identify the regions of glucuronidase that interact with egasyn, complex formation was assayed in COS cells cotransfected with egasyn cDNA and with either deletion constructs of glucuronidase or with constructs containing specific glucuronidase propeptide sequences appended to the carboxyl terminus of a rat secretory protein alpha 1-acid glycoprotein. The region of glucuronidase essential for complex formation is a linear octamer sequence at the COOH terminus of the propeptide. A portion of this octamer is similar to a sequence near the reactive site of serpins. This and associated data indicate that an interaction related to that between serine proteinases and their serpin inhibitors retains beta-glucuronidase within the ER. Further, attachment of this octamer sequence provides an alternative method of targeting proteins to the ER lumen of any cell that contains egasyn. These and related results demonstrate that complex formation with esterases/proteinases within the ER is important in the subcellular targeting and/or processing of certain proteins.
        
Title: Purification, cloning, and expression of a human enzyme with acyl coenzyme A: cholesterol acyltransferase activity, which is identical to liver carboxylesterase Becker A, Bottcher A, Lackner KJ, Fehringer P, Notka F, Aslanidis C, Schmitz G Ref: Arterioscler Thromb, 14:1346, 1994 : PubMed
An enzyme with acyl coenzyme A:cholesterol acyltransferase (ACAT) activity was isolated from porcine liver, and sequences derived from trypsinized peptides indicated homology to liver carboxylesterase. By use of degenerate primers, human cDNA clones were identified, which were identical to human liver carboxylesterase. Expression of the full-length cDNA in Chinese hamster ovary (CHO) cells led to an approximately threefold increase in cellular ACAT activity. This was accompanied by an approximately 20-fold increase of cellular cholesteryl ester content. By light and electron microscopy, recombinant CHO cells contained numerous lipid droplets that were not present in control CHO cells. Expression of an antisense cDNA in HepG2 cells reduced cellular ACAT activity by 35% compared with control. To further investigate the role of the enzyme in cellular cholesterol homeostasis, regulation of the mRNA was investigated in 7-day cultured human mononuclear phagocytes (MNPs). When these cells were incubated in lipoprotein-deficient serum for 18 hours, the mRNA for ACAT/carboxylesterase was almost not detectable on Northern blots, whereas after incubation with acetylated low-density lipoproteins, a strong hybridization signal was obtained. This is evidence that the mRNA of ACAT/carboxylesterase is induced by cholesterol loading. It is concluded from the data presented that ACAT/carboxylesterase is relevant for cellular cholesterol esterification in vivo. The regulation in MNPs indicates that the enzyme is also involved in foam cell formation during early atherogenesis.
        
Title: Purification and characterization of a human liver cocaine carboxylesterase that catalyzes the production of benzoylecgonine and the formation of cocaethylene from alcohol and cocaine Brzezinski MR, Abraham TL, Stone CL, Dean RA, Bosron WF Ref: Biochemical Pharmacology, 48:1747, 1994 : PubMed
The psychomotor stimulant cocaine is inactivated primarily by hydrolysis to benzoylecgonine, the major urinary metabolite of the drug. A non-specific carboxylesterase was purified from human liver that catalyzes the hydrolysis of the methyl ester group of cocaine to form benzoylecgonine. In the presence of ethanol, the enzyme also catalyzes the transesterification of cocaine producing the pharmacologically active metabolite cocaethylene (benzoylecgonine ethyl ester). The carboxylesterase obeys simple Michaelis-Menten kinetics with Km values of 116 microM for cocaine and 43 mM for ethanol. The enzymatic activity suggests that it may play an important role in regulating the detoxication of cocaine and in the formation of the active metabolite cocaethylene. Additionally, the enzyme catalyzes the formation of ethyloleate from oleic acid and ethanol. The carboxylesterase was purified from autopsy liver by gel filtration, chromatofocusing, ion-exchange, and hydrophobic interaction chromatography to purity by SDS-PAGE and agarose gel isoelectric focusing. The subunit molecular weight was determined to be 59,000 and the native molecular weight was estimated to be 170,000 from a calibrated gel filtration column, suggesting that the active enzyme is a trimer. The isoelectric point was approximately 5.8. Digestion of carbohydrate residues on the protein with an acetylglucosaminidase plus binding to several lectins indicates that the enzyme is glycosylated. The esterase was cleaved with two proteases, and the amino acid sequences from fourteen peptides were used to search GenBank. Two identical matches were found corresponding to carboxylesterase cDNAs from human liver and lung.
        
Title: Heterogeneity of Wistar rats with respect to acid beta-D-glucuronidase (EC 3.2.1.31) in liver Loffler BM, Mielenz E, Kunze H Ref: Biochemistry & Molecular Biology International, 33:235, 1994 : PubMed
Commercially available Wistar rats are genetically heterogeneous with respect to acid beta-D-glucuronidase (EC 3.2.1.31) in liver tissue: Of 43 rats studied, 27 animals exhibited only approximately 40% catalytic activity of the remaining group. Analysis by subcellular and density gradient fractionation, and polyacrylamide gel electrophoresis techniques showed that livers with high activity exhibit a dual enzyme distribution in lysosomes (app. 76%) and endoplasmic reticulum (named "microsomal enzyme form"; app. 24%), whereas those with low activity not only lack the microsomal enzyme form - presumably due to the absence of egasyn - but also display reduced lysosomal enzyme activity.
        
Title: Glycosylation-dependent activity of baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms Kroetz DL, McBride OW, Gonzalez FJ Ref: Biochemistry, 32:11606, 1993 : PubMed
A cDNA, designated hCE, encoding the entire sequence of a carboxylesterase, was isolated from a human liver lambda gt11 library. The hCE-deduced protein sequence contained 568 amino acids, including an 18 amino acid signal peptide sequence, and had a calculated molecular mass of the mature protein of 60,609 Da. A second cDNA, designated hCEv, was isolated from the same lambda gt11 library and contained a 3-bp deletion resulting in the loss of the final amino acid in the signal peptide sequence (Ala-1) and a second 3-bp deletion leading to an in-frame loss of Gln345. Expression of mRNA corresponding to both hCE and hCEv was detected in eight adult human liver samples, with individual levels varying 5-fold (hCE) and 12-fold (hCEv). A single immunoreactive protein was detected in 13 adult human liver samples when probed with antibody directed against a rat carboxylesterase. Based on allele-specific oligonucleotide hybridizations, we believe that the hCE and hCEv cDNAs represent two distinct members of the carboxylesterase family. The carboxylesterase genes were localized to human chromosome 16 using a somatic cell hybrid mapping strategy. Baculovirus expression of hCE in Sf9 cells produced a protein with an estimated molecular mass of 59,000 Da. This enzyme was able to hydrolyze aromatic and aliphatic esters but possessed no catalytic activity toward amides or a fatty acyl CoA ester. Baculovirus-mediated expression of the hCEv cDNA yielded a second protein of 56,000 Da resulting from inefficient N-glycosylation of the hCEv protein. Although the substrate specificity for the hCEv protein was identical to that of expressed hCE for any given substrate, the specific activity for the hCE protein was always higher than that for the hCEv protein. Tunicamycin inhibition studies provided the first evidence that N-glycosylation of these luminal enzymes is essential for maximal catalytic activity.
A cDNA encoding human liver carboxylesterase and its gene were isolated. Nucleotide sequence analyses of the cDNA revealed that the predicted enzyme protein consists of 567 amino acids, including 18 amino acids of a putative signal peptide. Comparison of the deduced amino acid sequences of this enzyme with those of seven other carboxylesterases in various mammalian species, together with experimental data from several other laboratories, showed that these enzymes can be classified into three groups depending on the sequences at their carboxyl terminals and the presence or absence of one exon. A human carboxylesterase gene was found to span approximately 30 kb and to have 14 small exons. Alignments of this gene with those of human cholinesterase and rat cholesterol esterase indicated insertional sites at some introns and homologous amino acid sequences around them, although these genes have different numbers of exons. Thus the results supported the conclusion that these esterases evolved from a common ancestral gene.
        
Title: The signal for retention of the egasyn-glucuronidase complex within the endoplasmic reticulum Zhen L, Baumann H, Novak EK, Swank RT Ref: Archives of Biochemistry & Biophysics, 304:402, 1993 : PubMed
Egasyn is localized within the lumen of the endoplasmic reticulum (ER) where it complexes with and thus causes sequestration of a considerable portion of beta-glucuronidase. Egasyn has an HTEL sequence at its carboxyl terminus rather than the KDEL sequence that serves as a retention signal for many ER lumenal proteins. To determine whether the HTEL sequence acts as an ER retention signal and/or functions in complex formation, HTEL-deleted egasyn was expressed in mammalian cell lines. The majority of HTEL-deleted egasyn was secreted, while wild type egasyn was retained in the ER. Furthermore, the egasyn HTEL sequence, when added to the carboxyl termini of two secretory proteins, mouse esterase, Es-N, and rat alpha 1-acid glycoprotein (AGP), caused retention of both proteins within the ER, demonstrating that the HTEL sequence is both necessary and sufficient for retention of egasyn and, by extension, the egasyn-glucuronidase complex within the ER. Other carboxyl terminal tetrapeptides including HIEL and HVEL, naturally occurring in other ER lumenal proteins, were also sufficient for ER retention of AGP, while HTEHT and HTEHK were inefficient in ER retention. The HTEL sequence, in contrast, is not required for egasyn-glucuronidase complex formation. Further, the complex is apparently unstable outside the ER since it was not visible in the medium of cells transfected with egasyn lacking the HTEL sequence despite abundant secretion of this egasyn. These results show that it is possible to localize proteins within the lumen of the ER if they form complexes with ER lumenal proteins containing an intrinsic ER retention sequence.
A human liver lambda gt11 library was screened with antibodies raised to a purified rat liver carboxylesterase, and several clones were isolated and sequenced. The longest cDNA contained an open reading frame of 507 amino acids that represented 92% of the sequence of a mature carboxylesterase protein. This sequence possessed many structural features that are highly conserved among rabbit and rat liver carboxylesterase proteins, including Ser, His, and Asp residues that comprise the active site, two pairs of Cys residues that may participate in disulfide bond formation, and one Asn-Xxx-Thr site for N-linked carbohydrate addition. When the clone was used to probe human liver genomic DNA that had been digested with various restriction enzymes, many hybridizing bands of differing intensities were observed. The results suggest that the carboxylesterases exist as several isoenzymes in humans, and that they are encoded by multiple genes.
        
Title: A serine esterase released by human alveolar macrophages is closely related to liver microsomal carboxylesterases Munger JS, Shi GP, Mark EA, Chin DT, Gerard C, Chapman HA Ref: Journal of Biological Chemistry, 266:18832, 1991 : PubMed
We identified a 60-kDa diisopropylfluorophosphate-(DFP) reactive protein in human bronchoalveolar lavage fluid, at a yield of 50-100 pmol/lavage. The protein is associated with the cell-free lavage fluid sediment, which consists mainly of surfactant. [3H]DFP labeling is inhibited by heating to 56 degrees C, 2 mM phenylmethylsulfonylfluoride and 1 mM bis(4-nitrophenyl)-phosphate. An identical 60-kDa [3H]DFP-reactive protein is present in the insoluble fraction of alveolar macrophage-conditioned culture medium and in total membrane preparations of alveolar macrophages. The [3H]DFP-labeled protein was purified approximately 30-fold from lavage fluid sediment by size-exclusion (Sephacryl S-200) and ion-exchange (Mono-Q) chromatography. Cyanogen bromide treatment of the partially purified protein produced a major labeled peptide of 14 kDa with an NH2-terminal sequence 90% identical to a region of form 1 rabbit liver microsomal carboxylesterase. Esterase activity in unlabeled starting material, detected using p-nitrophenyl valerate as substrate, copurified with the [3H]DFP-labeled enzyme. Degenerate oligonucleotide primers were designed based on the partial amino acid sequence and on a highly conserved region of known liver carboxylesterase sequences. Polymerase chain reaction using these primers and reverse-transcribed human alveolar macrophage mRNA yielded a 354-base pair product which was then used to screen a human alveolar macrophage cDNA library. A complete esterase sequence was obtained from two incomplete, overlapping clones, and is virtually identical to human liver carboxylesterase partial sequences. Northern blot analysis demonstrated a single approximately 1.7-kilobase transcript in human monocytes and alveolar macrophages, with much higher levels in the latter. These data indicate that human alveolar macrophages both contain and release a serine esterase that is apparently identical to liver microsomal carboxylesterase. Its enzymatic profile suggests it is a major component of alveolar macrophage-nonspecific esterase activity. We hypothesize that it acts as a detoxication enzyme in the lung.
        
Title: Expression of egasyn-esterase in mammalian cells. Sequestration in the endoplasmic reticulum and complexation with beta-glucuronidase Novak EK, Baumann H, Ovnic M, Swank RT Ref: Journal of Biological Chemistry, 266:6377, 1991 : PubMed
Mouse egasyn cDNA was inserted into expression vector pCDpoly and transfected into mammalian cell lines. Transfected human HepG2 cells, monkey COS-1 cells, and mouse L cells expressed egasyn-esterase catalytic activity. Within COS-1 cells, egasyn was localized to the endoplasmic reticulum. Although individual cells produced large amounts of egasyn, no secretion was observed. No beta-glucuronidase-egasyn complexes were formed in transfected HepG2 or COS-1 cells. However, these complexes were readily detected in transfected L cells. Although the signal for retention of egasyn in the endoplasmic reticulum appears to be species independent, the signal for association with beta-glucuronidase is species restricted.
A human liver carboxylesterase (CE)-encoding cDNA has been cloned using synthetic oligodeoxyribonucleotides (oligos) based on the known amino acid (aa) sequences of rabbit and rat liver CEs. The oligos hybridize specifically to DNA encoding liver CEs. The longest cDNA obtained from screening several cDNA libraries encodes about 80% of the protein and translates into an aa sequence which has a high degree of similarity with the sequences of liver CEs from other species. On hybridization to mRNA isolated from human liver, the cDNA gave a single band of about 2.0 kb consistent with its encoding a protein of less than 68 kDa. DNA obtained from a number of human livers and probed with the CE cDNA gave identical hybridization patterns. These patterns were moderately complex by comparison with published data.
        
Title: The COOH terminus of several liver carboxylesterases targets these enzymes to the lumen of the endoplasmic reticulum Robbi M, Beaufay H Ref: Journal of Biological Chemistry, 266:20498, 1991 : PubMed
To investigate the potential role of the COOH-terminal peptides in retaining a family of soluble carboxylesterases in the lumen of the endoplasmic reticulum, the pI 6.1 esterase cDNA has been cloned into the pKCR3 vector for transient expression in COS cells. The plasmid-encoded product appeared to be identical to the authentic enzyme: it was active on alpha-naphthyl acetate and behaved as a homotrimer of noncovalently bound 60-kDa subunits which contain a single, endo-beta-N-acetylglucosaminidase H-sensitive oligosaccharide chain. This enzyme was retained in the transgenic COS cells. In contrast, a mutated form ending in HVER-COOH was secreted, indicating that the natural terminus HVEL-COOH contains topogenic information, with the ultimate Leu residue as an essential part. Variants of pI 6.1 esterase ending in HIEL-COOH, or HTEL-COOH were retained in cells to the same extent as the wild-type protein. Therefore, the sequences HIEL and HTEL present at the COOH termini of several liver esterases (rabbit forms 1 and 2, human esterase, mouse egasyn, and rat pI 6.4 esterase) most likely have a function in their localization in the endoplasmic reticulum. Finally, an HDEL-COOH variant of pI 6.1 esterase was also normally retained, demonstrating that this signal can be correctly decoded by the sorting machinery of mammalian cells. Cell retention signals of the type HXEL-COOH appear to be common in higher eukaryotes and tolerate considerable variation at the antepenultimate X residue.
        
Title: Release of liver microsomal beta-glucuronidase from hepatocytes in vitro and in vivo by organophosphates and hepatotoxic agents Satoh T Ref: Journal of Toxicological Sciences, 16 Suppl 1:133, 1991 : PubMed
Liver microsomal beta-glucuronidase is stabilized within microsomal vesicles by complexation with the accessory protein, named egasyn. In this study, we showed that egasyn is identical to one of the carboxylesterase isozymes and organophosphorus and carbamate insecticides, acetanilide which is a specific substrate of egasyn and halothane caused a rapid dissociation of the egasyn-microsomal beta-glucuronidase complex when administered in vivo or when added in vitro to isolated hepatocytes. The dissociation was relatively specific to organophosphates, carbamates, but not pyrethroids. Dissociation of the egasyn-beta-glucuronidase complex in vivo by organophosphates was followed by massive and rapid secretion of microsomal beta-glucuronidase into plasma. From these results, we concluded that release of liver microsomal beta-glucuronidase is the most rapid and sensitive marker to organophosphorus or carbamate insecticide-induced intoxication.
Human monocyte/macrophage serine esterase (HMSE), commonly known as acid esterase or alpha-naphthylacetate esterase, comprises a group of five enzyme variants that can be distinguished by their isoelectric points from esterase variants of the other normal human blood cell populations. A cDNA for one of the monocytic enzyme variants (HMSE1) was cloned from a U-937 lambda gt11 cDNA library by screening with an oligonucleotide mixture designed according to amino acid sequence data of the purified enzyme. The cDNA contains 1,727 bp with an open reading frame of 1,512 bp coding for a protein of 503 amino acid residues. HMSE1 cDNA represents the first cloned monocyte/macrophage-specific serine esterase and its sequence shows up to 77% homology to other known serine esterases of different species. The amino acid composition of the putative active site of HMSE1 as deduced from the nucleotide sequence corresponds with the active sites of other serine esterases but not with the active sites of serine proteases. Hybridization of the cDNA with RNA of separated normal blood cell populations and hematopoietic cell lines shows restricted expression within the monocyte/macrophage lineage.
        
Title: beta-Glucuronidase is transported slowly to lysosomes in BW5147 mouse lymphoma cells: evidence that the prelysosomal enzyme is not restricted to the endoplasmic reticulum Lazzarino D, Gabel CA Ref: Archives of Biochemistry & Biophysics, 282:100, 1990 : PubMed
The post-translational processing of beta-glucuronidase in BW5147 mouse lymphoma cells is slow relative to other newly synthesized lysosomal enzymes. To characterize this slow maturation the acid hydrolase was immunoprecipitated from cells pulse-labeled with [2-3H]mannose. Radiolabeled beta-glucuronidase migrated as the precursor form of the enzyme for up to 4 h of chase, whereas another acid hydrolase, beta-galactosidase, was processed completely to its mature form within this same time period. Both beta-glucuronidase and beta-galactosidase obtained high levels of mannose 6-phosphate (Man 6-P) within 60 min of their biosynthesis. The Man 6-P content of beta-galactosidase declined rapidly during a subsequent chase while that of beta-glucuronidase remained high during the first 4 h of chase and then slowly declined. 3H-Labeled phosphorylated high mannose-type oligosaccharides isolated from beta-glucuronidase after 1 h of chase were composed primarily of species with one or two phosphodiester groups, but oligosaccharides with one and two phosphomonoesters became the predominant phosphorylated species with longer chase times. The phosphorylated oligosaccharides attached to other newly synthesized acid hydrolases, on the other hand, contained primarily phosphodiester species at all chase times. When BW5147 cells were pulsed with [3H]mannose and chased in the presence of monensin to disrupt transport, the number of phosphorylated oligosaccharides recovered from beta-glucuronidase was comparable to the quantity recovered from the enzyme produced by non-drug-treated cells. The number of phosphorylated units recovered from all other newly synthesized acid hydrolases, however, was greater in the presence of the ionophore than in its absence. Nondenaturing gel electrophoresis studies indicated that beta-glucuronidase existed in two forms at steady state within BW5147 cells and, as such, was similar to liver beta-glucuronidase in which a large percentage of the enzyme was present as a complex bound to egasyn. These data suggest that newly synthesized beta-glucuronidase produced by BW5147 cells complexes with an egasyn-like protein within the endoplasmic reticulum. This interaction retards the enzyme's migration through the secretory apparatus but does not prevent its access to Golgi-associated processing enzymes.
        
Title: The propeptide of beta-glucuronidase. Further evidence of its involvement in compartmentalization of beta-glucuronidase and sequence similarity with portions of the reactive site region of the serpin superfamily Li H, Takeuchi KH, Manly K, Chapman V, Swank RT Ref: Journal of Biological Chemistry, 265:14732, 1990 : PubMed
A significant portion of murine hepatocyte beta-glucuronidase is maintained within the endoplasmic reticulum (ER) by complex formation with the esterase active site of the protein egasyn. The carboxyl-terminal propeptide of the precursor form of glucuronidase appears important in localization of glucuronidase to the ER since a naturally occurring mutation in it is associated with decreased levels of ER glucuronidase. A sequence similarity was noted between the carboxyl-terminal propeptide and portions of the conserved sequences of the reactive site region of members of the serpin (serine proteinase inhibitor) superfamily. Also, previous studies had shown that a synthetic peptide, corresponding to the propeptide region, was a specific and potent inhibitor of the esterase activity of purified egasyn. Taken together, these results suggest that (a) the egasyn-glucuronidase system may use a novel mechanism related to that of serine proteinases and their inhibitors in complex formation and in subsequent localization of glucuronidase within the ER and that (b) a possible function of ER glucuronidase is to modulate the esterase activity of egasyn.
        
Title: Involvement of the carboxyl-terminal propeptide of beta-glucuronidase in its compartmentalization within the endoplasmic reticulum as determined by a synthetic peptide approach Medda S, Chemelli RM, Martin JL, Pohl LR, Swank RT Ref: Journal of Biological Chemistry, 264:15824, 1989 : PubMed
The proenzyme form of beta-glucuronidase is compartmentalized in large quantities within the endoplasmic reticulum by binding to the esterase, egasyn. Also, the propeptide of the proenzyme form of beta-glucuronidase is likely located at the carboxyl terminus. We have, therefore, tested if this carboxyl-terminal peptide is important in binding to egasyn. A polyclonal antibody to a 30-mer synthetic peptide, corresponding to the carboxyl-terminal 30 amino acids of pro-beta-glucuronidase, provided evidence that egasyn binds to the carboxyl terminus of beta-glucuronidase. This antibody interacted with proenzyme beta-glucuronidase-egasyn complexes in which one, two, or three egasyn molecules were bound to the beta-glucuronidase tetramer, but not with those complexes (M4) which contained four egasyn molecules. We interpret these results as indicating that all available carboxyl termini of the beta-glucuronidase proenzyme tetramer are shielded by egasyn in the M4 complexes. The same antibody did not recognize the mature lysosomal form of beta-glucuronidase, indicating that only the proenzyme form of microsomal beta-glucuronidase contains the original carboxyl terminus. Also, the synthetic 30-mer was found to be a specific and potent inhibitor (50% inhibition at 1.3 microM) of the esterase activity of purified egasyn but exhibited little inhibitory activity toward other purified esterases including a rat trifluoroacetylated esterase or egasyn esterase from another species. Together, these data describe a potent interaction of the exposed carboxyl terminus of precursor glucuronidase with the esterase catalytic site of egasyn, which in turn results in the specific localization of glucuronidase within the lumen of the endoplasmic reticulum.
        
Title: Strain differences of rat liver carboxylesterase activities related to the phenotype difference of esterase-3 (egasyn) Nakamura T, Satoh T, Horie T, Sagami F, Tagaya O Ref: Res Commun Chem Pathol Pharmacol, 66:451, 1989 : PubMed
It was demonstrated that the inbred strain EHBR had the C phenotype of esterase-3 judging from the absence of liver microsomal beta-glucuronidase and the pattern of esterase activities of liver homogenates after analytical isoelectric focusing. In addition, in the strain EHBR, liver microsomal hydrolase activities of acetanilide and isocarboxazid which are hydrolyzed well by esterase-3 were lower than in outbred Sprague-Dawley rat and inbred LEW rat having the D phenotype of esterase-3. These results suggest that the phenotype difference of esterase-3 is possible to cause the strain differences of liver microsomal carboxylesterase activities.
Three differently modified forms of beta-glucuronidase are known to exist: a microsomal enzyme form (M) existing in tissues where egasyn, a second microsomal protein, is present; and an acidic (La; complex-type oligosaccharide) and a basic (Lb; non-complex type oligosaccharide) lysosomal form which occur in all mouse tissues. Lb predominates in tissues containing microsomal beta-glucuronidase, La in those lacking it. In pulse-labelling experiments using mouse strain C57BL/6 liver containing egasyn (Eg+/Eg+) and microsomal enzyme, about half of the newly synthesized beta-glucuronidase was processed to the microsomal enzyme form, which was evidently further processed to Lb, and about half directly to La. In contrast, in liver of the congenic line C57BL/6.YBR Es-1b Eg0 that lacks egasyn (Eg0/Eg0) and microsomal enzyme, most of the labelled beta-glucuronidase was processed to La, and only a minor portion to Lb. Newly synthesized enzyme appeared first in microsomal, then in light and heavy lysosomal fractions of Eg+/Eg+ liver. In Eg0/Eg0 liver, no labelled enzyme was measurable in the microsomes, but it appeared rapidly in both types of lysosomes. Taken together these findings indicate that the microsomal enzyme form serves as a precursor of Lb, and that La is synthesized independently. The apparent half-life of La is only two-thirds that of Lb; this fact accounts for the reduced beta-glucuronidase activity in Eg0/Eg0 liver, which contains La as the predominant form.
Mouse liver beta-glucuronidase is stabilized within microsomal vesicles by complexation with the accessory protein egasyn. The location of the beta-glucuronidase-egasyn complex and free egasyn within microsomal vesicles was investigated. Surprisingly, it was found that neither the complex nor free egasyn are intrinsic membrane components. Rather, both are either free within the vesicle lumen or only weakly bound to the inside of the vesicle membrane. This conclusion was derived from release studies using low concentrations of Triton X-100 or controlled sonication. Both the intact complex and free egasyn were released in parallel with lumenal proteins, not with intrinsic membrane components. Also, beta-glucuronidase was protected from digestion by proteinase K by the membrane of microsomal vesicles. The hydrophilic nature of both the complex and free egasyn was confirmed by phase separation experiments with the detergent Triton X-114. Egasyn is one of an unusual group of esterases that, despite being located within the lumen or only weakly bound to the lumenal surface of the endoplasmic reticulum, do not enter the secretory pathway.
        
Title: Involvement of the esterase active site of egasyn in compartmentalization of beta-glucuronidase within the endoplasmic reticulum Medda S, Stevens AM, Swank RT Ref: Cell, 50:301, 1987 : PubMed
Organophosphorous compounds, which are potent inhibitors of egasyn-esterase activity, caused a rapid dissociation of the high molecular weight egasyn-microsomal beta-glucuronidase complex when administered in vivo or when added in vitro to microsomal suspensions. The dissociation was relatively specific to phosphodiester inhibitors of the esterase active site. Also, the egasyn-esterase active site was inaccessible to substrates and to inhibitors when egasyn was complexed to beta-glucuronidase. Dissociation of the egasyn-microsomal beta-glucuronidase complex in vivo by organophosphorous compounds was followed by massive and rapid secretion of microsomal beta-glucuronidase, but not egasyn, into plasma. These experiments implicate the egasyn-esterase active site in attachment of microsomal beta-glucuronidase to egasyn by a novel mechanism that, in turn, compartmentalizes beta-glucuronidase within the endoplasmic reticulum.
        
Title: Identity of esterase-22 and egasyn, the protein which complexes with microsomal beta-glucuronidase Medda S, von Deimling O, Swank RT Ref: Biochemical Genetics, 24:229, 1986 : PubMed
Recent experiments have demonstrated that egasyn not only sequesters beta-glucuronidase in microsomes by forming high molecular weight complexes with beta-glucuronidase, but also has carboxyl esterase activity. We have found several new phenotypes of egasyn-esterase after electrophoresis and isoelectric focusing of liver homogenates and purified egasyn of inbred and wild mouse strains. Several phenotypes corresponded in relative mobility and relative isoelectric point among inbred strains to that recently reported for esterase-22 by Eisenhardt and von Deimling [(1982). Comp. Biochem. Physiol. 73B:719]. This genetic evidence, plus a wide variety of comparative biochemical and physiological data, indicates that egasyn is identical to esterase-22. Both parental types of egasyn isozymes are expressed in heterozygous F1 progeny, suggesting that alterations in the egasyn structural gene are responsible for the altered isoelectric points. Also, egasyn is a monomer since no new esterase bands appear in F1 progeny. The variants in isoelectric point of egasyn map at or near the egasyn (Eg) gene within the esterases of cluster 1 near Es-9 on chromosome 8.
        
Title: The egasyn gene affects the processing of oligosaccharides of lysosomal beta-glucuronidase in liver Swank RT, Pfister K, Miller D, Chapman V Ref: Biochemical Journal, 240:445, 1986 : PubMed
The accumulation of the relatively large amounts of beta-glucuronidase in microsomal fractions of normal mice depends on formation of complexes with the protein egasyn. Unexpectedly, it was found that the egasyn gene also affects the processing of beta-glucuronidase, which is segregated to lysosomes. In egasyn-positive mice lysosomal beta-glucuronidase from liver has a mean pI of 5.9 with a minor proportion at pI 5.4, whereas in egasyn-negative mice the proportion of the two lysosomal forms is reversed. Combined experiments measuring susceptibility to neuraminidase and to endoglycosidase H and specific binding to Ricinus communis lectin-agarose columns showed that the alterations in isoelectric point were associated with a decrease in complex oligosaccharides of lysosomal beta-glucuronidase in egasyn-positive mice. Since this alteration occurs not only in a congenic strain carrying the Eg0 gene but also in several other inbred strains that are homozygous for this gene, it is considered to be a genuine effect of the Eg gene rather than other genes that might regulate oligosaccharide processing. Also, the alteration is likely to be a result of direct physical interaction of the egasyn protein and lysosomal beta-glucuronidase, since a second lysosomal enzyme, beta-galactosidase, which does not form complexes with egasyn, is unaffected. The results suggest a model in which egasyn not only causes accumulation of beta-glucuronidase in the microsomal compartment but also acts upon the precursor to lysosomal beta-glucuronidase to alter its interaction with trans-Golgi-apparatus processing enzymes.
        
Title: Egasyn, a protein which determines the subcellular distribution of beta-glucuronidase, has esterase activity Medda S, Swank RT Ref: Journal of Biological Chemistry, 260:15802, 1985 : PubMed
The glycoprotein egasyn complexes with and stabilizes precursor beta-glucuronidase in microsomes of several mouse organs. Several observations indicate egasyn is, in addition, an esterase. Liver homogenates of egasyn-positive strains have specific electrophoretically separable esterases which are absent in egasyn-negative mice. These esterases react with anti-egasyn serum. A specific esterase was likewise complexed with immunopurified microsomal beta-glucuronidase. The esterases were, like egasyn and microsomal beta-glucuronidase, concentrated in the microsomal subcellular fraction. Egasyn which is not bound to beta-glucuronidase, which represents 80-90% of total liver egasyn, is not complexed with other liver proteins. Egasyn, therefore, specifically stabilizes beta-glucuronidase in microsomes. The esterase activity is inhibited by bis-p-nitrophenyl phosphate indicating it is a carboxyl esterase. Several possible functions of egasyn-esterase activity are discussed.
        
Title: Preparation of microsomal beta-glucuronidase and its membrane anchor protein, egasyn Lusis AJ Ref: Methods Enzymol, 96:557, 1983 : PubMed
Title: The synthesis and processing of beta-glucuronidase in normal and egasyn deficient mouse kidney Brown JA, Jahreis GP, Swank RT Ref: Biochemical & Biophysical Research Communications, 99:691, 1981 : PubMed
Title: Demonstration of a rat liver microsomal binding protein specific for beta-glucuronidase Strawser LD, Touster O Ref: Journal of Biological Chemistry, 254:3716, 1979 : PubMed
A binding protein with apparent specificity for beta-glucuronidase has been partially purified from a Triton X-100 extract of rat liver microsomes by affinity chromatography on glucuronidase-Sepharose 2B. It appears that once removed from the membrane, this binding protein self-aggregates to form large macromolecular complexes. With the use of polyacrylamide gel electrophoretic and sucrose density gradient ultracentrifugation assays to monitor the conversion of glucuronidase tetramer to a very high molecular weight complex, it was shown that the binding activity is heatlabile and protease-sensitive. However, binding activity is not influenced by salts, carbohydrates, other proteins or glycoproteins, or by extensive periodate oxidation of beta-glucuronidase, nor does binding occur with any other protein tested. The binding protein does not discriminate against any form of beta-glucuronidase from any rat organ tested. However, the binding protein does show organ localization, being present in the liver and kidney but not the spleen. The possible relationship of this binding protein to egasyn, a membrane protein which stabilizes beta-glucuronidase in mouse liver endoplasmic reticulum, is discussed.
        
Title: Relationships between levels of membrane-bound glucuronidase and the associated protein egasyn in mouse tissues Lusis AJ, Paigen K Ref: Journal of Cell Biology, 73:728, 1977 : PubMed
Mouse beta-glucuronidase has a dual intracellular localization, being present in both endoplasmic reticulum and lysosomes of several tissues. Previous studies demonstrated that the protein egasyn is complexed with microsomal but not lysosomal glucuronidase and that a mutant lacking egasyn is deficient in microsomal, but not lysosomal, glucuronidase. By means of a recently developed radioimmunoassay for egasyn, the relationship between microsomal glucuronidase levels and egasyn levels has been examined in various adult tissues, during postnatal development in liver, and after androgen induction of glucuronidase in kidney. The results indicate that the relative availability of egasyn determines the balance between glucuronidase incorporation into membranes and that into lysosomes.
        
Title: Inheritance in mice of the membrane anchor protein egasyn: the Eg locus determines egasyn levels Lusis AJ, Tomino S, Paigen K Ref: Biochemical Genetics, 15:115, 1977 : PubMed
Previous studies have suggested that the binding of mouse flucuronidase to endoplasmic reticulum membrane is stabilized by the membrane protein egasyn. Using a radioimmunoassay for egasyn, we have now examined the inheritance of egasyn levels in mice. Mice of the inbred strain C57BL/6J, which have normal levels of microsomal glucuronidase, contained 56 +/- 10 mug egasyn per gram of liver. Mice of the inbred strain YBR, which carry the Eg0 mutation resulting in the absence of microsomal glucuronidase, did not contain detectable levels of egasyn. The F1 progeny of these two strains contained intermediate levels of egasyn, 25 +/- 4 mug egasyn per gram of liver. Progeny from the backcross of these F1 animals to YBR were distributed equally into two discrete phenotypic classes. One class lacked both egasyn and microsomal glucuronidase, while the other class contained 25 +/- 3 mug egasyn per gram of liver and contained normal levels of microsomal glucuronidase. Thus egasyn levels are determined by the Eg locus and show additive inheritance. These results suggest that the Eg gene codes for egasyn and that it is the inability to produce egasyn that results in a deficiency of microsomal glucuronidase in the Eg0 mutant.
        
Title: Isolation, characterization, and radioimmunoassay of murine egasyn, a protein stabilizing glucuronidase membrane binding Lusis AJ, Tomino S, Paigen K Ref: Journal of Biological Chemistry, 251:7753, 1976 : PubMed
Glucuronidase present in lysosomes of mouse liver occurs as the free tetramer, whereas glucuronidase present in endoplasmic reticulum occurs in macromolecular complexes containing one to four molecules of the protein egasyn. Earlier genetic and biochemical studies suggest that these complexes, or M forms, function to stabilize the membrane binding of glucoronidase. The detergent Triton X-100 extracts glucuronidase-egasyn complexes intact and they dissociate in the presence of the detergent deoxycholate or upon heating. We have now purfied egasyn by releasing it from antiglucuronidase immunoprecipitates of M forms under relatively mild conditions, such as treatment with deoxycholate or heating at 50 degrees. Isolated egasyn is a glycoprotein of molecular weight about 64,000 and is not unusually hydrophobic in amino acid composition. Monospecific antibody to egasyn was raised. This antibody showed no cross-reactivity with purified beta-glucuronidase and antibody to glucuronidase failed to react with purified egasyn; however, both antibodies bound to egasyn-glucuronidase complexes. A procedure for the radioimmunoassay of egasyn was developed utilizing egasyn labeled with iodine 125. Most of the antigenic sites of egasyn in homogenates of normal liver are masked after extraction with Triton X-100 and only become immunoreactive after exposure to deoxycholate. After unmasking, mouse liver proved to contain about 56 mug of egasyn/g, nearly all of which is localized to the microsomal fraction. Of this total only about 10% was complexed with glucuronidase, suggesting theat the bulk of the egasyn present may be complexed with other proteins. Mice of the inbred strain YBR, which carry the EgO mutation resulting in the absence of microsomal glucuronidase, lacked immunoreactive egasyn, suggesting that the primary defect in this strain lies in the unavailabililty of agasyn to form complexes. There is now considerable evidence in support of the concept that the microsomal forms of glucuronidase exist in membranes complexed with egasyn and that formation of these complexes is required for maintenance of glucuronidase in membranes. Egasyn may represent one of a class of membrane anchor proteins that each stabilize the membrane binding of a charcteristic set of proteins.
        
Title: Phenobarbital induction of egasyn: availability of egasyn in vivo determines glucuronidase binding to membrane Owerbach D, Luis AJ Ref: Biochemical & Biophysical Research Communications, 69:628, 1976 : PubMed
Title: Egasyn, a protein complexed with microsomal beta-glucuronidase Tominco S, Paigen K Ref: Journal of Biological Chemistry, 250:1146, 1975 : PubMed
Two polypeptide chains are present in murine beta-glucuronidase precipitated with a specific anti-beta-glucuronidase antibody F(ab)2 fragment. One is the catalytic subunit of beta-glucuronidase and the other has the properties predicted for the hypothetical beta-gluronidase membrane anchor protein. The new protein, named egasyn, is associated with microsomal, but no lysosomal beta-glucuronidase. It is released from the microsomal beta-glucuronidase complex by heat treatment. The YBR strain of mice carrying the Eg degrees mutation does not form an egasyn-beta-glucuronidase complex and is unable to retain beta-glucuronidase on microsomal membranes.